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A LABELING APPROACH TO VERTEX N-MAGIC WEIGHTED
TOTAL GRAPHS WITH VERTEX-ODD VALUES

R. NISHANTHINI**, §

ABSTRACT. The current text discusses the concept of odd vertex N-magic total graphs, a
novel idea in the realm of vertex N-magic-type graphs. This idea is defined by N- magic
with distinct degrees and identifies odd vertex labels relevant to this property. This
manuscript offers a novel approach to labeling graphs, focusing on a specific type of graph.
It outlines a method for creating labeling functions that meet specific requirements for
vertex weights and magic constants.

This study explores the practical application of vertex N-magic labeling for modeling
employee skills and extracurricular activity networks, where a graph-based approach is
employed to examine the relationships and capabilities of employees within replicated
corporate settings. Graph theory’s versatility is demonstrated through its application in
both theoretical research and real-world data analysis, highlighting the effectiveness of
vertex N-magic total labeling. It concludes with an examination of a specific approach
for utilizing the proposed labeling along with an unresolved issue.

Keywords: Vertex N-magic, (n,t)-kite graph, Weighted graph, Banana Tree.
AMS Subject Classification: 05C78, 05C90

1. INTRODUCTION

This research exclusively examines an undirected graph with unique vertex degrees.
The degree of each vertex in a simple, finite, undirected graph G with p vertices and ¢
edges is distinct, and the number of these distinct degrees is represented by N. The edge
set and vertex set of a graph are denoted by E(G) and V (G) respectively. N(v) is a set
of adjacent vertices for a vertex v. Standard graph notations are employed in this study.
Graph labeling involves labeling elements of a graph, like vertices and edges, assigned to
a labeled sequence of numbers. A comprehensive overview of graph labeling is provided
in [5], which covers various label types. The concept of magic labeling of graphs was
invented by Sedlacek [14]. This was followed by the development of vertex-magic total
labeling by MacDougall et al [7]. The study of magic graphs, as detailed in [8], provides
a comprehensive overview. In [4, 15], tree graphs with vertex magic total labeling were
discussed, delving into the intricacies of wheels in [13]. [1, 2, 3, 6, 10] and [16] provided
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explanations of vertex-magic labeling for regular and non-regular graphs, as well as a
disjoint union of graphs, respectively. MacDougall, Miller, and Sugeng were responsible
for the development of super-vertex-magic total labeling.

The pioneering work on vertex N-magic total labeling was done by Marimuthu and
Kumar, as outlined in [9]. A vertex N-magic total labeling is a one-to-one map that takes
the function from the set of vertices and edges of G, denoted by V(G) U E(G), onto the
consecutive integers 1,2, ...,p + g, with the property that the number of distinct degrees
N is equal to the number of distinct magic constants k; for i € {1,2,..., N}, and the
magic constants k; must be in a strictly increasing order k1 < ko <, ..., < k; for some i €
{1,2,..., N}. Here, N represents the number of distinct degrees of the vertices in a simple,
finite, undirected graph G, whose vertices and edges are p and g, respectively. Moreover,
it k; represents the weighted sum of every vertex u € V(G) for some i € {1,2,...,N}.
Nishanthini and Jeyabalan’s research on vertex N-magic total labeling graphs focused
on establishing sharp bounds, specifically by examining the bijective function that maps
vertices and edges to integers. In [11], Sharp bounds on Vertex N-magic total labeling
graphs, I provide strict mathematical bounds for vertex N-magic total graphs and extend
results to disjoint union graphs. Provides theoretical results on the upper and lower
bounds of magic constants. Explores the labeling of various graph families, including
trees and disjoint union graphs. Both refer to the importance of magic constants and their
ordering in graph labeling. Specializes in theoretical bounds for various graph families.
Emphasizes the mathematical strictness of proofs for establishing upper and lower limits
of magic constants. Focused on the mathematical structure and application of Strong
vertex N-magic total labeling in [12].

This manuscript presents a novel labeling technique called odd vertex N-magic total
labeling for graphs. Total labeling with an odd vertex N-magic graph is referred to as odd
vertex IN -magic total labeling if all vertices of G are assigned only odd integer values.
A graph that admits an odd vertex N-magic total labeling is called an odd vertex-magic
total or odd VNMT graph. We have introduced a new labeling type in which vertex labels
are odd and suggest a stepping process for building such graphs and highlighting con-
structive methods and applications in real life of odd vertex N-magic labeling. Specializes
in a new graph labeling type known as odd vertex N-magic total labeling. Highlights
labeling graphs with all vertex labels as odd integers. Introduces applications of personal-
ity development in employees in the form of extracurricular activity-related applications.
Specializes in odd vertex N-magic total labeling, a special case in which only odd integer
values are used for vertex labels, and introduces a variety of graph classes and shows how
the odd vertex N-magic property can be established. These findings highlight the intricate
relationships between vertex and edge structures and the corresponding labeling rules.

The following are the objectives of this article: (i) To assemble the graph labeling in
various ways and offer a simple, effective stepping procedure for assessing Vertex N-magic
total graphs with odd labels. (ii) To strengthen the weighted graphs using magic constants.
(iii) To acquire magical constants by employing graph theoretical weighted graphs. The
following result will be beneficial in proving some theorems.

Lemma 1.1. The magic constant value for the vertex magic labeling k > p + q.

Odd-Vertex N-magic Stepping Procedure
Consider a G(p, q) graph with p vertices and ¢ edges. The graph is divided into two sets
denoted by vertices and edges. Initially, we determine the number of distinct degrees of a
graph.
Step 1: Let v; be the number of vertices in V. Label the vertices within 1,2, 3, ..., (p+q).
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Step 2: The remaining vertex labels were eliminated to compute edge labels. The number
of edges in F is for each n.

Step 3: Decide the weighted sum of each vertex in V(G) which provides a magic constant
value k; for all i € {1,2,..., N}. Examine the magical constants for Vertex N-magic must
be in a strict ascending order k; < ko <, ..., k; for all i € {1,2,..., N}.

Step 4: The values at the vertex and edge labels are swapped whenever there is a
discrepancy. Rearrange every vertex and edge on the graph and proceed to step 1.

This manuscript analyzes the connection between extracurricular participation and
the development of specific skills in a learning context. Based on the developmental
theory also argues that participation in extracurricular activities enhances overall
cognitive development and academic success. The study focuses on a diverse group of
employees, encompassing various backgrounds and skill sets, including personal interests.

Definition 1.1. A magic labeling for a graph assigns integers to vertices and edges, with
the property that the sum of the labels on an edge is equal to the sum of its endpoints’
labels.

Definition 1.2. Vertex labeling assigns numerical identifiers to vertices and edges in a
graph. The sum of the labels assigned to a vertex and the labels of its connected edges
determines its magic number.

Definition 1.3. A path graph can be constructed with n vertices and n — 1 edges, where
each vertex and edge forms a line, for any integer n greater than or equal to 3.

Definition 1.4. A star graph ki, can connect n vertices to a single isolated vertex with
n+ 1 edges.

Definition 1.5. Generate a bi-star graph with 2n 4+ 2 vertices and 2n+ 1 edges by linking
two star graphs of order n with a connection.

Definition 1.6. Each cycle of vertices is connected to one isolated vertex via edges, re-
sulting in the sun graph C, with 2n vertices and edges.

Definition 1.7. A graph that connects each n copy P> to the same root vertex is known
as a (n,2)-banana tree.

Definition 1.8. A (n,t) kite graph with n + t vertices and edges is a cycle with a path
connecting one of its vertices to the tail of the cycle.

Definition 1.9. The corona product of the graph P, and the complete graph K1, denoted
by P, ® K1, results in a graph where, for a path of length n, each vertex is connected to a
pendant vertex with 2n vertices and 2n — 1 edges.

2. ODD VERTEX N-MAGIC TOTAL LABELING OF STAR, SUN, BANANA TREE AND
(n,t)-KiTE GRAPHS

In this part, I proved that VNMT labeling graphs with vertex odd values have specific
properties and showed how to build such graphs using scheme constructs. In this section,
I analyze the possibility of this labeling for a set of particular graphs, including the star
graph, sun, banana tree, bi-star, and the (n,t)-kite graph.

Theorem 2.1. Let G be any graph except for a path of even length p > 6. If the number
of points exceeds the number of edges, then G admits an odd VNMT labeling.
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Proof. Assume it G is an odd VNMT graph that p is less than or equal to q. Then there
exists an odd VNMT labeling f, with the vertex labels ranging from 1 to 2p — 1. Let
v; € V(Q) be the vertex such that the labeling is 2p — 1. We demonstrate that the labels
of all vertices are always less than the total number of graphs.

If not, then f(v;) > p+q > p+p = 2p, contrary to the fact that the labels of vertex v;
are 2p — 1 and p < q. Thus, f(v;) < p+ ¢. Hence, G admits odd VNMT labeling if the
number of points exceeds the number of edges. U

Corollary 2.1. Every tree admits an odd vertex N-magic total except for the even length
n > 6 of the path graph P,.

By the theorem above, it is clear that trees permit odd vertex N-magic. Consider the
following path graph, which has the following vertices and edge sets:

V(P,) = {v1,v2,...,u,} and E(P,) = {vivit1,1 =1,2,...,n — 1}.

As a result, our main goal is to affirm that vertices with the same degrees have the same
magical constant values k; for each i € {1,2,..., N}.

All the vertices in the path graph have two distinct degrees. Define a function from
V(P,) U E(P,) onto {1,2,...,2n — 1} as follows: For the odd length n of path graph,
Step 1: Assign the initial and end vertices to 1 and 3, respectively. The second vertex
from left to right by 2n — 1 and v,—1 by 5.

Step 2: The first edge viva by n + 1 and edge wv;yo labeled by 2n — 1 — 24,
it =1,2,....n—3,n > 3. The edges are vo;v9;11 labeled by 2i for i = 1,2,...,"773 and
V2 +1V2i+2 labeled n + 14 2¢, ¢ = 1,2, ..., ”T75 respectively. Edge v,_ov,_1 by 2n — 2 for
n > 5. The final edge v,,_1v, is n — 1.

Step 3: The magic constants are n + 2 and 3n + 2 respectively.

Note 1. Path graph Py with the odd vertex N-magic contains magic constants 7 and 13.
With n > 6, the labels swapped more frequently, but we could not set it up to accept the odd
vertex N-magic labeling for the even length n. Two distinct magic constants, k1 and ks,
are necessary. However, label rearrangement contradicts this condition. When rearranging
labels, we obtain only odd vertex values with vertex N-magic.

2.1. Exploring Odd Vertex N-Magic Total Labeling in Specialized Graphs.

Theorem 2.2. Every K, with n greater than or equal to 2 is an odd vertex N-magic
total graph.

Proof. Let v be the star’s central vertex, and v; for each i = 1,2,..,n be the star graph’s
pendant vertices, considering V(K ) = {v,v1,v2,...,v,} and and E(K;,) = {vv, =
ei,i =1,2,...,n}. Define the one-one and onto function as 1 to {1,2,..2n + 1} as follows:
Step 1: Initialize labels v; to 1. Assign 2i — 1 to all the vertices v; for each i =2,3,....;n
of K1, and the remaining central vertex v, labelled 2n + 1.

Step 2: Next, we place the labels for edges vv; by 2(n + 1 — i) for each i = 1,2, ..., n.
Step 3: We discover that the weight persists n(n+3)+ 1 for the central vertex and 2n+ 1
for n vertices. The magic constants are 2n + 1 and n(n + 3) + 1. n

Theorem 2.3. For any n greater than or equal to 3, a Sun graph C;I possesses an odd
verter N-magic labeling.

Proof. Let the vertex set and edge set of sun graph C;" be {u1,ug, ...tup,v1, v, ...v,} and
{uivi; 1 <i <n}U{vvit1,1 <i<n—1}Uvyv.

For each 1 < ¢ < n, u; is the vertices of degree one, and v; is the vertices of cycle c,.
Define the bijective function ¥ to {1,2,...,4n} as follows:
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Step 1: Designate the labels 2¢ — 1 to the vertices v; for each 1 < i <mn and 4n — 1 —2;
to the vertices u; for each 1 < i <n — 1. Vertex u,, should be labeled as 4n — 1.
Step 2: The remaining labels of the Sun graph are as follows:

Y(uuipr) = 20425 1<i<n-1
Y(uiu,) = 2
Y(uw;) = 4n — 20+ 2; 1<i<n
Step 3: The magic constants are 4n + 1 and, 8n + 3 respectively. O

Theorem 2.4. If a banana tree Ban, 2 has at least two vertices, then it has an odd vertex
N- magic total labeling.

Proof. Let the vertices and the edges of the (n,2)-banana tree be as follows:

V(Banyz2) = {v1,v2, ..U, w1, ws, ...w, } and E(Bany2) = {viw;;1 <i < n}U{vy;1 <
J < n} respectively. Consider v; and w; as the path’s vertices for 1 < i <n and v as the
root vertex. Define the bijective function ¢ : V(Ban,2) U E(Ban,2) — {1,2,...,4n + 1}
as follows:

Designate the labels 4n + 3 — 2¢ to the vertices w; and the edges v;w; by 2¢ for each
1 <i<n.
Case i: n is even and n > 2
Step 1: Label the next vertex v as n+ 1, while the depiction of the other vertices follows:

n+2i+ 1; 1<¢< 2
Y(v) = . n 2
2t —n —1; st+1<i<n
Step 2: The edge labeling of the graph is defined here.
dn — 47 + 2; 1<i<2
Y(vv;) = . N 2
6n — 4i + 4; s+1<i<n

Step 3: The magic constants k1 = 4n + 3 and ky = 5n + 3 respectively. The weight
calculation for the central vertex v is as follows:

n
n

2
ks = n+1+Y (dn—4i+2)+ > (6n—4i+4)
i=1 =241

n

n n bl
= n+1+> (6n+4)—> 4i—Y (2n+2)
i=1 i=1

=1

4 1) n(2n+2
— n4+1+n(6n+4)— ”(”; )—"(ZJ“ )

= 3n’+2n+1

Case ii: n is odd and n > 3
Step 1: Designate the label 2n + 1 to the vertex v and the remaining vertices labelled in

the following manner:
n + 2i; 1<i<nd
P(v) = . TR
21 — n; S <i<n

Step 2: The remaining edge labeling is as follows:

dn — 4i + 2; 1<i<nt
T —
P(vvi) {6n—4i+2; ’%rlgign
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Step 3: The magic constants k1 = 4n + 3 and ke = 5n + 2 respectively. The method for
determining the weight of the central vertex v is as follows.

n—1
n

ky = @n+D+§éMn—M+%+—Z:wn—M+®

i=1 j=ntl

n

= (2n—|—1)—|—2(6n—4i—|—2)—§:2n

=1

= n+1+n(6n+2)- -

= 3n’+3n+1

The magic constant for the central vertex v is 3n% + 3n + 1. ]

Theorem 2.5. An (n,t)- kite graph admits an odd vertex N-magic total labeling for n > 3
and t > 2.

Proof. Let the vertices and the edges of G = (n, t)-kite graph be described as follows:
V(G) = {v1,v2,.0p, w1, ws,..w;} and E(G) = {vvi41;1 < i < n— 1} U{vyv1} U
{wjwj41;1 < j <t —1}U{viw}. Consider the cycle’s vertices by v; for 1 < i < n. And
w; be the path’s vertices for 1 < j <¢.
Define the bijective function ¢ : V(G) U E(G) — {1,2,...,2(2n + t)} as follows:
If n >3 and ¢t > 2 then we Consider the following cases:
Case(i) If n is odd and ¢t is even
Step 1: Label the vertex v; by 2n + 2t — 1 and assign 2n + 1 — 27 to the vertices v; of
cycle for each 2 <4 <n. The vertices w; labelled by 2n + 2t +1 — 2j for 2 < j <.
Step 2: Designate label t for edge viw;. Label the vertices and edges with precise
information in the subsequent sub-cases. Two subcases n >t and n < t are considered.
Subcase(a) n >t
Label the remaining vertex w; and the edges in the following manner:

¢(w1) = n+t

W ) n + 1; 1=1,3,....n—2

N

R 3n — 1+ 4; i=2,4,...n—1
Y(vivy) = 2n

” ) n+t+j5+2; j=13,.,t—-1
W) —
AR 5 =24, t—2

The odd vertex N-magic property of the (9, 8)-kite graph is illustrated in Figure 1.
Subcase(b) n <t
Put the following labels on the remaining vertex w; and the edges:
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7

N
9 5

o 3
5 £
13 1
B 18
7 ] 26 6 24 4 22 2 20
15 10 33 19 21 23 25 2T 29 31 17
FIGURE 1. Odd Vertex N-magic for (9,8)-kite graph
Y(w) = n+t—2
n+ 241 1=1,3,....,n—2
Vs —
Ylviwier) {m+3+@ i=2,4,...n—1
Y(vivp) = n+t+1
% +j+1; j=1,3,.,t—1
W _
vl {ﬁ J= 2,4, .t —2

Step 3: The magic constants are 2n + 2t + 3,6n — 1, and 5n + 3t if n > t.
The magic constants are 2t + 2n + 1, 6n + 5, and 4n + 4t + 3 if n < t.
Case(ii) If n is even and ¢ is odd
Step 1: Assign the vertices w; labelled by 2n + 2t + 1 — 25 for each 1 < j <¢.
Step 2: The edges viwy labelled by t+1 and w;_jw; by n+2t, respectively. The sub-cases
below provide the descriptions for the remaining vertex and edge labels.
We consider the following two subcases n >t and n < t.
Subcase(a) n >t
Indicate the remaining vertices v; for each i = 1,2,...,n and its edges with the
following labels:

P(v) = n+t+2— 2 l<i<n
3n+i—1; i=13,..,n-1
Vil -
¢< i z—i—l) {n—i—Z, i1=2,4,....,.n—2
Y(vivn) = 2n
i1 J=1,3, =2
Wit -
w( J .7+1> {2t+]+27 J:Q,4,,t—3

Subcase(b) n <t
Adhere to these designations for the remaining vertices v; for each i = 1,2, ...,n and its
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edges:
Y(v;)) = n+t— 2 1<i<n
W ) 3n+14+3; 1=1,3,...n—1
Vs —
A n4it3; i=2,4, .0 —2
Y(vivy) = 2(n+1)
JERT j=1,3,..t—2
w,w;
Plwjwje) {%+$ =24, t—3

Step 3: The magic constants are 2n 4+ 2t + 1, bn +t, and 6n + 2t + 1 if n > ¢.

The magic constants are 2n 4+ 2t + 1, bn+t+4 and 6n 4+ 2t + 5 if n < t.

Case (iii) n = t=odd

Step 1: Assign the labels n+t — 2i 4 1 to the vertices v; for each 1 < ¢ < n. The vertices
w; are labelled by 2n 4 2t — j — 2 for each 1 < j <.

Step 2: All edges of the graph are labeled as follows:

Ylowy) = t+1

W ) n+1i+2; 1=1,3,..,n—2
V;V; =
e Mt +itl; i=2,4,..n—1

Y(vivy) = n+t+2

J+ 1 j=1,3, .t —2
P(wjwjpr) = . .

n+t+j+2; j=2,4,..,t—3&t#3
1/1(11)”_111)”) = 3t+1

Step 3: The magic constants are 2n + 2t — 1, 4n + 2t + 3 and 3n + 3t + 5.
Case(iv) n = t=even
The (8, 8)-kite graph with an odd vertex N-Magic is shown in figure 2.

7 30 5
12 14
9 L 3
28 32
11 4 L 1
10 16
13 26 31 8 17 24 19 6 21 22 23 4 25 20 27 229 18 15

FIGURE 2. Odd Vertex N-magic for (8,8)-kite graph

Step 1: Designate vertices v; and wi as 2n + 2t — 1 and n + t — 1, respectively. The
remaining vertices v; are represented by n 4+t — 2 + 1 for each 2 < ¢ < n and w; by
2n + 2t — 25+ 1 for each 2 < j < t.

Step 2: Allocate the labels 2n to the edge viv, and the edge viw; by t. The edge w,_1w,
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is labelled as 3t. The discourse below delves deeper into the remaining edges.

W ) 3n+i+1; 1=1,3,...,n—1
Vs —
s n+i; i=2,4, .0 —2
o ) 2n + j + 1; ji=13,..,t—3
Wil —
AN 7 =24t —2
Step 3: The magic constants are 3n +t+ 1, 5n+¢t+ 1 and Tn + 3t + 1. ]

Theorem 2.6. For any odd positive integer n > 3, the bistar By, ,, is an odd VNMT graph.

Let the vertex and edge sets be defined as follows:

V(Bnn) = {ur,u2, ..., upn, 01,02, ..., V2, u, v} and E(By ) = {uu;;1l < i < nfUww U
{vvi, 1 <@ < n}. Define the bijective function ¢ : V(By, ,)UE(By n) — {1,2,...,2(2n)+3}
as follows:

Step 1: Allocate the label 4n + 1 to the vertex w and 4n + 3 to vertex v. The rest
of the vertices are designated as follows: ¥ (u;) = {1,7,9,15,17,....,4n — 3} and ¢ (v;) =
{3,5,11,13,19,...,4n — 1}.

Step 2: Allocate the labels for the edges by ¥ (uv) = 2, ¥ (uu;) = {4n+2,4n—4,4n—6,4n—
12,...30,22,16,14, 8,6} and ¥ (vv;) = {4n,4n —2,4n —8,4n — 10,4n — 16, 20, 18,12, 10,4}.
Step 3: The method to obtain the sum of the weighted vertices is outlined below.k; =
4n 4+ 3 Now the weighted sum of the pendant vertices u; and v; is ky = 4n + 3 for each
1 < i < n. The weight of central vertices is obtained by the sum of that label 4n + 3 and
its endpoints.

Theorem 2.7. Let G be any graph by attaching the terminus of degree 2 of a P, ® K;
graph to a pendant vertex. Then obtain an odd vertex N-magic graph with three different
magic constants.

Proof. In a graph G, a pendant vertex u is connected to the P, ® K graph’s degree 2
endpoint, and the set of vertices and edges is {u1,uz....un} U {v1,v2,v3,...,v,} Uu and
edges {u1vy, ugvy, ..., upvp } U{wuipr 1 <i<n—1}1Uuu.

Define a total bijective map ¢ : VUE — {1,2,...,4n+ 1} whose labelings are as follows:
Step 1: The pendant vertex u must be labeled by 2n + 1 and the vertex v; by 2¢ — 1 for
i =1,2,...,n respectively. The remaining vertices ¥(u1) = 2n+ 3, uy are labeled by 4n+ 1
and the remaining consecutive vertices u; are labeled by subtracting the value two from
4n + 1 for each i = 3, ...,n.

Step 2: Compute the remaining edge labels by the following scheme:

Y(uuy) = 2n
¢(uiui+1) = 2i; 1= 1,2, ey, — 1
Y(uwy) = dn+2-2i i=1,2,..,n

Step 3: The weighted sum of pendant vertices u and v; for each 1 < i <n, k; = 4n + 1.
The weighted sum of vertex u,, ks = 6n + 5. The weighted sum of the vertex u; for each
1<i¢<n-—1, k3 =8n+ 5. The magic constants are 4n + 1 and 6n + 5 and 8n +5. [

3. APPLICATIONS OF ODD VERTEX N-MAGIC LABELING IN REAL-WORLD PROBLEMS

3.1. Analyzing the Impact of Extracurricular Activities on Skill Development
and Recruitment Competencies in Modern Companies: The acquisition of discipline-
specific abilities is typically the focus of universities and their credentials. Companies
prioritize candidates with a blend of specialized skills and deep knowledge in their field.
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The fact that they are aware of this leads them to view recreational activities as a crucial
means of developing these abilities. The emphasis has been on the effect of extracurricular
activities on proficiency and development work because of the need to understand how to
assist individuals in acquiring these skills. This motivation is strongly related to the ap-
proach to development, which holds that involvement in extracurricular endeavors helps
students develop the abilities and knowledge that enhance academic accomplishment. Af-
ter recruiting skilled employees, management assesses the data of the selected team. The
analysis considers the potential for overqualification, influencing the network weights in
the process.

Employee J

gl desigl Yoga ang

Photography Employee !

) Employee H Employee K

Le adel‘Sh"f’

Q Employee A
Employee F o
e
%
%
G
2, Employee B
) )
%.

m\\s\c

K Employee C
Employee D Coding

Graph model shows a 12 registered people database in the following example. Every
employee has the specified professional skills and extracurricular activities. Professional
skills include leadership, critical thinking, problem-solving, Hospitality, cultural
awareness, solidarity, interpersonal communication, organizational skills, environmental
activities, foreign language ability, and internships. Extracurricular activities include
athletics, music, coding, calligraphy, cinematography, dance, gymnastics, photography,
visual design, yoga, and meditation on. The data hosted corresponds to the employers from
the company if exactly one employee has all professional skills and two
employees have exactly one professional skill and extra skill. The remaining employees had
three activities. Employees with the same number of activities have the same capacity.
Determine the capacity of each employee and specify them in ascending order using N-
magic constants under vertex N-magic total labeling.

To construct the graph, Graph G represents data where nodes identify specific
individuals, and the edges depict the links between them. If a weighted graph can be
written as Wgt(v) for v € V(G), indicating the degree of association between nodes
and their incident edges. The edges might be weighted in a certain way to reflect the
quantifiable relationship between the nodes, such as the level of user intimacy. Let us
consider employees A, B,C,D,FE, F,G,H,I,J, K, and L, labeled 1 to 12. Employee L
shares a connection with all other employees regarding professional expertise. Employee
L is the exception regarding extracurricular activities among employees. The capacity
of an employee is attained by adding the label of that employee and linking it to that
employee. Moreover, we have to label employees A and K as having the same capacity,
and each employee, except for A, K, and L, has the same capacity. Moreover, employee
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L has different classes defined by different professional skills.
Interconnections between employees and extracurricular activities:
Employees A and B possess similar athletic talents.
Employees B and C' have a musical experience.
Both employees C' and D imparted the coding.
Employees D and F imparted Calligraphy.
The cinematography abilities of employees F and F' are noteworthy.
The employees had a dance experience in common: F' and G.
Employees G and H have gymnastics skills.
Employees H and I imparted photography skills.
The employees at I and J have designing skills.
Yoga anMeditationon were bestowed upon employees J and K.
Interconnection between employees and Professional Skills:
Employee A and Employee L has Leadership as an extra curricular activity.
Employee B and employee L have Critical Thinking.
Employee C' and employee L have problem-solving skills.
Employee D and employee L have Hospitality.
Employee E and employee L have Cultural Awareness.
Employee, F' and employee L, have Solidarity.
Employee G and employee L have Interpersonal Communications.
Employee H and employee L have Organizational skills.
Employee I and employee L have Environmental studies.
Employee J and employee L have foreign language abilities.

TABLE 1. Interconnection between professional skills and extracurricular
activity with employee

Employee A | Athletic | Leadership
1 33 14
Employee K| Yoga Internship
11 24 13

Concerning the capacities of the employees, Here, Employee A matches Employee K in
the answers of the capacities; this is to say, both employees have the same capacity 48 as
shown in table 1. The remaining employees, except A, K, and L, had 82 as capacity in
table 2. The employee L has an interconnection among all professional skills. Thus, we
determine the capacity of employee L by adding label 12 to the labels of all professional
skills to obtain 210.

In our criteria, we found the hierarchical order of the capacities k; in ascending form is
k1 < ko < k3.

3.2. Applications of Odd Vertex Labeling in Electric Switching: Load Balanc-
ing in Power Grids. Odd vertex N-magic labeling enhances load balancing in electric
switching systems, ensuring that all components (switches, transformers, and substations)
receive equal workloads. Load balancing is important in power grids because it ensures
that electricity is efficiently distributed and transformer overloading is avoided. The odd
vertex label gives a systematic mathematical method of labeling substations, transform-
ers, and power stations uniquely with odd numbers so that electrical loads are evenly
distributed. All of the nodes in the power grid graph are given odd and unique integer
labels. The edges of the graph represent power transmission lines. This ensures that the
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TABLE 2. Interconnection between one professional skill and two extracur-
ricular activities with employee

B Critical Thinking Music Athletic
15 32 33
C Problem solving Music Coding
16 32 31
D Hospitality coding Calligraphy
17 31 30
E | Cultural Awareness Cinematography Calligraphy
18 29 30
F Solidarity Dance Cinematography
19 28 29
G Gymnastics Interpersonal Communications Dance
27 20 28
H Photography Organizational skills Gymnastics
26 21 27
1 Visual design Environmental studies photography
25 22 26
J | Yoga and meditation Foreign Language ability Visual design
24 23 25
sum of the labels at each vertex always equals the sum of the values at each edge. It

allows a minimum energy loss through power grids that enhance fault tolerance and op-
timize power rerouting for failure situations. Moreover, modern smart grids leverage odd
vertex N-magic labeling to dynamically adjust power distribution based on real-time de-
mand, improving grid stability and integrating renewable energy sources more effectively.
This structured labeling method not only enhances energy efficiency but also supports the
scalability of power networks, making it an essential tool in electrical switching and grid
optimization.

In graph theory, an example of odd vertex N-magic labeling is the assignment of unique
odd numbers to every node in a network, such as substations, transformers, or power
stations. Transmission lines or power flow pathways are represented by edges to ensure
an even distribution of loads. The sum of vertex labels and incident edge values remains
constant to prevent overloading. In the representation of power grids, odd-labeled nodes or
vertices can represent substations, power stations, or transformers. Electrical connection
transmission lines between nodes are called edges. Odd vertex N-magic labeling also helps
in achieving appropriate load balancing for maximum optimization of a power flow and
less energy loss in transmission.

The use of odd-numbered labels for substations encourages an even distribution of
power loads, preventing overloads and underutilization. This ensures fault tolerance since
it is easier to identify other power paths if there is a failure in any substation. This
helps to avoid cascading grid failures. Balanced labeling minimizes transmission losses by
optimizing the resistance paths. It also ensures that energy is used efficiently. In smart
grids, Al algorithms use this kind of labeling to dynamically distribute power, making it
easier to add renewable energy sources.

Example: A power grid composed of 12 servers S; if i = 1,2, ...,10, C1, and Cy, where
edges represent electrical connections. The strategy is to distribute workloads fairly among
servers, utilizing three distinct methods for computation.

Graph Representation
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Vertices (Servers) — S;
Edges (Connections/Tasks) — S;C1, S;Cy and C1Cy
Magic Sums — 23, 89
A power grid with four substations and transmission lines connecting them is the subject
of this study. Substations are assigned unique odd integer labels, and the calculation

Vertex labels to C; | Edge labels to C7 | Vertex labels to Cy | Edge labels to Cy
Sl —1 5101 — 22 56 — 3 SGC2 — 20
SQ — 7 5201 — 16 57 —5 5702 — 18
S3—9 S3C1 — 14 Sg — 11 SgCy — 12
54 — 15 5401 — 8 Sg — 13 SQCQ — 10
55 — 17 5501 — 6 510 — 19 51002 — 4
Cl — 21 0102 — 2 Cg — 23

TABLE 3. Load Balancing in Power Grids

of these labels involves the sum of the substation’s value and the value of its adjacent
vertex. Wg(S;) = Si + S;Cy for i =1,...,5 & Wg(S;) = S; + S;Cy for i = 6,...,10 and
Wgt(Cl) =C1+C10C+5;C1ifi=1,2,...,5 & Wgt(CQ) = (Cy+C102+S;Cs if i = 6, ..., 10.

The total load at each substation, denoted as \5;, remains constant, with a total load
of (23). The values of C; and Cy ensure balanced power distribution, resulting in a total
load of 89 in table 3. Substations are designed to handle loads without exceeding capacity,
minimizing overload and energy waste.

The application of load balancing in graph labeling statements serves multiple purposes:
it reduces the frequency of power overloads, enhances grid stability, maximizes energy
efficiency, facilitates the integration of renewable energy sources, and improves system
scalability. The method ensures a balanced load distribution between substations,
decreases the frequency of power outages, reduces transmission losses, and promotes
sustainable energy solutions. It also enables the expansion of the grid without
compromising the integrity of load balancing operations. This method is crucial in
transforming electricity networks into intelligent and sustainable ones.

4. CONCLUSION AND FUTURE DISCUSSIONS

In summary, this research has outlined an extensive study of odd-vertex N-Magic total
labeling in different specialized graphs such as path graphs, star graphs, sun graphs,
banana trees, and kite graphs. I have shown through detailed theorems and proofs that
these graphs must have certain conditions and labeling schemes for them to have odd
vertex N-magic features. The results capture the beauty and intricacy of graph labeling
with a fine balance of vertices, edges, and magic constants.

Secondly, the use of the labeling methods extends beyond mathematical theory to real-
life applications such as the analysis of the effect of extracurricular activities on skill
development and recruitment skills in contemporary firms. By expressing real-world data
through Odd Vertex N-Magic Total Labeling, organizations can better understand skill
distribution and competency gaps and maximize their recruitment process.

Here, I describe the categories of non-regular graphs that have been investigated and
are known to satisfy odd VNMT labeling. In this manuscript, the odd vertex N-magic
total graphs are a novel notion of vertex N-magic-type graphs and, based on N-magic
with distinct degrees, determine the odd vertex labels relevant to the property. Finally,
I explored the real-life application of odd VNMT labeling. An application discusses the
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relevance of these labeling techniques in employee skill analysis within a company, using
a database of registered individuals with professional skills and extracurricular activities.
A graph model where nodes represent employees and edges represent shared activities or
skills, with weights assigned based on the association level.

Further research could delve into diverse graph types, refine labeling methods, and
explore the practical applications of vertex magic labeling in network analysis, resource
allocation, and social network modeling. In the future, experts can do extensive studies on
odd VNMT labeling of highly irregular graphs using odd N-magic constants. I conclude
by proposing an issue.

Conjecture: Determine all even orders for n > 4 such that every P, admits an odd
VNMT labeling.
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