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FRACTIONAL CATTANEO EQUATION WITH A HARMONIC

SOURCE AND ASSOCIATED THERMAL STRESSES IN

AXISYMMETRIC AND CENTRAL SYMMETRIC CASES

V. KULKARNI1∗, S. SANKESHWARI2, §

Abstract. Integer and fractional order Cattaneo equations with a source varying har-
monically in time under zero initial conditions are studied in the axisymmetric case and
the central symmetric case. The integral transform techniques are used to find the fun-
damental solutions. The displacement potential is used to find the associated thermal
stresses in both cases. The impact of the fractional order parameters and time-harmonic
source on the temperature as well as stress distributions has been examined. The out-
comes of numerical computations are represented graphically for various values of the
order of fractional derivatives. The main objective of the article is to examine the role
of the order of the fractional derivatives in the rate of heat transfer and related thermal
stresses. Moreover, it has been observed that the angular frequency controls the oscilla-
tory behavior of solutions and also affects the amplitude of the oscillations. This analysis
has a wide scope of applications in the study of viscoelastic materials, thermal energy
storage systems, biological systems, etc.

Keywords: Cattaneo equation, Thermal stresses, Time harmonic impact, Non-Fourier
heat conduction, Caputo derivative.
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1. Introduction

The heat equation with the time-harmonic influence was initially examined by Angstrom
[1]. To address a broad range of diffusion-related periodic phenomena, Mandelis [8] devel-
oped a unified mathematical framework. Vrentas [24] used the diffusion and mass transfer
theory to solve a variety of transport problems. Oscillations can be introduced into the
parabolic heat conduction equation in two distinct methods. In the first method, the har-
monic source term is used by Nowacki [12], while in the second method, time-harmonic
boundary conditions are used by Carslaw and Jaeger [4] and Morse and Feshbach [9].
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Povstenko [16] investigated the fractional heat conduction equation with a time-harmonic
source at the boundary. Zhu [25] simultaneously measured the thermal diffusivity and con-
ductivity of graphite sheets using the heat-loss modified Angstrom method. The fractional
heat equation with a time-harmonic source and associated thermal stresses were investi-
gated by Povstenko [17]. Povstenko [18] discussed the fractional heat conduction equation
and associated theories of thermoelasticity. The Cattaneo equation with a time-harmonic
source in the Cartesian domain was discussed by Povstenko and Ostoja-Starzewski [19].
Povstenko [15] studied the non-homogeneous Cattaneo equation with the Caputo frac-
tional derivative and generalized thermoelasticity in one dimensional and axisymmetric
cases. On a real line, Povstenko and Ostoja-Starzewski [20] studied the telegraph equation
in the context of the Caputo fractional derivative under a moving time-harmonic source.
Povstenko et al. [21] studied the telegraph equation under a moving time-harmonic source
in polar coordinates.

Nikan et al. [10] obtained a solution of the Cattaneo equation in the context of the
Caputo fractional derivative of order α ∈ (1, 2) in a porous medium. Nikan et al. [11]
obtained a solution for the time fractional Black–Scholes equation for American and Eu-
ropean option pricing models. Avazzadeh et al. [2] studied the fractional Rayleigh–Stokes
problem in a viscoelastic fluid by applying the localized hybrid kernel meshless technique.
Luo et al. [7] proposed the Crank-Nicolson ADI Galerkin approach for obtaining a solution
of the nonlocal heat model in three dimensions.

Physical processes take place at multiple structural levels. Memory effects are a physical
concept that can be represented mathematically using fractional calculus. Our research fo-
cused on temperature and stress distributions and how they evolved, with special emphasis
on the significance of the fractional order time derivative and time-harmonic heat source.
Numerical results provided insights into the behavior of the obtained solutions, showing
the impact of the fractional order parameter and harmonic source on the temperature as
well as stress distributions.

The fractional Cattaneo equation with a time-harmonic source accurately models ther-
mal stresses in axisymmetric and central symmetric geometries. It enables design opti-
mization of thermal systems by accurately modeling thermal stresses and thermal waves.
It improves predictions of thermal stresses, reducing the risk of thermal failure in engineer-
ing applications. The finite speed of thermal wave propagation was achieved due to the
non-Fourier effect of heat conduction when α → 1. The role of the order of the fractional
derivatives was examined in the rate of heat transfer and related thermal effects. This
analysis has a wide scope of applications in the medical sciences.

In the present article, basic equations are mentioned in Section 2. In sections 3 and 4,
the solutions of the integer order Cattaneo equation and the fractional Cattaneo equation
are obtained, and the associated thermal stresses are investigated in the axisymmetric
case and the central symmetric case respectively. The obtained results are represented
graphically. The conclusions are drawn in Section 5.

2. Basic Equations

The non-classical heat conduction is represented by Cattaneo [5] and Vernotte [23] of
the form

q+ τ0
∂q

∂t
= −κ grad T, (1)

where τ0 denotes the relaxation time in the heat flux and is a non-negative constant, and
κ represents the thermal conductivity of the material.
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Combining equation (1) with a law of conservation of energy gives

∂T

∂t
+ τ0

∂2T

∂t2
= a∆T, (2)

where a denotes the thermal diffusivity of the material.

Following Povstenko [15], the generalization of equation (1) in the context of the time
fractional derivatives is given by

I1−αq+ τ0
∂αq

∂tα
= −κ grad T, 0 < α ≤ 1. (3)

Combining equation (3) with a law of conservation of energy gives to the fractional Cat-
taneo equation as

∂αT

∂tα
+ τ0

∂1+αT

∂t1+α
= a∆T, 0 < α ≤ 1, (4)

where

dαf

dtα
=


1

Γ(n− α)

∫ t

0

fn(ξ)(
t− ξ

)α+1−ndξ, n− 1 < α < n,

fn(ξ), α = n,

(5)

represents the Caputo fractional derivative of order α [6, 22]. The above equation (4) is
parabolic if α → 0 and hyperbolic if α → 1.

3. Axisymmetric case

3.1. Integer order Cattaneo equation. Consider the Cattaneo equation with a har-
monic source as

∂T

∂t
+ τ0

∂2T

∂t2
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+

q0δ(r)e
iωt

2πr
, 0 ≤ r < ∞, (6)

where ω is the angular frequency.

Initially

T =
∂T

∂t
= 0 at t = 0. (7)

The nondimensional quantities listed below have been introduced in equation (6)

t̄ =
t

t0
, ω̄ = t0ω, r̄ =

r

t
1/2
0

√
a
, τ̄0 =

τ0
t0
, T̄ =

aT

q0
, σ̄ij =

a

2µmq0
σij , (8)

where t0 is the characteristic time.

In the view of nondimensional quantities, equation (6) can be converted into nondimen-
sional form as

∂T̄

∂t̄
+ τ̄0

∂2T̄

∂t̄2
=

(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

2πr̄
, (9)

Operating the Laplace transform operator L to equation (9)

L

{
∂T̄

∂t̄
+ τ̄0

∂2T̄

∂t̄2

}
= L

{(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

2πr̄

}
, (10)

Equation (10) reduces to the following form(
p+ τ̄0p

2
) ˆ̄T =

∂2 ˆ̄T

∂r̄2
+

1

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

2πr̄(p− iω̄)
, (11)

where p denotes the Laplace transform parameter, and hat denotes the Laplace transform.
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Operating the Hankel transform operator H to equation (11)

H

{(
p+ τ̄0p

2
) ˆ̄T} = H

{
∂2 ˆ̄T

∂r̄2
+

1

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

2πr̄(p− iω̄)

}
, (12)

Equation (12) acquires in the transform domain as

ˆ̄T ∗(η, p) =
1

2π(p− iω̄) (p+ τ̄0p2 + η2)
, (13)

where η denotes the Hankel transform parameter, and an asterisk denotes the Hankel
transform.

Let

F (p) =
1

p+ τ̄0p2 + η2
and G(p) =

1

p− iω̄
. (14)

To find the inverse Laplace transform of F (p) and G(p).

Let

f(t̄, τ̄0, η) = L −1

(
1

p+ τ̄0p2 + η2

)
=

1

2πi

∫ c+i∞

c−i∞

ept̄

p+ τ̄0p2 + η2
dp. (15)

To evaluate the integral equation (15) by using the residue theorem

f(t̄, τ̄0, η) =
ep1 t̄ − ep2 t̄

p1 − p2
, where p1 =

−1
τ̄0

+
√

1
τ̄02

− 4η2

τ̄0

2
, p2 =

−1
τ̄0

−
√

1
τ̄02

− 4η2

τ̄0

2
(16)

and

L −1
[
G(p)

]
= L −1

(
1

p− iω̄

)
= eiω̄t̄ = g(t̄). (17)

Operating the inverse Laplace transform operator L −1 to equation (13)

L −1

{
ˆ̄T ∗(η, p)

}
= L −1

{
1

2π(p− iω̄) (p+ τ̄0p2 + η2)

}
, (18)

Using equations (16)− (17) and the convolution theorem, one becomes

T̄ ∗(η, t̄) =
1

2π

∫ t̄

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u) du, (19)

Operating the inverse Hankel transform operator H −1 to equation (19)

H −1

{
T̄ ∗(η, t̄)

}
= H −1

{
1

2π

∫ t̄

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u) du

}
, (20)

On simplifying equation (20) leads to the solution as

T̄ (r̄, t̄) =
1

2π

∫ t̄

0

∫ ∞

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u)J0(r̄η) η dη du, (21)

where J0(z) is the Bessel function.
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3.2. Fractional Cattaneo equation. Consider the fractional Cattaneo equation with a
harmonic source as

∂αT

∂tα
+ τ0

∂1+αT

∂t1+α
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+

q0δ(r)e
iωt

2πr
, 0 ≤ r < ∞. (22)

Equation (22) is studied under zero initial conditions as given in equation (7).

The nondimensional quantities listed below have been introduced in equation (22)

t̄ =
t

t0
, ω̄ = t0ω, r̄ =

r

t
α/2
0

√
a
, τ̄0 =

τ0
t0
, T̄ =

aT

q0
, σ̄ij =

a

2µmq0
σij , (23)

where t0 is the characteristic time.

In the view of nondimensional quantities, equation (22) can be converted into nondimen-
sional form as

∂αT̄

∂t̄α
+ τ̄0

∂1+αT̄

∂t̄1+α
=

(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

2πr̄
, (24)

Operating the Laplace transform operator L to equation (24)

L

{
∂αT̄

∂t̄α
+ τ̄0

∂1+αT̄

∂t̄1+α

}
= L

{(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

2πr̄

}
, (25)

Equation (25) converts into the following form(
pα + τ̄0p

1+α
) ˆ̄T =

∂2 ˆ̄T

∂r̄2
+

1

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

2πr̄(p− iω̄)
, (26)

where p denotes the Laplace transform parameter, and hat denotes the Laplace transform.

Operating the Hankel transform operator H to equation (26)

H

{(
pα + τ̄0p

1+α
) ˆ̄T} = H

{
∂2 ˆ̄T

∂r̄2
+

1

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

2πr̄(p− iω̄)

}
, (27)

Equation (27) results in the transform domain as

ˆ̄T ∗(η, p) =
1

2π(p− iω̄)(pα + τ̄0p1+α + η2)
, (28)

where η denotes the Hankel transform parameter, and an asterisk denotes the Hankel
transform.

The transformation of the Bromwich path to the Hankel path is a mathematical technique
used to evaluate the inverse Laplace transform. This transformation is valid under ana-
lyticity and no singularities conditions. To find the inverse Laplace transform, one bends
the Bromwich path into the equivalent Hankel path [3], and then by using the residue
theorem, one gets

L −1

(
1

pα + τ̄0p1+α + η2

)
= Gα

(
t̄, τ̄0, η

)
=

1

π

∫ ∞

0
e−zt̄ S(z)[

C(z)
]2

+
[
S(z)

]2dz
+

2e−Ψt̄

A2 +B2

[
Acos

(
Ωt̄

)
+Bsin

(
Ωt̄

)]
,

(29)

where C(z) =
(
−τ̄0z

1+α+zα
)
cos

(
πα

)
+η2, S(z) =

(
−τ̄0z

1+α+zα
)
sin

(
πα

)
, p1,2 = −Ψ±iΩ

are simple, conjugate complex zeros of pα+τ̄0p
1+α+η2 on the principal branch of pα

(
−π <

arg p < π
)
. These are located in Ω > 0 and Ψ > 0, whereas A±iB = (1+α)τ̄0p

α
1,2+αpα−1

1,2 .
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Operating the inverse Laplace transform operator L −1 to equation (28)

L −1

{
ˆ̄T ∗(η, p)

}
= L −1

{
1

2π(p− iω̄)(pα + τ̄0p1+α + η2)

}
, (30)

After inverting the transform, equation (30) achieves the form as

T̄ ∗(η, t̄) =
1

2π

∫ t̄

0
Gα(u, τ̄0, η) e

iω̄(t̄−u) du, (31)

Operating the inverse Hankel transform operator H −1 to equation (31)

H −1

{
T̄ ∗(η, t̄)

}
= H −1

{
1

2π

∫ t̄

0
Gα(u, τ̄0, η) e

iω̄(t̄−u) du

}
, (32)

On solving equation (32) gives the solution as

T̄ (r̄, t̄) =
1

2π

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, η) e

iω̄(t̄−u)J0(r̄η) η dη du. (33)

All computations were carried out in MATLAB R2022a on a desktop computer with an
Intel Core i3-1005G1 processor, 1.2 GHz, and 8GB RAM, running 64-bit Windows 11. The
outcomes of the numerical computation of the real part of the solution (33) are shown in
Figures 1 and 2 for distinct values of fractional order α and nondimensional parameters
(23). The curve for α = 1 in these figures is corresponding to equation (21). Figure 1
shows that temperature T̄ (r̄, t̄) increases when fractional order α decreases along radial
coordinate r̄. Figure 2 shows that temperature T̄ (r̄, t̄) is attaining positive and negative
values along angular frequency ω̄.

Figure 1. Temperature variation with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.

3.3. Thermal Stresses. The displacement potential is used to find the stress tensor
components [13, 14]. The potential Φ satisfies the following

∇2Φ = mT, (34)

where m = (1 + ν)αt/(1− ν), µ denotes the Lamé constant, and ν is the Poisson ratio.

Knowing the function Φ to determine the stress components from

σij = 2µ

(
∂2Φ

∂i∂j
−∇2Φδij

)
, i, j = x, y, z, (35)
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Figure 2. Temperature variation with respect to fractional order α along
angular frequency ω̄ when τ̄0 = 0.5, r̄ = 1.

where δij is Kronecker’s delta.

The stress tensor components are

σ̄rr + σ̄θθ = − 1

2π

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, η) e

iω̄(t̄−u)J0(r̄η) η dη du, (36)

σ̄rr − σ̄θθ = − 1

2π

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, η) e

iω̄(t̄−u)J2(r̄η) η dη du, (37)

or

σ̄rr = − 1

2πr̄

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, η) e

iω̄(t̄−u)J1(r̄η) dη du, (38)

σ̄θθ = −T̄ − σ̄rr. (39)

The outcomes of the numerical computation of the real part of the solutions (38) and (39)
are shown in Figures 3 and 4 for distinct values of fractional order α and nondimensional
parameters. From both figures, it has been observed that stress values σ̄rr, σ̄θθ decrease
when fractional order α decreases along radial coordinate r̄.

Figure 3. Stress variation σ̄rr with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.
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Figure 4. Stress variation σ̄θθ with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.

4. Central Symmetric Case

4.1. Integer order Cattaneo equation. Consider the Cattaneo equation with a har-
monic source as

∂T

∂t
+ τ0

∂2T

∂t2
= a

(
∂2T

∂r2
+

2

r

∂T

∂r

)
+

q0δ(r)e
iωt

4πr2
, 0 ≤ r < ∞, (40)

where ω is the angular frequency.

Equation (40) is studied under zero initial conditions as given in equation (7).

The nondimensional quantities listed below have been introduced in equation (40)

t̄ =
t

t0
, ω̄ = t0ω, r̄ =

r

t
1/2
0

√
a
, τ̄0 =

τ0
t0
, T̄ =

a3/2t
α/2
0

q0
T, σ̄ij =

a3/2t
α/2
0

2µmq0
σij , (41)

where t0 is the characteristic time.

In the view of nondimensional quantities, equation (40) can be converted into nondimen-
sional form as

∂T̄

∂t̄
+ τ̄0

∂2T̄

∂t̄2
=

(
∂2T̄

∂r̄2
+

2

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

4πr̄2
, (42)

Operating the Laplace transform operator L to equation (42)

L

{
∂T̄

∂t̄
+ τ̄0

∂2T̄

∂t̄2

}
= L

{(
∂2T̄

∂r̄2
+

2

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

4πr̄2

}
, (43)

Equation (43) reduces to the following form

(
p+ τ̄0p

2
) ˆ̄T =

∂2 ˆ̄T

∂r̄2
+

2

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

4πr̄2(p− iω̄)
, (44)

where p denotes the Laplace transform parameter, and hat denotes the Laplace transform.

Operating the Fourier transform operator F to equation (44)

F

{(
p+ τ̄0p

2
) ˆ̄T} = F

{
∂2 ˆ̄T

∂r̄2
+

2

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

4πr̄2(p− iω̄)

}
, (45)
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Equation (45) acquires in the transform domain as

ˆ̄T ∗(ξ, p) =
1

(2π)3/2(p− iω̄) (p+ τ̄0p2 + ξ2)
, (46)

where ξ is the Fourier transform parameter, and an asterisk denotes the Fourier transform.

Operating the inverse Laplace transform operator L −1 to equation (46)

L −1

{
ˆ̄T ∗(ξ, p)

}
= L −1

{
1

(2π)3/2(p− iω̄) (p+ τ̄0p2 + ξ2)

}
, (47)

Using equations (16)− (17) and the convolution theorem, one becomes

T̄ ∗(ξ, t̄) =
1

(2π)3/2

∫ t̄

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u) du, (48)

Operating the inverse Fourier transform operator F−1 to equation (48)

F−1

{
T̄ ∗(ξ, t̄)

}
= F−1

{
1

(2π)3/2

∫ t̄

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u) du

}
, (49)

On simplifying equation (49) leads to the solution as

T̄ (r̄, t̄) =
1

2π2

∫ t̄

0

∫ ∞

0

ep1u − ep2u

p1 − p2
eiω̄(t̄−u) sin(r̄ξ)

r̄
ξ dξ du. (50)

4.2. Fractional Cattaneo equation. Consider the fractional Cattaneo equation with a
harmonic source as

∂αT

∂tα
+ τ0

∂1+αT

∂t1+α
= a

(
∂2T

∂r2
+

2

r

∂T

∂r

)
+

q0δ(r)e
iωt

4πr2
, 0 ≤ r < ∞, (51)

Equation (51) is studied under zero initial conditions as given in equation (7).

The nondimensional quantities listed below have been introduced in equation (51)

t̄ =
t

t0
, ω̄ = t0ω, r̄ =

r

t
α/2
0

√
a
, τ̄0 =

τ0
t0
, T̄ =

a3/2t
α/2
0

q0
T, σ̄ij =

a3/2t
α/2
0

2µmq0
σij , (52)

where t0 is the characteristic time.

In the view of nondimensional quantities, equation (51) can be converted into nondimen-
sional form as

∂αT̄

∂t̄α
+ τ̄0

∂1+αT̄

∂t̄1+α
=

(
∂2T̄

∂r̄2
+

2

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

4πr̄2
, (53)

Operating the Laplace transform operator L to equation (53)

L

{
∂αT̄

∂t̄α
+ τ̄0

∂1+αT̄

∂t̄1+α

}
= L

{(
∂2T̄

∂r̄2
+

2

r̄

∂T̄

∂r̄

)
+

δ(r̄)eiω̄t̄

4πr̄2

}
, (54)

Equation (54) converts into the following form(
pα + τ̄0p

1+α
) ˆ̄T =

∂2 ˆ̄T

∂r̄2
+

2

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

4πr̄2(p− iω̄)
, (55)

where p denotes the Laplace transform parameter, and hat denotes the Laplace transform.

Operating the Fourier transform operator F to equation (55)

F

{(
pα + τ̄0p

1+α
) ˆ̄T} = F

{
∂2 ˆ̄T

∂r̄2
+

2

r̄

∂ ˆ̄T

∂r̄
+

δ(r̄)

4πr̄2(p− iω̄)

}
, (56)
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Equation (56) results in the transform domain as

ˆ̄T ∗(ξ, p) =
1

(2π)3/2(p− iω̄)(pα + τ̄0p1+α + ξ2)
, (57)

where ξ denotes the Fourier transform parameter, and an asterisk denotes the Fourier
transform.

To find the inverse Laplace transform, one bends the Bromwich path into the equivalent
Hankel path [3], and then using the residue theorem, one obtains

L −1

(
1

pα + τ̄0p1+α + ξ2

)
= Gα

(
t̄, τ̄0, ξ

)
=

1

π

∫ ∞

0
e−zt̄ S(z)[

C(z)
]2

+
[
S(z)

]2dz
+

2e−Ψt̄

A2 +B2

[
Acos

(
Ωt̄

)
+Bsin

(
Ωt̄

)]
,

(58)

where C(z) =
(
−τ̄0z

1+α+zα
)
cos

(
πα

)
+ξ2, S(z) =

(
−τ̄0z

1+α+zα
)
sin

(
πα

)
, p1,2 = −Ψ±iΩ

are simple, conjugate complex zeros of pα+τ̄0p
1+α+ξ2 on the principal branch of pα

(
−π <

arg p < π
)
. These are located in Ω > 0 and Ψ > 0, whereas A±iB = (1+α)τ̄0p

α
1,2+αpα−1

1,2 .

Operating the inverse Laplace transform operator L −1 to equation (57)

L −1

{
ˆ̄T ∗(ξ, p)

}
= L −1

{
1

(2π)3/2(p− iω̄)(pα + τ̄0p1+α + ξ2)

}
, (59)

After inverting the transform, equation (59) achieves the form as

T̄ ∗(ξ, t̄) =
1

(2π)3/2

∫ t̄

0
Gα(u, τ̄0, ξ) e

iω̄(t̄−u) du, (60)

Operating the inverse Fourier transform operator F−1 to equation (60)

F−1

{
T̄ ∗(ξ, t̄)

}
= F−1

{
1

(2π)3/2

∫ t̄

0
Gα(u, τ̄0, ξ) e

iω̄(t̄−u) du

}
, (61)

On solving equation (61) gives the solution as

T̄ (r̄, t̄) =
1

2π2

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, ξ) e

iω̄(t̄−u) sin(r̄ξ)

r̄
ξ dξ du. (62)

The outcomes of the numerical computation of the real part of the solution (62) are shown
in Figures 5 and 6 for distinct values of fractional order α and nondimensional parameters
(52). The curve for α = 1 in these figures is corresponding to equation (50). Figure
5 shows that temperature T̄ (r̄, t̄) continuously increases when fractional order increases
along radial coordinate r̄. Figure 6 shows that temperature T̄ (r̄, t̄) is attaining positive
and negative values along angular frequency ω̄.

4.3. Thermal Stresses. The stress tensor components are

σ̄rr =
1

π2

∫ t̄

0

∫ ∞

0
Gα(u, τ̄0, ξ) e

iω̄(t̄−u)

[
r̄ξcos(r̄ξ)− sin(r̄ξ)

ξr̄3

]
dξ du, (63)

σ̄θθ = σ̄ϕϕ = −2T̄ − σ̄rr. (64)

The outcomes of the numerical computation of the real part of the solutions (63) and (64)
are shown in Figures 7 to 9 for distinct values of fractional order α and nondimensional
parameters. From all figures, it has been observed that stress values σ̄rr, σ̄θθ, σ̄ϕϕ are
continuously increased and reached zero at the end when fractional order α increases
along radial coordinate r̄.
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Figure 5. Temperature variation with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.

Figure 6. Temperature variation with respect to fractional order α along
angular frequency ω̄ when τ̄0 = 0.5, r̄ = 1.

Figure 7. Stress variation σ̄rr with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.
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Figure 8. Stress variation σ̄θθ with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.

Figure 9. Stress variation σ̄ϕϕ with respect to fractional order α along
radial coordinate r̄ when τ̄0 = 0.5, w̄ = π/4.

5. Conclusions

The main outcomes are as follows:

(1) Integer and fractional order Cattaneo equations with a harmonic source were ex-
amined under zero initial conditions in axisymmetric and central symmetric cases.
The solutions were achieved by applying the Laplace, Hankel, and Fourier trans-
form techniques. The corresponding thermal stresses were also examined.

(2) To show the differences between the fractional model and the classical integer
model, the solutions for various values of parameter α were shown in figures.
The numerical results demonstrated the significant effect of parameter α on the
temperature distribution along angular frequency and radial coordinate, as well as
on stress distribution along the radial coordinate.

(3) According to numerical results, the fractional parameter evolved into a new mea-
sure of its ability to conduct thermal energy.

(4) The fractional order parameter controlled the memory effects. The angular fre-
quency controlled the oscillatory behavior of solutions and also affected the am-
plitude of the oscillations.
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(5) The finite speed of thermal wave propagation was attained by introducing the
non-Fourier effect of heat conduction in the context of the relaxation time τ0 when
α → 1.

(6) The obtained solutions could be effectively used when the source term is expressed
in the Fourier series form. The derived results could be used in medical science,
such as in radioactive therapy, laser technology, flash burns of human skin, etc.

(7) The fractional Cattaneo equation with a harmonic source provided a versatile
framework for understanding heat conduction in diverse materials and systems,
especially those exhibiting anomalous or non-local thermal behavior. It had appli-
cations in various fields, including physics, engineering, and materials science.

Nomenclature

T Absolute Temperature
r Radial coordinate
t Time
κ Thermal conductivity
a Thermal diffusivity of the material
τ0 Relaxation time
t0 Characteristic time
ω Angular frequency
p Laplace transform parameter
η Hankel transform parameter
ξ Fourier transform parameter
α Fractional order
αt Coefficient of thermal expansion
µ Lamé constant
ν Poisson ratio
q0 Constant heat flux
σij Components of stress tensor
Φ Displacement Potential
δij Kronecker’s delta
δ(r) Dirac delta function
∆ Laplacian operator
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