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CHAOS AND COMPLEXITY IN A FOUR-DIMENSIONAL SYSTEM
WITH HYPERBOLIC TANGENT NONLINEARITY AND NO
EQUILIBRIUM

M. 1. KOPP'*, §

ABSTRACT. This paper introduces a new four-dimensional (4-D) dynamical system com-
posed of only seven terms: four linear terms, one nonlinear term involving the hyperbolic
tangent function, one absolute value function term, and a constant. The new 4-D system
does not have any equilibrium points and is capable of producing hidden attractors. The
paper includes a detailed dynamical analysis, which encompasses bifurcation diagrams,
Lyapunov exponents, Kaplan-Yorke dimensions, and bias amplification. Additionally,
the theoretical model is verified through an electronic simulation of the system using
Multisim® 14.2. The paper also demonstrates the synchronization of two identical 4-D
hyperchaotic systems using the active control method. The proposed simple dynamic
system exhibits a rather complex chaotic behavior and may find applications in various
practical domains.

Keywords: hyperchaotic behavior, offset boosting control, circuit implementation, active
control synchronization

AMS Subject Classification: 34Cxx, 34C28

1. INTRODUCTION

In recent years, the rapid advancement of chaos theory has led to its widespread appli-
cation across various engineering fields, including lasers [?], power systems [?], oscillators
[?], neural networks [?], cryptosystems [?], memristive systems [?], and more. Lorenz’s
discovery of a three-dimensional (3D) chaotic system [?] sparked the exploration of var-
ious other chaotic systems. The introduction of the first four-dimensional hyperchaotic
system by Rossler [?]-[?] marked a turning point, leading to increased scientific interest
in hyperchaos, as these nonlinear dynamic systems display more intricate behavior than
chaotic systems. A hyperchaotic system is mathematically defined as a chaotic system
that possesses more than one positive Lyapunov exponent, resulting in richer and more
complex dynamics within the phase plane [?].
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Chaotic systems can be classified into two categories: those with self-excited attractors
and those with hidden attractors. A self-excited attractor possesses a basin of attraction
that intersects with the vicinity of an equilibrium point, while a hidden attractor has a
basin of attraction that does not intersect with the neighborhood of any equilibrium point
[?]. The idea of hidden attractors, introduced in [?], has inspired ongoing research in the
field of nonlinear science. According to the article [?], currently hidden attractors within
dynamic systems are divided into five categories: 1) systems without equilibria [?], 2) equi-
librium curves [?], 3) planes of curves [?], 4) equilibrium lines [?], and 5) stable equilibrium
points [?]. Researchers have focused on constructing new chaotic and hyperchaotic models,
taking into account the following aspects: 1) the presence of several positive Lyapunov
exponents; 2) minimizing the number of terms in the system; 3) achieving the highest
Kaplan-Yorke dimension.

Chaos control and synchronization are significant challenges in chaos theory. The prob-
lem of chaos synchronization involves two systems: the master, or driver system, and the
slave, or follower system. Various methods have been proposed to address this issue, in-
cluding active control [?]-[?], adaptive control [?]-[?], backstepping control [?], and sliding
mode control [?]-[?], and so on. In this paper, we choose the active control method due to
its appealing characteristics, such as rapid convergence and the ease of selecting suitable
controllers.

There is an extensive number of 4-D hyperchaotic systems reported in the literature.
Therefore, we focus our brief review on 4-D systems with a single nonlinear term but
no 4-D chaotic jerk systems. In [?], a 4-D system with eight terms, including a single
nonlinear term, was presented, exhibiting different types of hidden attractors. A simple 4-
D chaotic system without equilibrium points, displaying hidden attractors with attractor
coexistence (multistability), was reported in [?]. This system, also consisting of eight
terms with one nonlinear term, exhibits complex behaviors such as 3-torus and 2-torus
chaos. In [?], a nonequilibrium autonomous chaotic system was introduced using a linear
state feedback controller in the Sprott-S system. The proposed system features eight
terms, including a single nonlinear term, and shows complex hidden dynamics, such as
hidden multistability. A 4-D system with eight terms and hyperbolic cosine nonlinearity
was described in [?]. It is capable of displaying diverse dynamics, including hidden and
multiple attractors, and is notable for the simplicity of its electronic analog, which does
not require an analog multiplier chip. The system demonstrates behaviors such as chaotic
2-torus and 3-torus. In [?], a 4-D chaotic system incorporating an active flow-controlled
memristor with smooth cubic nonlinearity was proposed. This system consists of seven
terms, including one nonlinear term, with a Kaplan-Yorke dimension of Dgy = 2.579.
A 4-D chaotic system with a simple structure of 11 terms and a single nonlinear term
was presented in [?], featuring a Kaplan-Yorke dimension of Dy = 3.184. A simple
4-D chaotic system with hidden attractors was introduced in [?], featuring a hyperbolic
cosine function as its nonlinear term. This system exhibits a diverse range of dynamical
behaviors, including chaos, quasi-periodicity, and the transition to a 2-torus attractor.

Based on the reviewed literature [?]-[?], no study has yet explored a 4-D hyperchaotic
system incorporating a nonlinear term with a hyperbolic tangent function. This gap
motivated our investigation of a simple 4-D hyperchaotic system featuring a hyperbolic
tangent nonlinearity.

The main contribution for this paper is summarized as follows:

e The proposed system is considered simple, comprising seven terms: four linear
terms, one nonlinear term involving the hyperbolic tangent function, one absolute
value function term, and a constant.
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e A comprehensive dynamical analysis of the 4-D hyperchaotic system is conducted,
including the construction of the bifurcation diagram, classification of equilibrium
points, and calculation of the Lyapunov exponents and Kaplan-Yorke dimension,
as summarized in Table 1.

e An electronic analog of the proposed 4-D system is designed and implemented.

e Active control synchronization of the system is theoretically and numerically demon-
strated.

The structure of this paper is organized into five sections as follows. In Section 2, the
mathematical model is introduced, and the basic dynamical properties of the new 4-D
system with no equilibria are analyzed. In Section 3, the electronic circuit design of the
new system is carried out. Active control synchronization is given in Section 4. Finally,
Section 5 draws the conclusions of this work.

2. MATHEMATICAL MODEL AND DYNAMICAL ANALYSES OF THE PROPOSED 4-D SYSTEM

In this section, we introduce the mathematical formulation of the proposed 4-dimensional
hyperchaotic system and perform a detailed dynamical analysis.

2.1. Essential features of the novel 4-D hyperchaotic system. The 4-D system
analyzed in the manuscript is a variant of the original chaotic type systems by Rossler in
his seminal work [?], and the mathematical expression for the proposed 4-D system takes
a relatively simple form:

dl’l
dt

d$2
= —zxgtanh zq,

dt

dis (1)
dt
dl’4
dt
From equation (?7), we observe that the system consists of seven terms: a nonlinear term
involving the hyperbolic tangent (xstanhz), a term with the absolute value function
(|x1]), a constant term (1), and four linear terms with the state variables x1,z2,24. In
this system (??), a and b are positive control parameters.

Let’s explore the key dynamic properties of the new 4-D system. The system (?7?) is
easily verified to be symmetric with respect to the x3-axis and remains invariant under the
transformation (x1, z2, x3,24) — (—x1, —x2,x3, —x4). To determine the nature of system
(??), we calculate its divergence as follows:

0ty Oty Oi3 Oig

(971’1 875112 8%3 8:64 -

= a(—x1 + x2) + 24,

= |l‘1| - 17

= —bl‘l .

It is obvious that the system (?7) is dissipative when a > 0. If a < 0, the phase volume
expands, and the system (??) becomes unbounded. For a = 0, the system (??) is conser-
vative. Moving forward, we will focus exclusively on the study of the dissipative system
(?7). To identify the equilibrium points in system (?7), we assume &1 = &9 = @3 = @4 = 0,
which gives us 1 = 0 from the fourth equation. Substituting this into the third equation
results in the impossible statement —1 = 0. This logical inconsistency suggests that the
system (?7?) is classified as hidden.
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FIGURE 1. Bifurcation diagrams for x1, s components of the system (?7).

2.2. Comprehensive dynamic analysis of the proposed hyperchaotic model. In
this subsection, we conduct several analyses to determine whether the proposed system
exhibits hyperchaotic behavior. Various dynamic analysis methods will be applied, as they
are essential for identifying chaotic or hyperchaotic dynamics in the system.

Let’s begin with the bifurcation diagram analysis, a commonly used tool for visually rep-
resenting changes in the system’s state variables. This diagram is crucial for understanding
qualitative shifts in the system’s behavior as specific control parameters are varied. We
solve the system of Egs. (?7) under the initial conditions:

21(0) = 22(0) = 23(0) = 24(0) = 1. 2)

The parameter a is varied in system (?7), while the other parameter is kept constant at
b = 0.55. The bifurcation diagrams in Fig. 77 illustrate the z; and x3 components of
system (?7?) as a changes within the range a € [0, 2]. These diagrams help identify regions
of regular behavior within a system, represented by individual points. Regular behavior
encompasses predictable, structured, and non-chaotic dynamics. One example is a limit
cycle, a stable periodic solution that attracts nearby trajectories. Additionally, regular
behavior can include non-periodic motions, such as quasi-periodicity, where the system
follows a structured yet non-repeating trajectory. Furthermore, bifurcation diagrams can
illustrate period-doubling bifurcations as the parameter a varies. These bifurcations rep-
resent a transition where the system shifts from regular periodicity to a doubled period,
which may continue progressing and ultimately lead to chaotic behavior.

In-depth insights into the dynamic behavior of the system as parameter a varies can
be gained by examining the Lyapunov exponents. The number of Lyapunov exponents
corresponds to the dimensionality of the dynamic system. Lyapunov exponents (LEs)
quantify the rate at which neighboring trajectories diverge or converge within the system.
When an LEs is positive, the dynamic system is deemed unstable or chaotic, while a
negative exponent indicates a tendency toward stable equilibrium. Thus, the sign of the
LEs facilitates the classification of the system’s behavior as regular, quasi-regular (such
as 2-torus or 3-torus), chaotic, or hyperchaotic.

All LEs for specific values of parameter a and initial conditions (?7?) were calculated
using the Gram-Schmidt orthonormalization for Benetinn-Wolf’s algorithm [?]-[?], which
is a standard and reliable approach for determining Lyapunov exponents in dynamical
systems. This method (see also [?]) ensures accurate computation of the exponents by
iteratively linearizing the system’s equations along its trajectory and tracking the diver-
gence of nearby trajectories. As indicated by the Lyapunov exponents, the dynamical
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FIGURE 2. Lyapunov exponents for the system (??) for the parameter
value a = 0.62 and initial conditions (?7?).

behaviors of system (??) can be classified into the following categories, as detailed in
Table ?7. Next, we concentrate on the hyperchaotic behavior of system (??). The pres-

TABLE 1. Lyapunov exponents for different values of the parameter a.

a Lyapunov Exponents Signs Behavior
(LEy, LEy, LEs, LEy)
a=0.15| (0.0613,—0.0384, —0.0019, —0.1710) (0,—,—,—) | Periodic

(limit cycle)
@ = 0.55 | (0.1529,0.0059, —0.0237, —0.6825) | (+,0,—,—) | Chaotic

@ =106 |(0.1513,0.0051,0.0035, —0.7600) (+,0,0,—) | Chaotic

2 — torus
a =0.62 | (0.1385,0.0201,0.0076, —0.7864) (+,+,0,—) | Hyperchaotic
a =0.65 | (0.0715,0.0327,-0.0046, —0.7497) (+,+,0,—) | Hyperchaotic
a=0.8 |(0.1463,0.0055,-0.0049, —0.9468) (+,0,0,—) Chaotic

2 — torus

a=15 | (0.0425,0.0007, —0.0463, —1.4969) (+,0,—,—) | Chaotic

ence of two positive Lyapunov exponents ((n —2) 4+positive LEs) confirms that the system
exhibits two distinct directions where nearby trajectories diverge exponentially. In this
case, the maximum Lyapunov exponent (MLE) is (LE; = 0.138582), and the sum of all
Lyapunov exponents is negative: LFy + LEy + LEs + LE, = —0.62 < 0, indicating that
the system (?7?) is dissipative. It can be easily verified that the hyperchaotic system (?7)
with parameter a = 0.62 satisfies the condition [?]:
4 4
0;
;LEz => Ja, = ~0-62.

=1

The dynamics of Lyapunov exponents associated with hyperchaotic behavior are illustrated
in Fig. ??. An estimate of the attractor complexity in the system described by Eq. (1) and
with the possibility of giving rise to hyperchaotic dynamics can be obtained by calculating
the Lyapunov or Kaplan-Yorke dimension, as explained in [?]:

¢
1 0.1664

Dy =€+ ——— Y LE; =3 ~ 3.212 3

Ky =&+ [LEgq| = * 07864 ’ (3)
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FiGURrE 3. Hidden attractors and time diagrams of the new 4-dimensional
system (?7) with parameters value a = 0.62,b = 0.55, and initial conditions

(?7).

where £ is determined from the conditions

13 3 E+1 4
Y LE;>0 = > LE;=01664, » LE;<0 = » LE;=-0.62<0.
=1 =1 =1 =1

Here ¢ is the number of first non-negative LEs in the spectrum. Dimension Dgy (?7) is
fractional.

2.3. Phase portraits of attractors and offset boosting control. Dynamic systems
serve as mathematical models across various scientific disciplines to describe complex
phenomena, often exhibiting multiple attractors. These attractors can take the form of
points, cycles, tori, or more intricate chaotic structures, representing different potential
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FiGURE 4. Signal x3 and phase portrait in the plane x1x3 for different
values of the offset boosting controller k: k = 0 (blue), & = 6 (green),
k= —6 (red).

states of the system. As highlighted in the previous subsection, the dynamic system (?7)
with a = 0.62 displays hyperchaotic behavior, making the visual examination of phase
portraits of the hyperchaotic attractors particularly intriguing. Using Mathematica©
11.1 (hereinafter referred to as Mathematica), we plotted the phase portraits and temporal
diagrams of the state components for the hyperchaotic system (?7), as shown in Fig. ?7?.
11.1 Notably, directly implementing the hyperchaotic system (??) in an electronic circuit
presents challenges. Fig. 77 illustrates that the dynamic variables x5 and x4 operate within
a range that exceeds the power supply capabilities of operational amplifiers. This issue is
addressed by transforming the variables in the dynamic system (?7). Specifically, the scale
of the variables is adjusted as follows: x5 = 10X, and x4 = 10X, while the remaining
variables are renamed as x; = X; and z3 = X3. Then the transformed hyperchaotic
system (?7?) has the form:

(dX

dTl = 0.62(— X1 4+ 10X5) + 10Xy,

dX

72 — —0.1X3tanh X,

¢ (4)

aXs _ X1 —1

dt - 1 )

dX,

— = _0.055X] .
- 0.055X,

In the next section, the transformed system (?7?) will be employed to develop an analog
chaos generator circuit.

The offset boosting control method has numerous applications in hyperchaotic systems,
enabling flexible shifting of the attractor in a desired direction through the introduction of
an offset, which is highly valuable in engineering contexts [?]. By introducing a constant
to specific variables within a system, chaotic signals can be maneuvered throughout the
phase space. In the equations of system (77?), it is evident that the state variable 3
appears solely in the second equation. Consequently, we can control these state variables
alternately by substituting x3 with x5+ k where k is constant. As shown on the left in Fig.
7?7, modifying the bias gain control k effectively transforms the signal x3 from a bipolar
to a unipolar signal. Adjusting the parameter k shifts the attractor along the z3-axis, as
illustrated on the right side of Fig. 77.
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FIGURE 5. Circuit modules implemented based on a system of equations
(??) a) le b) X2> C) X37 d) X4-

3. ELECTRONIC CIRCUIT DESIGN

In this section, we theoretically model the new hyperchaotic system (??) using Kirch-
hoff’s laws. Following this, we simulate and test the chaos generator’s electronic circuit
using Multisim© 14.2 software. According to Kirchhoff’s laws for electrical circuits, the
electrical analog of system (??) can be represented as follows:

dU1 U1 U2 U4
Ci—=—"—+—"+ —
Vdr Ri1 * Ria * Ri3’
dU2 . _Ugtanh(Ul)
dr Ry K

040 _ Uil

Cs

3dr ~ Ry Rz
iy U
Yar Ry

where V, is a stable DC voltage source to implement the constant (=1) in a system
(??), R;; are resistors (i,j) = 1,2,3,4,5,6, U;(7) are voltage values, C; are capacitors,
and K is a scaling coefficient for the multiplier. We choose the normalized resistor as
Ry = 100k and the normalized capacitor as Cy = 1InF. Then the time constant is
equal to tg = RoCy = 10~%s. We rescale the state variables of the system (??) as follows
Uy = UpX1,Us = UpXa,Us = UpX3, Uy = Up Xy, Us = UpXs,Us = U X, K = UpK , and
T = tot. Next, we can write Eqs. (?7?) in a dimensionless form. After substituting Ry,
C,=Cy=C5=0C4 =Cp, and K' = 10 into (?7) and comparing the numerical values
with the output voltages of the system (7?), we obtain the resistor values as follows:
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FIGURE 7. Schematic diagram for the implementation of function absolute
value | - |.

(dX; 100k ~ 100k ~ 100k ~
- _ X X X
i I 1+ o 2+ o 4,
dXs 100k ~ ~
- Xstanh(X
dt Ry 10 stanh(Xa), ©)
dX; 100k ~ 100k
3 X - — W
dt Rs Rl Rg
dX, 100k
d ~ R, OV

where
Ry = 161.29kQ), Ry = 16.129k(), R3 = 10k2, R4 = R5 = Rg = 100kS2, R7 = 1.818M.

The analog circuit modules for the equations in system (?7) are illustrated in Fig. ?7.
These circuits consist of standard components, including resistors (R), capacitors (C),
diodes D1 and D2 (1N4001), a multiplier (M1, AD633), operational amplifiers (A1-A18,
TLO84ACN), and a supply voltage of £15V. The constant value of 1 is implemented using
a constant voltage source V, = 1V. The electronic circuit designed to implement the
hyperbolic tangent function is commonly utilized in studies related to the dynamics of
memristive Hopfield neural networks (see, for example, [?]). As shown in Fig. 77, the
equivalent circuit for the inverting hyperbolic tangent function consists of two MPS2222
transistors (Q1 and Q2), two TLO84ACN operational amplifiers, a current source of [y =
1.1mA, and several resistors. The operational amplifiers facilitate subtraction and input
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FI1GURE 8. Phase portraits of the 4-D hyperchaotic system as generated in
Multisim oscilloscopes: a) X7 X3, b) X2X3, ¢) X1Xo, d) X1X4, ) XoXy,
f) X3X4.

inversion, while the transistors are used to implement the exponential operation. We utilize
a standard electronic circuit to model the absolute value function | - |[?], as illustrated in
Fig. ??. The phase portraits presented in Fig. 7?7 demonstrate a striking resemblance
between the results obtained from Mathematica simulations (Fig. ??) and those from
Multisim simulations (Fig. ?7?).

4. ACTIVE CONTROL SYNCHRONIZATION

The development of a new chaotic oscillator using 4-D nonlinear dynamic equations
necessitates an investigation into its synchronization capabilities to confirm practical ap-
plicability. In this section, we focus on the active control synchronization [?]-[?] of two
identical 4-D hyperchaotic systems. System (?7) is chosen as the driver system, and the
follower system is outlined as follows:

d
% = a(—y1 + y2) + ya + w1,
d
% = —yztanhy; + ug,
(7)
s = |y1| = 14 us,
dt
d
ﬂ = —by1 + Uyg .

dt
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FIGURE 9. Synchronization error behavior for 4-D hyperchaotic driver and
follower systems.

In this system, y1,yo,y3, Y4 represent the states, and wuq,uo,us, ug are active controllers
that will be defined later. The objective is to synchronize the driver and follower systems’
signals, even when their initial conditions differ. The state errors are defined as e;(t) =
yi(t) — xi(t), for (i = 1,2,3,4). Subtracting the driver system (??) from the follower
system (?7?) gives us the error system as follows:

é1 = a(—ey +e2) + e4 + uy,
€y = —(y3tanh y1 — r3tanh :L“1) + ua, (8)

és = |y1| — |z1| + us,
és = —bey +uy.
The next step is to establish active control functions that will generate an asymptotically

stable error system, thereby enabling synchronization of the 4-D hyperchaotic systems.
The following are the active control functions selected:

U] = —ej + ae; — aeg — ey,

ug = —eg + ystanhy; — xstanh xq, )
uz = —e3 — (|y1] — 21]),

uy = —ey + beq .

Next, the dynamic equations of the error system are given as follows:

él = —€1,
é2 = —€2,
(10)
€3 = —€3,
é4 = —é4.

When the proposed active control functions (?7) are applied, the error system converts
into a linear form. For clarity, this is expressed in matrix form as follows:

é1 -1 0 0 0 el
é2| | 0 =1 0 0 [|es
é3 o 0 0 -1 0 €3 (11)
é4 0 0 0 —11|eg
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FIGURE 11. Time evolution of the synchronization errors with controllers
deactivated (¢ < 760 s) and activated (¢ > 760 s).

A simple verification shows that all eigenvalues of the state matrix (?7) are negative.
Thus, according to the Routh-Hurwitz criterion, the error system is stable, ensuring syn-
chronization between the driver system (??) and the follower system (?7).

4.1. Numerical simulation. For numerical verification sinchronization, we solved the
nonlinear equations (?7) and (??) using the 4th-5th order Runge-Kutta-Fehlberg (rkf45)
method within the Maple© 18 computing environment, with parameters set to a = 0.62
and b = 0.55. The initial conditions for the driver system (??) were as follows:

x1(0) = 0.1, x2(0) = 0.3, x3(0) = 0.5, 24(0) = 0.6, (12)
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and the follower system was initialized with:

y1(0) = 12(0) = y3(0) = 4(0) = L.5. (13)

The error curves in Fig. 7?7 illustrate the synchronization process between the driver
and follower systems, with synchronization errors e; exponentially converging to zero over
time. Fig. 77 further depicts the state behaviors in both systems, showing quick trajectory
convergence and indicating successful synchronization of the hyperchaotic systems.

To better visualize synchronization using the active control method, we selected a rel-
atively large delay time of ¢ = 760 seconds and set the initial conditions for the driver
system (??) and follower system (?7?) as follows:

X1(0) = X2(0) = X5(0) = X4(0) = 1, (14)

Y1(0) = Y2(0) = Y3(0) = Y4(0) = 3.5. (15)

The active controllers were turned on at ¢ = 760 seconds, and Fig. 77 illustrates the
time evolution of the error states. The simulation results indicate that when the active
controllers were off (¢ < 760 s), the synchronization error for the four states exhibited
chaotic behavior, signifying the absence of synchronization. Once the controllers were
activated (¢t > 760 s), all synchronization error states quickly converged to zero. This
behavior can be explained by the stability property of the chosen synchronization scheme.
In particular, if the error dynamics (??) are governed by stability criteria, such as the
Lyapunov stability theorem or the Routh-Hurwitz asymptotic stability criterion, then
the system naturally reduces synchronization errors to zero. Note that the impact of
initial conditions depends on the type of synchronization being studied. In our case,
with full or exponential synchronization, the system exhibits global stability. As a result,
synchronization errors converge to zero across a broad range of initial conditions.

These simulation results demonstrate the effectiveness of the active controllers (?7) in
synchronizing two identical 4-D hyperchaotic systems, even when starting from different
initial conditions.

5. CONCLUSIONS

In this paper, we introduce a new 4-D dynamical system that satisfies the fundamental
criteria for hyperchaos generation. According to [?], a hyperchaotic system must: (a)
be dissipative, (b) have a four-dimensional phase space, and (c) contain at least one
nonlinear term. It was determined that the new 4-D dynamic system has no equilibrium
points, which may lead to the formation of hidden attractors. We found two positive
Lyapunov exponents, and the new 4-D system is recognized as hyperchaotic; its Kaplan-
Yorke dimension (Dgy = 3.212) underscores its intricate nature. The simulation results
from the electronic circuit of the proposed 4-D system, designed in Multisim 14, are in
good agreement with the results obtained in Mathematica. By developing an appropriate
controller using a nonlinear control strategy and analytical linearization, synchronization
was achieved between two identical 4-D hyperchaotic systems.

The new system shows great potential for applications in encrypting and decrypting
information.
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