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THE FIRST ZAGREB INDEX, THE FORGOTTEN TOPOLOGICAL

INDEX, THE INVERSE DEGREE AND SOME HAMILTONIAN

PROPERTIES OF GRAPHS

R. LI1∗, §

Abstract. Let G = (V,E) be a graph. The first Zagreb index and the forgotten
topological index of a graph G are defined respectively as

∑
u∈V d2(u) and

∑
u∈V d3(u),

where d(u) is the degree of vertex u in G. If the minimum degree of G is at least one,
the inverse degree of G is defined as

∑
u∈V

1
d(u)

. In this paper, we, for a graph with

minimum degree at least one, present an upper bound for the first Zagreb index of the
graph and lower bounds for the forgotten topological index and the inverse degree of
the graph. We also present sufficient conditions involving the first Zagreb index, the
forgotten topological index, or the inverse degree for some Hamiltonian properties of a
graph.

Keywords: The first Zagreb index, the forgotten topological index, the inverse degree,
Hamiltonian graph, traceable graph.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation
and terminology not defined here follow those in [3]. Let G = (V (G), E(G)) be a graph
with n vertices and e edges, the degree of a vertex v is denoted by dG(v). We use δ and ∆
to denote the minimum degree and maximum degree of G, respectively. A set of vertices in
a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum
independent set in a graph G is an independent set of largest possible size. The indepen-
dence number, denoted β(G), of a graph G is the cardinality of a maximum independent
set in G. For disjoint vertex subsets X and Y of V (G), we use E(X,Y ) to denote the set
of all the edges in E(G) such that one end vertex of each edge is in X and another end
vertex of the edge is in Y . Namely, E(X,Y ) := { f : f = xy ∈ E, x ∈ X, y ∈ Y }. A cycle
C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A
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graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is
called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called
traceable if G has a Hamiltonian path.

The first Zagreb index and the forgotten topological index of a graph were introduced
by Gutman and Trinajstić [7] and Furtula and Gutman [6], respectively. For a graph G,
its first Zagreb index, denoted Z1(G), and its forgotten topological index, denoted F (G),
are defined as

∑
u∈V (G) d

2
G(u) and

∑
u∈V (G) d

3
G(u), respectively. If δ(G) ≥ 1, the inverse

degree, denoted Inv(G), of G is defined as
∑

u∈V
1

d(u) . The survey paper [1] provides a rich

collection of information on the results of the first Zagreb index, the forgotten topological
index, and the inverse degree of a graph. In recent years, the sufficient conditions based
on the first Zagreb index, the forgotten topological index, and the inverse degree for the
Hamiltonian properties of graphs have been obtained. Some of the sufficient conditions
can be found in [2], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], and [18]. Motivated by
the research in the above-mentioned references, we, using one inequality in [5], in this pa-
per present an upper bound for the first Zagreb index and lower bounds for the forgotten
topological index and the inverse degree of a graph G with δ(G) ≥ 1. We also present suffi-
cient conditions involving in the first Zagreb index, the forgotten topological index, or the
inverse degree for some Hamiltonian properties of a graph. The main results are as follows.

Theorem 1.1. Let G be a graph with n vertices, e edges, and δ ≥ 1. Then

[1]

Z1(G) ≤ (n− β)∆2 +
e2

2β
+

β∆3

2δ

with equality if and only if G is a regular balanced bipartite graph.

[2]

F (G) ≥ (n− β)δ3 +
δ(2β2δ2 − e2)

β

with equality if and only if G is a regular balanced bipartite graph.

[3]

F (G) ≥ (n− β)δ3 +
δ

β

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
with equality if and only if G is a regular balanced bipartite graph.

[4]

Inv(G) ≥ n− β

∆
+

(2β2δ2 − e2)

β∆3

with equality if and only if G is a regular balanced bipartite graph.

[5]

Inv(G) ≥ n− β

∆
+

1

β∆3

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
with equality if and only if G is a regular balanced bipartite graph.
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Theorem 1.2. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e edges.

[1] If

Z1(G) ≥ (n− k − 1)∆2 +
e2

2(k + 1)
+

(k + 1)∆3

2δ
,

then G is Hamiltonian.

[2] If

F (G) ≤ (n− k − 1)δ3 +
δ(2(k + 1)2δ2 − e2)

k + 1
,

then G is Hamiltonian.

[3] If

F (G) ≤ (n− k − 1)δ3+

δ

k + 1

(
2(k + 1)

(
(k + 1)δ2 +

e2

n− k − 1

)
− e2 − 2(k + 1)(n− k − 1)∆2

)
,

then G is Hamiltonian.

[4] If

Inv(G) ≤ n− k − 1

∆
+

(2(k + 1)2δ2 − e2)

(k + 1)∆3
,

then G is Hamiltonian.

[5] If

Inv(G) ≤ n− k − 1

∆
+

1

(k + 1)∆3

(
2(k + 1)

(
(k + 1)δ2 +

e2

n− k − 1

)
− e2 − 2(k + 1)(n− k − 1)∆2

)
,

then G is Hamiltonian.

Theorem 1.3. Let G be a k-connected (k ≥ 1) graph with n ≥ 9 vertices and e edges.

[1] If

Z1(G) ≥ (n− k − 2)∆2 +
e2

2(k + 2)
+

(k + 2)∆3

2δ
,

then G is traceable.

[2] If

F (G) ≤ (n− k − 2)δ3 +
δ(2(k + 2)2δ2 − e2)

k + 2
,

then G is traceable.

[3] If

F (G) ≤ (n− k − 2)δ3+

δ

k + 2

(
2(k + 2)

(
(k + 2)δ2 +

e2

n− k − 2

)
− e2 − 2(k + 2)(n− k − 2)∆2

)
,
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then G is traceable.

[4] If

Inv(G) ≤ n− k − 2

∆
+

(2(k + 2)2δ2 − e2)

(k + 2)∆3
,

then G is traceable.

[5] If

Inv(G) ≤ n− k − 2

∆
+

1

(k + 2)∆3

(
2(k + 2)

(
(k + 2)δ2 +

e2

n− k − 2

)
− e2 − 2(k + 2)(n− k − 2)∆2

)
,

then G is traceable.

2. Lemmas

We will use the following results as our lemmas. Lemma 1 is Corollary 2.11 on Page 8
in [5].

Lemma 2.1 [5]. If ak and bk (k = 1, 2, · · · , s) are positive real numbers, then

1

2

 s∑
i=1

a3i
bi

s∑
i=1

b3i
ai

−

(
s∑

i=1

aibi

)2
 ≥

s∑
i=1

a2i

s∑
i=1

b2i −

(
s∑

i=1

aibi

)2

≥ 0.

The next two are from [4].

Lemma 2.2 [4]. Let G be a k-connected graph of order n ≥ 3. If β ≤ k, then G is
Hamiltonian.

Lemma 2.3 [4]. Let G be a k-connected graph of order n. If β ≤ k+1, then G is traceable.

Lemma 4 below is from [19].

Lemma 2.4 [19]. Let G be a balanced bipartite graph of order 2n with bipartition (A,
B). If d(x)+d(y) ≥ n+1 for any x ∈ A and any y ∈ B with xy ̸∈ E, then G is Hamiltonian.

3. Proofs

Proof of Theorem 1.1. Let G be a graph with n vertices, e edges, and δ ≥ 1. Clearly,
β < n. Let I := {u1, u2, ..., uβ } be a maximum independent set in G. Then∑

u∈I
d(u) = |E(I, V − I)| ≤

∑
v∈V−I

d(v).

Since
∑

u∈I d(u) +
∑

v∈V−I d(v) = 2e, we have that∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I

d(v).
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Applying Lemma 2.1 with s = β, ai = d(ui) and bi = 1 with i = 1, 2, ..., β, we have

1

2

 β∑
i=1

d3(ui)

1

s∑
i=1

13

d(ui)
−

(
β∑

i=1

d(ui) ∗ 1

)2
 ≥

β∑
i=1

d2(ui)

β∑
i=1

12 −

(
β∑

i=1

d(ui) ∗ 1

)2

.

Thus

2β
∑
u∈I

d2(u) ≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+

(∑
u∈I

d(u)

)2

≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2.

[1]. Notice that Z1(G) =
∑

u∈I d
2(u) +

∑
v∈V−I d

2(v). Thus

2βZ1(G) = 2β
∑
u∈I

d2(u) + 2β
∑

v∈V−I

d2(v)

≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2 + 2β

∑
v∈V−I

d2(v) ≤ β∆3 β

δ
+ e2 + 2β(n− β)∆2.

Therefore

Z1(G) ≤ (n− β)∆2 +
e2

2β
+

β∆3

2δ
.

If

Z1(G) = (n− β)∆2 +
e2

2β
+

β∆3

2δ
,

then, from the above proofs, we have that
∑

u∈I d(u) = e which implies that
∑

v∈V−I d(v) =
e and thereby G is a bipartite graph with partition sets of I and V − I. Furthermore,
we have that d(u) = δ = ∆ for each u ∈ I and d(v) = ∆ for each v ∈ I. Thus
δ|I| = |E(I, V − I)| = (n − |I|)δ. Therefore |I| = |V − I| = n

2 . Hence G is a regular
balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

Z1(G) = (n− β)∆2 +
e2

2β
+

β∆3

2δ
.

This completes the proofs of [1].

[2]. From

2β
∑
u∈I

d2(u) ≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2.

we have

2ββδ2 ≤ β

δ

∑
u∈I

d3(u) + e2.

Thus ∑
u∈I

d3(u) ≥ δ(2β2δ2 − e2)

β
.

Therefore

F (G) =
∑
w∈V

d3(w) =
∑
u∈I

d3(u) +
∑

v∈V−I

d3(v) ≥ (n− β)δ3 +
δ(2β2δ2 − e2)

β
.
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If

F (G) = (n− β)δ3 +
δ(2β2δ2 − e2)

β
,

then, from the above proofs, we have that
∑

u∈I d(u) = e which implies that
∑

v∈V−I d(v) =
e and thereby G is a bipartite graph with partition sets of I and V − I. Further-
more, we have that d(u) = δ for each u ∈ I and d(v) = δ for each v ∈ I. Thus
δ|I| = |E(I, V − I)| = (n − |I|)δ. Therefore |I| = |V − I| = n

2 . Hence G is a regular
balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

F (G) = (n− β)δ3 +
δ(2β2δ2 − e2)

β
.

This completes the proofs of [2].

[3]. By Cauchy-Schwarz inequality, we have∑
v∈V−I

d2(v)
∑

v∈V−I

12 ≥

( ∑
v∈V−I

d(v)

)2

≥ e2.

Thus ∑
v∈V−I

d2(v) ≥ e2

n− β
.

Since

2β
∑
u∈I

d2(u) ≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2,

we have

2β

(
βδ2 +

e2

n− β

)
≤ 2β

∑
u∈I

d2(u) + 2β
∑

v∈V−I

d2(v)

≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2 + 2β(n− β)∆2

≤ β

δ

∑
u∈I

d3(u) + e2 + 2β(n− β)∆2.

Thus ∑
u∈I

d3(u) ≥ δ

β

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

Therefore
F (G) =

∑
w∈I

d3(w) =
∑
u∈I

d3(u) +
∑

v∈V−I

d3(v)

≥ (n− β)δ3 +
δ

β

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

If

F (G) = (n− β)δ3 +
δ

β

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
,

then, from the above proofs, we have that
∑

u∈I d(u) = e and
∑

v∈V−I d(v) = e and
thereby G is a bipartite graph with partition sets of I and V − I. Furthermore, we have
that d(u) = δ for each u ∈ I and d(v) = δ = ∆ for each v ∈ I. Thus δ|I| = |E(I, V − I)| =
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(n− |I|)δ. Therefore |I| = |V − I| = n
2 . Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

F (G) = (n− β)δ3 +
δ

β

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

This completes the proofs of [3].

[4]. From

2β
∑
u∈I

d2(u) ≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2.

we have

2ββδ2 ≤ β∆3
∑
u∈I

1

d(u)
+ e2.

Thus ∑
u∈I

1

d(u)
≥ (2β2δ2 − e2)

β∆3
.

Therefore

Inv(G) =
∑
w∈V

1

d(w)
=
∑
u∈I

1

d(u)
+
∑

v∈V−I

1

d(v)
≥ n− β

∆
+

(2β2δ2 − e2)

β∆3
.

If

Inv(G) =
n− β

∆
+

(2β2δ2 − e2)

β∆3
,

then, from the above proofs, we have that
∑

u∈I d(u) = e which implies that
∑

v∈V−I d(v) =
e and thereby G is a bipartite graph with partition sets of I and V − I. Furthermore,
we have that d(u) = δ = ∆ for each u ∈ I and d(v) = ∆ for each v ∈ I. Thus
∆|I| = |E(I, V − I)| = (n − |I|)∆. Therefore |I| = |V − I| = n

2 . Hence G is a regu-
lar balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

Inv(G) =
n− β

∆
+

(2β2δ2 − e2)

β∆3
.

This completes the proofs of [4].

[5]. Recall that ∑
v∈V−I

d2(v) ≥ e2

n− β
.

Since

2β
∑
u∈I

d2(u) ≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2,

we have

2β

(
βδ2 +

e2

n− β

)
≤ 2β

∑
u∈I

d2(u) + 2β
∑

v∈V−I

d2(v)

≤
∑
u∈I

d3(u)
∑
u∈I

1

d(u)
+ e2 + 2β(n− β)∆2
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≤ β∆3
∑
u∈I

1

d(u)
+ e2 + 2β(n− β)∆2.

Thus ∑
u∈I

1

d(u)
≥ 1

β∆3

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

Therefore

Inv(G) =
∑
w∈V

1

d(w)
=
∑
u∈I

1

d(u)
+
∑

v∈V−I

1

d(v)

≥ n− β

∆
+

1

β∆3

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

If

Inv(G) =
n− β

∆
+

1

β∆3

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

then, from the above proofs, we have that
∑

u∈I d(u) = e and
∑

v∈V−I d(v) = e and
thereby G is a bipartite graph with partition sets of I and V − I. Furthermore, we have
that d(u) = δ = ∆ for each u ∈ I and d(v) = ∆ for each v ∈ I. Thus ∆|I| = |E(I, V −I)| =
(n− |I|)∆. Therefore |I| = |V − I| = n

2 . Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

Inv(G) =
n− β

∆
+

1

β∆3

(
2β

(
βδ2 +

e2

n− β

)
− e2 − 2β(n− β)∆2

)
.

This completes the proofs of [5].

Proof of Theorem 1.2. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e
edges. Suppose G is not Hamiltonian. Then Lemma 2.2 implies that β ≥ k + 1. Also,
we have that n ≥ 2δ + 1 ≥ 2k + 1 otherwise δ ≥ k ≥ n/2 and G is Hamiltonian. Let
I1 := {u1, u2, ..., uβ } be a maximum independent set in G. Then I := {u1, u2, ..., uk+1 }
is an independent set in G. Thus∑

u∈I
d(u) = |E(I, V − I)| ≤

∑
v∈V−I

d(v).

Since
∑

u∈I d(u) +
∑

v∈V−I d(v) = 2e, we have that∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I

d(v).

[1]. Following the proof of [1] in Theorem 1, we have

Z1(G) ≤ (n− k − 1)∆2 +
e2

2(k + 1)
+

(k + 1)∆3

2δ
.

Since

Z1(G) ≥ (n− k − 1)∆2 +
e2

2(k + 1)
+

(k + 1)∆3

2δ
,

we have

Z1(G) = (n− k − 1)∆2 +
e2

2(k + 1)
+

(k + 1)∆3

2δ
.

Thus we further have that
∑

u∈I d(u) = e which implies that
∑

v∈V−I d(v) = e and thereby
G is a bipartite graph with partition sets of I and V −I. Furthermore, we have that d(u) =
δ = ∆ for each u ∈ I and d(v) = ∆ for each v ∈ I. Thus δ|I| = |E(I, V − I)| = (n− |I|)δ.
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Therefore (k + 1) = |I| = |V − I| = n
2 . By Lemma 2.4, we have G is Hamiltonian, a

contradiction.

[2]. Following the proofs of [2] in Theorem 1.1 and [1] in Theorem 1.2, we can show that
G is Hamiltonian, a contradiction. The details of the proofs are skipped here.

[3]. Following the proofs of [3] in Theorem 1.1 and [1] in Theorem 1.2, we can show that
G is Hamiltonian, a contradiction. The details of the proofs are skipped here.

[4]. Following the proofs of [4] in Theorem 1.1 and [1] in Theorem 1.2, we can show that
G is Hamiltonian, a contradiction. The details of the proofs are skipped here.

[5]. Following the proofs of [5] in Theorem 1.1 and [1] in Theorem 1.2, we can show that
G is Hamiltonian, a contradiction. The details of the proofs are skipped here.

This completes the proofs of Theorem 1.2.

Proof of Theorem 1.3. Let G be a k-connected (k ≥ 1) graph with n ≥ 9 vertices and e
edges. Suppose G is not traceable. Then Lemma 2.3 implies that β ≥ k + 2. Also, we
have that n ≥ 2δ + 2 ≥ 2k + 2 otherwise δ ≥ k ≥ (n − 1)/2 and G is traceable. Let
I1 := {u1, u2, ..., uβ } be a maximum independent set in G. Then I := {u1, u2, ..., uk+2 }
is an independent set in G. Thus∑

u∈I
d(u) = |E(I, V − I)| ≤

∑
v∈V−I

d(v).

Since
∑

u∈I d(u) +
∑

v∈V−I d(v) = 2e, we have that∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I

d(v).

[1]. Following the proof of [1] in Theorem 1, we have

Z1(G) ≤ (n− k − 2)∆2 +
e2

2(k + 2)
+

(k + 2)∆3

2δ
.

Since

Z1(G) ≥ (n− k − 2)∆2 +
e2

2(k + 2)
+

(k + 2)∆3

2δ
,

we have

Z1(G) = (n− k − 2)∆2 +
e2

2(k + 2)
+

(k + 2)∆3

2δ
.

Thus we further have that
∑

u∈I d(u) = e which implies that
∑

v∈V−I d(v) = e and thereby
G is a bipartite graph with partition sets of I and V −I. Furthermore, we have that d(u) =
δ = ∆ for each u ∈ I and d(v) = δ for each v ∈ I. Thus δ|I| = |E(I, V − I)| = (n− |I|)δ.
Therefore (k + 2) = |I| = |V − I| = n

2 . Since n ≥ 9, we have k ≥ 3. By Lemma 2.4, we
have G is Hamiltonian and thereby G is traceable, a contradiction.

[2]. Following the proofs of [2] in Theorem 1.1 and [1] in Theorem 1.3, we can show that
G is traceable, a contradiction. The details of the proofs are skipped here.
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[3]. Following the proofs of [3] in Theorem 1.1 and [1] in Theorem 1.3, we can show that
G is traceable, a contradiction. The details of the proofs are skipped here.

[4]. Following the proofs of [4] in Theorem 1.1 and [1] in Theorem 1.3, we can show that
G is traceable, a contradiction. The details of the proofs are skipped here.

[5]. Following the proofs of [5] in Theorem 1.1 and [1] in Theorem 1.3, we can show that
G is traceable, a contradiction. The details of the proofs are skipped here.

This completes the proofs of Theorem 1.3.

4. Conclusions

Let G be a graph with minimum degree at least one. We obtained an upper bound for
the first Zagreb index of the graph G and lower bounds for the forgotten topological index
and the inverse degree of the graph G. We also obtained sufficient conditions based on the
first Zagreb index, the forgotten topological index, or the inverse degree for Hamiltonian
and traceable graphs.
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References

[1] Ali, A., Gutman, I, Milovanovic, E., and Milovanovic, I., (2018), Sum of powers of the degrees of
graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80, pp. 5-84.

[2] An, M., (2022), The first Zagreb index, reciprocal degree distance and Hamiltonian-connectedness of
graphs, Information Processing Letters 176, 106247.

[3] Bondy, J. A. and Murty, U. S. R., (1976), Graph Theory with Applications, Macmillan, London and
Elsevier, New York.
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