THE FIRST ZAGREB INDEX, THE FORGOTTEN TOPOLOGICAL INDEX, THE INVERSE DEGREE AND SOME HAMILTONIAN PROPERTIES OF GRAPHS

R. LI^{1*}, §

ABSTRACT. Let G=(V,E) be a graph. The first Zagreb index and the forgotten topological index of a graph G are defined respectively as $\sum_{u\in V} d^2(u)$ and $\sum_{u\in V} d^3(u)$, where d(u) is the degree of vertex u in G. If the minimum degree of G is at least one, the inverse degree of G is defined as $\sum_{u\in V} \frac{1}{d(u)}$. In this paper, we, for a graph with minimum degree at least one, present an upper bound for the first Zagreb index of the graph and lower bounds for the forgotten topological index and the inverse degree of the graph. We also present sufficient conditions involving the first Zagreb index, the forgotten topological index, or the inverse degree for some Hamiltonian properties of a graph.

Keywords: The first Zagreb index, the forgotten topological index, the inverse degree, Hamiltonian graph, traceable graph.

AMS Subject Classification: 05C45, 05C09

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [3]. Let G = (V(G), E(G)) be a graph with n vertices and e edges, the degree of a vertex v is denoted by $d_G(v)$. We use δ and Δ to denote the minimum degree and maximum degree of G, respectively. A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a graph G is an independent set of largest possible size. The independence number, denoted $\beta(G)$, of a graph G is the cardinality of a maximum independent set in G. For disjoint vertex subsets X and Y of V(G), we use E(X,Y) to denote the set of all the edges in E(G) such that one end vertex of each edge is in X and another end vertex of the edge is in Y. Namely, $E(X,Y) := \{f: f = xy \in E, x \in X, y \in Y\}$. A cycle G in a graph G is called a Hamiltonian cycle of G if G contains all the vertices of G.

Dept. of Computer Science, Engineering and Mathematics, University of South Carolina Aiken, Aiken, SC 29801, USA.

e-mail: raol@usca.edu; ORCID: https://orcid.org/0000-0002-3088-9512.

^{*} Corresponding author.

[§] Manuscript received: September 18, 2024; accepted: December 30, 2024. TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.11; © Işık University, Department of Mathematics, 2025; all rights reserved.

graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path.

The first Zagreb index and the forgotten topological index of a graph were introduced by Gutman and Trinajstić [7] and Furtula and Gutman [6], respectively. For a graph G, its first Zagreb index, denoted $Z_1(G)$, and its forgotten topological index, denoted F(G), are defined as $\sum_{u \in V(G)} d_G^2(u)$ and $\sum_{u \in V(G)} d_G^3(u)$, respectively. If $\delta(G) \geq 1$, the inverse degree, denoted Inv(G), of G is defined as $\sum_{u \in V} \frac{1}{d(u)}$. The survey paper [1] provides a rich collection of information on the results of the first Zagreb index, the forgotten topological index, and the inverse degree of a graph. In recent years, the sufficient conditions based on the first Zagreb index, the forgotten topological index, and the inverse degree for the Hamiltonian properties of graphs have been obtained. Some of the sufficient conditions can be found in [2], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], and [18]. Motivated by the research in the above-mentioned references, we, using one inequality in [5], in this paper present an upper bound for the first Zagreb index and lower bounds for the forgotten topological index and the inverse degree of a graph G with $\delta(G) \geq 1$. We also present sufficient conditions involving in the first Zagreb index, the forgotten topological index, or the inverse degree for some Hamiltonian properties of a graph. The main results are as follows.

Theorem 1.1. Let G be a graph with n vertices, e edges, and $\delta \geq 1$. Then

[1]
$$Z_1(G) \le (n-\beta)\Delta^2 + \frac{e^2}{2\beta} + \frac{\beta\Delta^3}{2\delta}$$

with equality if and only if G is a regular balanced bipartite graph.

[2]
$$F(G) \ge (n-\beta)\delta^3 + \frac{\delta(2\beta^2\delta^2 - e^2)}{\beta}$$

with equality if and only if G is a regular balanced bipartite graph.

[3]
$$F(G) \ge (n-\beta)\delta^3 + \frac{\delta}{\beta} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n-\beta} \right) - e^2 - 2\beta (n-\beta)\Delta^2 \right)$$

with equality if and only if G is a regular balanced bipartite graph.

[4]
$$Inv(G) \ge \frac{n-\beta}{\Delta} + \frac{(2\beta^2\delta^2 - e^2)}{\beta\Delta^3}$$

with equality if and only if G is a regular balanced bipartite graph.

[5]
$$Inv(G) \ge \frac{n-\beta}{\Delta} + \frac{1}{\beta \Delta^3} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n-\beta} \right) - e^2 - 2\beta (n-\beta) \Delta^2 \right)$$

with equality if and only if G is a regular balanced bipartite graph.

Theorem 1.2. Let G be a k-connected $(k \ge 2)$ graph with $n \ge 3$ vertices and e edges.

[1] If

$$Z_1(G) \ge (n-k-1)\Delta^2 + \frac{e^2}{2(k+1)} + \frac{(k+1)\Delta^3}{2\delta},$$

then G is Hamiltonian.

[2] If

$$F(G) \le (n-k-1)\delta^3 + \frac{\delta(2(k+1)^2\delta^2 - e^2)}{k+1},$$

then G is Hamiltonian.

[3] If

$$F(G) \le (n-k-1)\delta^3 + \frac{\delta}{k+1} \left(2(k+1)\left((k+1)\delta^2 + \frac{e^2}{n-k-1} \right) - e^2 - 2(k+1)(n-k-1)\Delta^2 \right),$$

then G is Hamiltonian.

[4] If

$$Inv(G) \le \frac{n-k-1}{\Delta} + \frac{(2(k+1)^2\delta^2 - e^2)}{(k+1)\Delta^3},$$

then G is Hamiltonian.

[5] If

$$Inv(G) \le \frac{n-k-1}{\Delta} + \frac{1}{(k+1)\Delta^3} \left(2(k+1) \left((k+1)\delta^2 + \frac{e^2}{n-k-1} \right) - e^2 - 2(k+1)(n-k-1)\Delta^2 \right),$$

then G is Hamiltonian.

Theorem 1.3. Let G be a k-connected $(k \ge 1)$ graph with $n \ge 9$ vertices and e edges.

[1] If

$$Z_1(G) \ge (n-k-2)\Delta^2 + \frac{e^2}{2(k+2)} + \frac{(k+2)\Delta^3}{2\delta},$$

then G is traceable.

[2] If

$$F(G) \le (n-k-2)\delta^3 + \frac{\delta(2(k+2)^2\delta^2 - e^2)}{k+2},$$

then G is traceable.

[3] If

$$F(G) \le (n-k-2)\delta^3 + \frac{\delta}{k+2} \left(2(k+2) \left((k+2)\delta^2 + \frac{e^2}{n-k-2} \right) - e^2 - 2(k+2)(n-k-2)\Delta^2 \right),$$

then G is traceable.

[4] If

$$Inv(G) \le \frac{n-k-2}{\Delta} + \frac{(2(k+2)^2\delta^2 - e^2)}{(k+2)\Delta^3},$$

then G is traceable.

then G is traceable.

[5] If

$$Inv(G) \le \frac{n-k-2}{\Delta} + \frac{1}{(k+2)\Delta^3} \left(2(k+2) \left((k+2)\delta^2 + \frac{e^2}{n-k-2} \right) - e^2 - 2(k+2)(n-k-2)\Delta^2 \right),$$

2. Lemmas

We will use the following results as our lemmas. Lemma 1 is Corollary 2.11 on Page 8 in [5].

Lemma 2.1 [5]. If a_k and b_k $(k = 1, 2, \dots, s)$ are positive real numbers, then

$$\frac{1}{2} \left(\sum_{i=1}^{s} \frac{a_i^3}{b_i} \sum_{i=1}^{s} \frac{b_i^3}{a_i} - \left(\sum_{i=1}^{s} a_i b_i \right)^2 \right) \ge \sum_{i=1}^{s} a_i^2 \sum_{i=1}^{s} b_i^2 - \left(\sum_{i=1}^{s} a_i b_i \right)^2 \ge 0.$$

The next two are from [4].

Lemma 2.2 [4]. Let G be a k-connected graph of order $n \geq 3$. If $\beta \leq k$, then G is Hamiltonian.

Lemma 2.3 [4]. Let G be a k-connected graph of order n. If $\beta \leq k+1$, then G is traceable.

Lemma 4 below is from [19].

Lemma 2.4 [19]. Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If $d(x)+d(y) \ge n+1$ for any $x \in A$ and any $y \in B$ with $xy \notin E$, then G is Hamiltonian.

3. Proofs

Proof of Theorem 1.1. Let G be a graph with n vertices, e edges, and $\delta \geq 1$. Clearly, $\beta < n$. Let $I := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Then

$$\sum_{u \in I} d(u) = |E(I, V - I)| \leq \sum_{v \in V - I} d(v).$$

Since $\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e$, we have that

$$\sum_{u \in I} d(u) \le e \le \sum_{v \in V-I} d(v).$$

Applying Lemma 2.1 with $s = \beta$, $a_i = d(u_i)$ and $b_i = 1$ with $i = 1, 2, ..., \beta$, we have

$$\frac{1}{2} \left(\sum_{i=1}^{\beta} \frac{d^3(u_i)}{1} \sum_{i=1}^{s} \frac{1^3}{d(u_i)} - \left(\sum_{i=1}^{\beta} d(u_i) * 1 \right)^2 \right) \ge \sum_{i=1}^{\beta} d^2(u_i) \sum_{i=1}^{\beta} 1^2 - \left(\sum_{i=1}^{\beta} d(u_i) * 1 \right)^2.$$

Thus

$$2\beta \sum_{u \in I} d^2(u) \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + \left(\sum_{u \in I} d(u)\right)^2 \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2.$$

[1]. Notice that $Z_1(G) = \sum_{u \in I} d^2(u) + \sum_{v \in V - I} d^2(v)$. Thus

$$2\beta Z_1(G) = 2\beta \sum_{u \in I} d^2(u) + 2\beta \sum_{v \in V - I} d^2(v)$$

$$\leq \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2 + 2\beta \sum_{v \in V - I} d^2(v) \leq \beta \Delta^3 \frac{\beta}{\delta} + e^2 + 2\beta (n - \beta) \Delta^2.$$

Therefore

$$Z_1(G) \le (n-\beta)\Delta^2 + \frac{e^2}{2\beta} + \frac{\beta\Delta^3}{2\delta}.$$

If

$$Z_1(G) = (n-\beta)\Delta^2 + \frac{e^2}{2\beta} + \frac{\beta\Delta^3}{2\delta},$$

then, from the above proofs, we have that $\sum_{u\in I} d(u) = e$ which implies that $\sum_{v\in V-I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V-I. Furthermore, we have that $d(u) = \delta = \Delta$ for each $u \in I$ and $d(v) = \Delta$ for each $v \in I$. Thus $\delta |I| = |E(I, V-I)| = (n-|I|)\delta$. Therefore $|I| = |V-I| = \frac{n}{2}$. Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

$$Z_1(G) = (n-\beta)\Delta^2 + \frac{e^2}{2\beta} + \frac{\beta\Delta^3}{2\delta}.$$

This completes the proofs of [1].

[2]. From

$$2\beta \sum_{u \in I} d^2(u) \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2.$$

we have

$$2\beta\beta\delta^2 \le \frac{\beta}{\delta} \sum_{u \in I} d^3(u) + e^2.$$

Thus

$$\sum_{u \in I} d^3(u) \ge \frac{\delta(2\beta^2 \delta^2 - e^2)}{\beta}.$$

Therefore

$$F(G) = \sum_{w \in V} d^3(w) = \sum_{u \in I} d^3(u) + \sum_{v \in V - I} d^3(v) \ge (n - \beta)\delta^3 + \frac{\delta(2\beta^2 \delta^2 - e^2)}{\beta}.$$

2618

$$F(G) = (n - \beta)\delta^3 + \frac{\delta(2\beta^2\delta^2 - e^2)}{\beta},$$

then, from the above proofs, we have that $\sum_{u \in I} d(u) = e$ which implies that $\sum_{v \in V-I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V-I. Furthermore, we have that $d(u) = \delta$ for each $u \in I$ and $d(v) = \delta$ for each $v \in I$. Thus $\delta |I| = |E(I, V-I)| = (n-|I|)\delta$. Therefore $|I| = |V-I| = \frac{n}{2}$. Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

$$F(G) = (n - \beta)\delta^3 + \frac{\delta(2\beta^2\delta^2 - e^2)}{\beta}.$$

This completes the proofs of [2].

[3]. By Cauchy-Schwarz inequality, we have

$$\sum_{v \in V - I} d^2(v) \sum_{v \in V - I} 1^2 \ge \left(\sum_{v \in V - I} d(v) \right)^2 \ge e^2.$$

Thus

$$\sum_{v \in V - I} d^2(v) \ge \frac{e^2}{n - \beta}.$$

Since

$$2\beta \sum_{u \in I} d^2(u) \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2,$$

we have

$$2\beta \left(\beta \delta^2 + \frac{e^2}{n-\beta}\right) \le 2\beta \sum_{u \in I} d^2(u) + 2\beta \sum_{v \in V-I} d^2(v)$$
$$\le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2 + 2\beta(n-\beta)\Delta^2$$
$$\le \frac{\beta}{\delta} \sum_{u \in I} d^3(u) + e^2 + 2\beta(n-\beta)\Delta^2.$$

Thus

$$\sum_{u \in I} d^3(u) \ge \frac{\delta}{\beta} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n - \beta} \right) - e^2 - 2\beta (n - \beta) \Delta^2 \right).$$

Therefore

$$F(G) = \sum_{w \in I} d^3(w) = \sum_{u \in I} d^3(u) + \sum_{v \in V - I} d^3(v)$$

$$\geq (n - \beta)\delta^3 + \frac{\delta}{\beta} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n - \beta} \right) - e^2 - 2\beta (n - \beta)\Delta^2 \right).$$

If

$$F(G) = (n - \beta)\delta^{3} + \frac{\delta}{\beta} \left(2\beta \left(\beta \delta^{2} + \frac{e^{2}}{n - \beta} \right) - e^{2} - 2\beta (n - \beta)\Delta^{2} \right),$$

then, from the above proofs, we have that $\sum_{u\in I} d(u) = e$ and $\sum_{v\in V-I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V-I. Furthermore, we have that $d(u) = \delta$ for each $u \in I$ and $d(v) = \delta = \Delta$ for each $v \in I$. Thus $\delta |I| = |E(I, V-I)| = 0$

T 0

 $(n-|I|)\delta$. Therefore $|I|=|V-I|=\frac{n}{2}$. Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

$$F(G) = (n - \beta)\delta^3 + \frac{\delta}{\beta} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n - \beta} \right) - e^2 - 2\beta (n - \beta) \Delta^2 \right).$$

This completes the proofs of [3].

[4]. From

$$2\beta \sum_{u \in I} d^2(u) \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2.$$

we have

$$2\beta\beta\delta^2 \le \beta\Delta^3 \sum_{u \in I} \frac{1}{d(u)} + e^2.$$

Thus

$$\sum_{u \in I} \frac{1}{d(u)} \ge \frac{(2\beta^2 \delta^2 - e^2)}{\beta \Delta^3}.$$

Therefore

$$Inv(G) = \sum_{w \in V} \frac{1}{d(w)} = \sum_{u \in I} \frac{1}{d(u)} + \sum_{v \in V - I} \frac{1}{d(v)} \ge \frac{n - \beta}{\Delta} + \frac{(2\beta^2 \delta^2 - e^2)}{\beta \Delta^3}.$$

If

$$Inv(G) = \frac{n-\beta}{\Delta} + \frac{(2\beta^2\delta^2 - e^2)}{\beta\Delta^3},$$

then, from the above proofs, we have that $\sum_{u \in I} d(u) = e$ which implies that $\sum_{v \in V - I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V - I. Furthermore, we have that $d(u) = \delta = \Delta$ for each $u \in I$ and $d(v) = \Delta$ for each $v \in I$. Thus $\Delta |I| = |E(I, V - I)| = (n - |I|)\Delta$. Therefore $|I| = |V - I| = \frac{n}{2}$. Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

$$Inv(G) = \frac{n-\beta}{\Delta} + \frac{(2\beta^2\delta^2 - e^2)}{\beta\Delta^3}.$$

This completes the proofs of [4].

[5]. Recall that

$$\sum_{v \in V - I} d^2(v) \ge \frac{e^2}{n - \beta}.$$

Since

$$2\beta \sum_{u \in I} d^2(u) \le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2,$$

we have

$$2\beta \left(\beta \delta^2 + \frac{e^2}{n-\beta}\right) \le 2\beta \sum_{u \in I} d^2(u) + 2\beta \sum_{v \in V-I} d^2(v)$$
$$\le \sum_{u \in I} d^3(u) \sum_{u \in I} \frac{1}{d(u)} + e^2 + 2\beta(n-\beta)\Delta^2$$

$$\leq \beta \Delta^3 \sum_{u \in I} \frac{1}{d(u)} + e^2 + 2\beta(n - \beta)\Delta^2.$$

Thus

$$\sum_{u \in I} \frac{1}{d(u)} \ge \frac{1}{\beta \Delta^3} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n - \beta} \right) - e^2 - 2\beta (n - \beta) \Delta^2 \right).$$

Therefore

$$\begin{split} Inv(G) &= \sum_{w \in V} \frac{1}{d(w)} = \sum_{u \in I} \frac{1}{d(u)} + \sum_{v \in V-I} \frac{1}{d(v)} \\ &\geq \frac{n-\beta}{\Delta} + \frac{1}{\beta\Delta^3} \left(2\beta \left(\beta\delta^2 + \frac{e^2}{n-\beta} \right) - e^2 - 2\beta(n-\beta)\Delta^2 \right). \end{split}$$

If

$$Inv(G) = \frac{n-\beta}{\Delta} + \frac{1}{\beta\Delta^3} \left(2\beta \left(\beta\delta^2 + \frac{e^2}{n-\beta} \right) - e^2 - 2\beta(n-\beta)\Delta^2 \right).$$

then, from the above proofs, we have that $\sum_{u\in I} d(u) = e$ and $\sum_{v\in V-I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V-I. Furthermore, we have that $d(u) = \delta = \Delta$ for each $u \in I$ and $d(v) = \Delta$ for each $v \in I$. Thus $\Delta |I| = |E(I, V-I)| = (n-|I|)\Delta$. Therefore $|I| = |V-I| = \frac{n}{2}$. Hence G is a regular balanced bipartite graph.

If G is a regular balanced bipartite graph, a simple computation can verify that

$$Inv(G) = \frac{n-\beta}{\Delta} + \frac{1}{\beta \Delta^3} \left(2\beta \left(\beta \delta^2 + \frac{e^2}{n-\beta} \right) - e^2 - 2\beta (n-\beta) \Delta^2 \right).$$

This completes the proofs of [5].

Proof of Theorem 1.2. Let G be a k-connected ($k \ge 2$) graph with $n \ge 3$ vertices and e edges. Suppose G is not Hamiltonian. Then Lemma 2.2 implies that $\beta \ge k + 1$. Also, we have that $n \ge 2\delta + 1 \ge 2k + 1$ otherwise $\delta \ge k \ge n/2$ and G is Hamiltonian. Let $I_1 := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Then $I := \{u_1, u_2, ..., u_{k+1}\}$ is an independent set in G. Thus

$$\sum_{u \in I} d(u) = |E(I, V - I)| \le \sum_{v \in V - I} d(v).$$

Since $\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e$, we have that

$$\sum_{u \in I} d(u) \le e \le \sum_{v \in V - I} d(v).$$

[1]. Following the proof of [1] in Theorem 1, we have

$$Z_1(G) \le (n-k-1)\Delta^2 + \frac{e^2}{2(k+1)} + \frac{(k+1)\Delta^3}{2\delta}.$$

Since

$$Z_1(G) \ge (n-k-1)\Delta^2 + \frac{e^2}{2(k+1)} + \frac{(k+1)\Delta^3}{2\delta},$$

we have

$$Z_1(G) = (n-k-1)\Delta^2 + \frac{e^2}{2(k+1)} + \frac{(k+1)\Delta^3}{2\delta}.$$

Thus we further have that $\sum_{u \in I} d(u) = e$ which implies that $\sum_{v \in V - I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V - I. Furthermore, we have that $d(u) = \delta = \Delta$ for each $u \in I$ and $d(v) = \Delta$ for each $v \in I$. Thus $\delta |I| = |E(I, V - I)| = (n - |I|)\delta$.

Therefore $(k+1) = |I| = |V-I| = \frac{n}{2}$. By Lemma 2.4, we have G is Hamiltonian, a contradiction.

- [2]. Following the proofs of [2] in Theorem 1.1 and [1] in Theorem 1.2, we can show that G is Hamiltonian, a contradiction. The details of the proofs are skipped here.
- [3]. Following the proofs of [3] in Theorem 1.1 and [1] in Theorem 1.2, we can show that G is Hamiltonian, a contradiction. The details of the proofs are skipped here.
- [4]. Following the proofs of [4] in Theorem 1.1 and [1] in Theorem 1.2, we can show that G is Hamiltonian, a contradiction. The details of the proofs are skipped here.
- [5]. Following the proofs of [5] in Theorem 1.1 and [1] in Theorem 1.2, we can show that G is Hamiltonian, a contradiction. The details of the proofs are skipped here.

This completes the proofs of Theorem 1.2.

Proof of Theorem 1.3. Let G be a k-connected $(k \ge 1)$ graph with $n \ge 9$ vertices and e edges. Suppose G is not traceable. Then Lemma 2.3 implies that $\beta \ge k+2$. Also, we have that $n \ge 2\delta + 2 \ge 2k + 2$ otherwise $\delta \ge k \ge (n-1)/2$ and G is traceable. Let $I_1 := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Then $I := \{u_1, u_2, ..., u_{k+2}\}$ is an independent set in G. Thus

$$\sum_{u \in I} d(u) = |E(I, V - I)| \le \sum_{v \in V - I} d(v).$$

Since $\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e$, we have that

$$\sum_{u \in I} d(u) \le e \le \sum_{v \in V - I} d(v).$$

[1]. Following the proof of [1] in Theorem 1, we have

$$Z_1(G) \le (n-k-2)\Delta^2 + \frac{e^2}{2(k+2)} + \frac{(k+2)\Delta^3}{2\delta}.$$

Since

$$Z_1(G) \ge (n-k-2)\Delta^2 + \frac{e^2}{2(k+2)} + \frac{(k+2)\Delta^3}{2\delta},$$

we have

$$Z_1(G) = (n-k-2)\Delta^2 + \frac{e^2}{2(k+2)} + \frac{(k+2)\Delta^3}{2\delta}.$$

Thus we further have that $\sum_{u\in I} d(u) = e$ which implies that $\sum_{v\in V-I} d(v) = e$ and thereby G is a bipartite graph with partition sets of I and V-I. Furthermore, we have that $d(u) = \delta = \Delta$ for each $u \in I$ and $d(v) = \delta$ for each $v \in I$. Thus $\delta |I| = |E(I, V-I)| = (n-|I|)\delta$. Therefore $(k+2) = |I| = |V-I| = \frac{n}{2}$. Since $n \geq 9$, we have $k \geq 3$. By Lemma 2.4, we have G is Hamiltonian and thereby G is traceable, a contradiction.

[2]. Following the proofs of [2] in Theorem 1.1 and [1] in Theorem 1.3, we can show that G is traceable, a contradiction. The details of the proofs are skipped here.

- [3]. Following the proofs of [3] in Theorem 1.1 and [1] in Theorem 1.3, we can show that G is traceable, a contradiction. The details of the proofs are skipped here.
- [4]. Following the proofs of [4] in Theorem 1.1 and [1] in Theorem 1.3, we can show that G is traceable, a contradiction. The details of the proofs are skipped here.
- [5]. Following the proofs of [5] in Theorem 1.1 and [1] in Theorem 1.3, we can show that G is traceable, a contradiction. The details of the proofs are skipped here.

This completes the proofs of Theorem 1.3.

4. Conclusions

Let G be a graph with minimum degree at least one. We obtained an upper bound for the first Zagreb index of the graph G and lower bounds for the forgotten topological index and the inverse degree of the graph G. We also obtained sufficient conditions based on the first Zagreb index, the forgotten topological index, or the inverse degree for Hamiltonian and traceable graphs.

Acknowledgement. The author would like to extend his gratitude to the referee for his or her suggestions which improve the initial version of the paper.

References

- [1] Ali, A., Gutman, I, Milovanovic, E., and Milovanovic, I., (2018), Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80, pp. 5-84.
- [2] An, M., (2022), The first Zagreb index, reciprocal degree distance and Hamiltonian-connectedness of graphs, Information Processing Letters 176, 106247.
- [3] Bondy, J. A. and Murty, U. S. R., (1976), Graph Theory with Applications, Macmillan, London and Elsevier, New York.
- [4] Chvátal, C. and Erdös, P., (1973), A note on Hamiltonian circuits, Discrete Mathematics 2, pp. 111-113.
- [5] Dragomir, S. S., (2003), A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, Journal of Inequalities in Pure and Applied Mathematics, Volume 4, Issue 3, Article 63, "https://vuir.vu.edu.au/2419/".
- [6] Furtula, B. and Gutman, I., (2015) A forgotten topological index. J. Math. Chem. 53, pp. 1184-1190.
- [7] Gutman, I. and Trinajstić, N., (1972), Graph theory and molecular orbitals, total π-electron energy of alternant hydroncarbons, Chem. Phys. Lett. 17, pp. 535-538.
- [8] Jahanbani, A. and Sheikholeslam, S., (2023), The topological indices and some Hamiltonian properties of graphs, Applied Mathematics E-Notes 23, pp. 260-264.
- [9] Jin, Y., Zhou, S., Tian, T., and Das, K. C., (2024), Sufficient conditions for Hamiltonian properties of graphs based on the difference of Zagreb indices, Comp. Appl. Math. 43, Article 385.
- [10] Li, R., (2024), Bounds of the forgotten topological index and some Hamiltonian properties of graphs, Electron. J. Math. 8, pp. 48–53.
- [11] Li, R., (2024), The first Zagreb index and some Hamiltonian properties of graphs, Mathematics 12, 3902.
- [12] Li, R., (2024), The inverse degree conditions for Hamiltonian and traceable graphs, Open Journal of Discrete Applied Mathematics 7, pp. 7-10.
- [13] Li, R., (2024), The general first Zagreb index conditions for Hamiltonian and traceable graphs, Discrete Math. Lett. 14. pp. 31-35.
- [14] Li, R., (2024), The first general Zagreb index and some Hamiltonian properties of graphs, Mathematical Aspects of Topological Indices 6, pp. 43-48.
- [15] Li, R., (2024), A lower bound of the first Zagreb index and some Hamiltonian properties of graphs, Annals of Pure and Applied Mathematics 30, pp. 13-17.

- [16] Li, R., (2019), The hyper-Zagreb index and some Hamiltonian properties of graphs, Discrete Mathematics Letters 1, pp. 54-58.
- [17] Li, R. and Taylor, M., (2017), The first Zagreb index and some Hamiltonian properties of the line graph of a graph, Journal of Discrete Mathematical Sciences and Cryptography 20. pp. 445-451.
- [18] Lu, Y. and Zhou, Q., (2022), On hyper-Zagreb index conditions for Hamiltonicity of graphs, Czechoslovak Mathematical Journal 72. pp. 653-662.
- [19] Moon, J. and Moser, L., (1963), On Hamiltonian bipartite graphs, Israel J. Math. 1, pp. 163-165.

Rao Li is a professor in the Dept. of Computer Science, Engineering, and Mathematics at the University of South Carolina Aiken, USA. He obtained his Ph. D. in mathematical science (focusing on graph theory) and his M.S. in mathematical science (focusing on computer science) in May 1999 at the University of Memphis, USA. He worked in the School of Computer and Information Sciences at Georgia Southwestern State University between August 1999 and May 2001. He joined the University of South Carolina Aiken in Fall 2001.