TWMS J. App. and Eng. Math. V.15, N.11, 2025, pp. 2674-2686

ON SOME FAMILIES OF LINEAR DIOPHANTINE GRAPHS

O. M. SALAMAY M.A. SEOUD!, M. ANWAR!, A. ELSONBATY?, §

ABSTRACT. Diophantine labeling of graphs is an extension of the prime labeling of
graphs. In this manuscript, we introduce some necessary conditions for determining
whether a given graph admits Diophantine labeling or not, and if yes, we will find such a
Diophantine labeling. We also study specific families of graphs, including the Complete
graphs K,,, Wheel graphs W,, and W, ,, Circulant graphs C,(j), Path graphs P,(j),
Cartesian product graphs Cs x C,,, Normal Product graphs P, o P,, Corona graphs
G ® H, Double Fan graphs g, = P, + Ko, Power graphs P2 and P2, to ascertain their
Diophantine nature.

Keywords: Graph labeling, Prime labeling, Diophantine labeling, Families of Diophan-
tine graphs.

AMS Subject Classification: 05C78

1. INTRODUCTION

In this work, we deal with finite, simple and undirected graph G = (V,E), where
V = V(G) denotes the vertex set and £ = E(G) denotes the edge set. |V| = n vertices
and |E| = m edges. The term |V] is called the order of the graph G, while |E| is called the
size of the graph G. A set of vertices S C V(@) is said to be independent if no two vertices
v and v in S are adjacent in G. The maximum number of vertices of an independent set in
G is called the vertex independence number of G or simply independence number, usually
denoted by a(G) [1, 6, 9, 11]. The Cartesian product G; x G2 of G with n vertices and
G2 with m vertices is the graph with vertex set V(G1) x V(G2) and edge set

{(u1,v1)(ug,v2) : (U =uy and vivy € E(G2)) or (vi =wvy and wjus € E(Gh))},

this means that we have n copies of G and m copies of Gy [8, 13]. The corona graph
G1 ® Gq of graphs G; and G2 obtained by taking one copy of G1(which has ny vertices)
and n; copies of Go(which has ng vertices), and then joining the i*" vertex of G1 # 0 to
every vertex in the i copy of G, G1 ® G5 has ny.(ng + 1) [8, 13].
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Definition 1.1. The normal product G1 o Go of two graphs G1 and Go is the graph with
vertez-set V(G o Go) = V(G1) x V(G2), where

V(Gy) = {ur,uy,...,un}t, V(Ga2) ={vi,ve,...,0n},
and (z1,11), (x2,y2) € V(G1) x V(G2) are adjacent in G o G if and only if
r1 = T2 and yy1 s adjacent to yo in Go

1)
2) y1 = y2 and x1 is adjacent to xy in Gy
(3) x1 1is adjacent to x4 in Gy and yy is adjacent to yo in Gs.

The k" power of a graph G, denoted as G¥, is a graph with the same vertex set as
G, but where two vertices are adjacent if their distance in G is at most k [1]. Powers of
graphs are referred to using terminology similar to that of exponentiation of numbers :
G? is called the square of G, G® is called the cube of G, etc. The k** power of a graph
G contains all the original edges of this graph G [1]. The Diameter of a graph G is the
maximum distance between pairs of vertices in this graph G [1, 2, 11, 22]. A circulant
graph C,(j) of order n, for a fixed j is a super graph of the cycle graph C,,, defined as
follows:

V(Ch(j)) = V(Cyp) = {v1,v2,...,0,},
and edge set

E(Cn(])) = E(Cn) U {vivi—‘y—j(modn) S {17 2a 3a s ,’I’L}},] < 5

[10]. A graph P,(j) of order n, for a fixed j is a super graph of the path graph P,,
defined as follows:

V(Pn(.])) = V(Pn) = {UlaUZa e ,’Un},
and edge set
E(Pn(])) = E(PTL) U {Uivi+j(modn) EAS {1?2737 .- -7n}}7 J<

[10]. The wheel graph W,,, denoted as C), + K; has n + 1 vertices [5, 8].

n
2

Definition 1.2. [5, 8, 23]. The double wheel graph is a graph consisting of two cycles of
vertices connected to a common center (hub). For every n > 4,|V(Wy,,)| =2n+ 1 and

n if n even

Wnn:
(Wa.n) {n—l if n odd

A triangular snake T'S/, is obtained from a path P, = {u1,u2,us,...,u,} by joining u;
and u;y; to a new vertex v;, where 1 <i < n — 1, and joining v; to v;4+1, 1 <1 < n — 2,
TS/ has 2n — 1 vertices [6].

The terminology and notations in this manuscript follow from Harary [11] and Allan
Bickel [1]. Graph labeling involves assigning real values to vertices and edges while satis-
fying certain conditions. The Literature of this field which began with the seminal paper
of Rosa [14], includes thousands of papers covering hundred of methods of labelings.

Definition 1.3. [21] Let G = (V, E) be a simple graph of order n. The graph G is called a
prime graph if there exists a bijective map f : V — {1,2,...,n} such that (f(u), f(v)) =1
for alluv € E .i.e, f(u) and f(v) are relatively prime, this bijective map f is referred to
as a prime labeling of G.

The concept of prime labeling was introduced by Roger Entringer and discussed in a
paper by Tout [21]. Vertex prime labeling was also discussed in a paper by Deretsky |

4].
Seoud and Youssef discussed necessary and sufficient conditions for prime labeling [19].
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Many researchers have studied prime graphs and made significant contributions to the
field. In 1994, Fu and Huang proved that the path P, on n vertices is a prime graph [7].
In 1991, Deretsky et al. proved that the cycle C), on n vertices is a prime graph [4]. In
1998, S. Lee et al. showed that the Wheel W,, is a prime graph if and only if n is even
[12]. Around 1980 Roger Etringer conjectured that all trees have prime labeling, but this
conjecture remains unsettled to this day.

Definition 1.4. [20] Let G = (V, E) be a simple graph of order n. The graph G is called
Diophantine if there exists a bijective map f : V. — {1,2,...,n} such that (f(u), f(v)) | n
for all wv € E, where (f(u), f(v)) is the greatest common divisor of f(u) and f(v), this
bijective map f is referred to as a Diophantine labeling of G.

The notion of Diophantine labeling is clearly an extension of the concept of prime
labeling. The complete graph K, is Diophantine but not prime and K3 is not Diophantine.

Lemma 1.1. [8] If G and H are two graphs of n and m vertices respectively, then
a(Ge H) =na(H)

Lemma 1.2. [6] For every n > 2, the order of the mazimum independent set for the
normal product graph P, o P, is [%12 |V (Pyo Py)| =n?.

The independence numbers of circulant graphs satisfy the following relations.
Lemma 1.3. [6, 10] Let C,, be the cycle graph on n vertices, Cy(j) be the circulant graph

with one jump j < %, then,

(1) Vn > 3, a(C

13
(2) V even numberj <3,

o(Cal3) <
(3) ¥V odd number j < &, a(Cp(j)) = {

,_
|3
[

2

, if n is even
L%J — L%J , if n is odd

The Gauss’s Pi function 7(z) is defined as the number of primes not exceeding a non-
negative real number z [3, 15]. In modular arithmetic, for integers a,b, and m where
m > (0, we say that a is congruent to b modulo m if and only if m divides a — b, denoted as

= b (mod m) [3, 15]. The greatest common divisor of two integers a and b, denoted as
(a,b), is the largest positive integer that divides both a and b [3, 15]. If (a,b) = 1 we say
that a and b are relatively prime. (See [3]). In this paper, we follow the basic definitions
and notations of number theory as presented in [3] and [15].

|3

Theorem 1.1. (Ramanugjan’s theorem) [16, 18]
Let w(x) denote the number of primes not exceeding x.
Then w(z)—7(x/2) >1,2,3,4,5,..., if v >2,11,17,29,41,... , respectively.

Definition 1.5. [17, 20] For a given prime p, the p—adic valuation vy is a function from
N to N defined for all n € N, vy(n) :=t, where pt|n and p'™' {n, t > 0 and v,(0) := oco.
Moreover, a critical prime power number for n with respect to p which is the number
p”;(”) = cr(p,n) is the least prime power of a prime p which does not divide n, where
vp(n) == vp(n) + 1.

Theorem 1.2 (Necessary condition 1). [20] Suppose G is a simple graph with n vertices

and m edges. If a(G) < max %

J, where v,(n) = vp(n) + 1, then G is not a
1<p<n/2 | p

Diophantine graph.
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Theorem 1.3 (Necessary Condition 2). Let G be a graph with n vertices. When n is
an odd number, if o(G) < 5], then G is not a Diophantine graph.

Proof. Since the number of vertices of even labels in {1,2,...,n} is | 5|, where n is odd,

and a(G) < [ 5], at least two vertices of even labels, say = and y, must be adjacent, hence
(f(x), f(y)) is even, which does not divide n, so the graph G is not Diophantine. O

Theorem 1.4 (Necessary condition 3). Let G be a graph with n vertices and n is even.
Ifn=2 mod 6 orn=4 mod 6, a(G) < | 5], then G is not Diophantine.

Proof. 1t is a special case from Theorem 1.2, since 3 is the least prime power that does
not divide such n. O

The following three lemmas can be proven using mathematical induction.

Lemma 1.4. max{|ai], |az],...,|an]|} = |max{a1,a2,...,an}|, a; € Q" for 1 <i < n.
Lemma 1.5. Letn € N, 2 € QF for1 <i <m, then max{j, 2,..., -} = ST ]
Lemma 1.6. max % = | max % = % ,Vn>4, peP.
2<p<n/2 | pP" 2<p<n/2 | PP min {5V}
2<p<n/2

2. MAIN RESULTS
Lemma 2.1. For a positive integer n, 4/n < n if and only if n > 16.

Proof. If 4\/n < n, then, by squaring, 16n < n?. Therefore, for n # 0,16 < n. Conversely,
if n > 16, then, by multiplying by n # 0,n% > 16n. Consequently n > 4,/n. O

Lemma 2.2. Let a > 1. There exists at most one prime p > \/a such that p | a.

Proof. Let a > 1 be a composite number. If there exist two primes, say p; and p2, such
that p1,p2 > v/a, we will show that either p; 1 a or ps 1 a. Assume for contradiction
that both p; and po divide a, i.e., p1 | @ and ps | a. Since ged(py,p2) = 1 (because
they are prime numbers), we have p; - pa | a. Now, since p1,ps > 1/a, we can conclude
that p1 - p2 > /a - /a = a. However, this contradicts the assumption that p; - ps | a.
Therefore, if p1, p2 > v/a, it follows that p; { a or pa 1 a. In summary, we have proved that
if p1,p2 > v/a, then p1 {a or ps 1 a. O

Corollary 2.1. Let a > 1 be a composite number. If there exist two primes, say p1 and
p2, such that p1,pa > +/a, then either p1 ta or ps ta.

Lemma 2.3. For n > 4 The vertex independence number of the cubic power of the Path
graph B3 which is denoted by a(P2) is equal to [].

Proof. Using mathematical induction. ([l
Theorem 2.1. The complete graph K, is Diophantine if and only if n € {1,2,3,4,6}.

Proof. Let K, be a Diophantine graph. We aim to prove that n € {1,2,3,4,6}. Suppose,
by contrapositive, that n ¢ {1,2,3,4,6}. Our goal is to demonstrate that K, is not
a Diophantine graph. According to Ramanujan’s Theorem 1.1, we are guaranteed the
existence of at least two prime numbers, denoted as p; and ps by utilizing the equation
m(z) — m(5) > 2 for > 11. Furthermore, from corollary 2.1, we know that these primes
p1 and pe > /n , implying that p; f n or ps 1 n. By selecting two primes within the range
of n/4 and n/2, as per Ramanujan’s Theorem 1.1, we obtain further insight. If \/n < %,
then 16 < n (from Lemma 2.1) and n # 0. Additionally, according to Ramanujan 1.1,
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if n > 22, then m(n/2) — m(n/4) > 2, ensuring the existence of two primes p; and po
between n/4 and n/2, with 2py, 2ps < n for all n > 22. This implies that p1,p2 > § > /n
for all n > 22 from corollary 2.1. Consequently, we have p; { n or ps f n. Let p; be a
prime number such that p; { n and § < p1 < § < n, f(u) and f(v) be the labels of u
and v, respectively in V(K,), such that f(u) = p1 < n and f(v) = 2p; < n. Therefore,
(f(u), f(v)) = (p1,2p1) = p1 1 n for all n > 22. Hence, for all n > 22, we conclude that
K, is not a Diophantine graph. Finally, it is easy to show that K, is not a Diophantine
graph for n =5 and 7 < n < 21. Conversly, it is evident that the proof also works in the
other direction. O

Theorem 2.2. The wheel Wy, is a Diophantine graph for allm > 1.

Proof. Let V(W,,) = {uo;u1,ug,...,u,}, where ug is the central vertex for W,,. There
exists a labeling function f: V(W,,) — {1,2,3,...,n + 1}, which satisfies the condition
in Definition 1.4, the labeling function can be defined as follows:

fuo) =1, f(u1) =2, f(u2) =3,..., f(un—1) = n, f(un) =n+ 1 (Figure 1).

FIGURE 1. A Diophantine labeling for the wheel graph W,,, for all n > 1.

Since
2 if n is odd

1 if n is even

(Flun), Fun)) = (2 + 1) = {

which divides the order of W,,. The remaining labels are assigned as consecutive numbers
such that their greatest common divisor is equal to 1, hence, W, is a Diophantine graph
for all n > 1. O

Theorem 2.3. The double wheel W, ,, is a Diophantine graph if and only if n is even,
n > 4.

Proof. Let V(W ) = {uo, w1, ug, ..., un;v1,v2....,0,}, where ug is the central vertex for
Wyn. Case 1. Let n be odd. a(Wy, ) =n—1<n= L%J = V%‘J Therefore, from

the necessary condition 2 (Theorem 1.3), the graph W, ,, is not Diophantine.

Case 2. Let n be even and n > 4, then there exists a labeling function

[ V(Whn) — {1,2,3,...,|[V(Wy,)|}, which satisfies the condition in Definition 1.4,
the labeling function can be defined as follows:

f(UO) = 17f(u1) = 27f(u2) = 37"'7f(un71) = nvf(un) =n+1 f(vl) = n+27f(v2) =
n+3,..., f(on—1) = 2n, f(v,) = 2n + 1 (Figure 2).
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FIGURE 2. A Diophantine labeling for the double wheel graph W, ,, for n
is even and n > 4.

Since (f(u1), f(un)) = (2,n+1) =1||V(W, )| whenever n is even,

3ifn=4 mod®6

(f(v1), f(on)) = (n+2,2n+1) = {1ifn§é4 mod 6

In case of n Z4 mod 6 and n is even, then we have either, n =0 mod 6,i.e. n = 6k,

k € N,therefore, (2n + 1,n + 2) = (2(6k) + 1,6k +2) = (12k + 1,6k +2) = 1. Or,

n =2 mod 6, i.e., n =2+ 6k’ k' € N, therefore, (2n+1,n+2) = (5 + 12k',4 + 6k’) = 1.

In case of n =4 mod 6 and n is even, (2n +1,n+2) =3 | [V(W,, )| = 2n + 1, since

n =4 mod6, ie. n =4+6k", k" > 0. Thus, |[V(Wy,)| =2n+1=24+6k")+1=
8 + 12k" + 1 = 3(3 + 4K") = 3t, where t = 3 + 4k” € N, therefore (2n + 1,n + 2) =
3| |V(Wyn)|- The remaining labels are assigned as consecutive numbers such that their
greatest common divisor is equal to 1, hence, W,, ,, is a Diophantine graph for all n is an
even number, n > 4. ]

Theorem 2.4. The circulant graph Cy(2) with jump = 2 and n > 3 is Diophantine if and
only if n is even.
Proof. Suppose, by contrapositive, that n is odd. From lemma 1.3, Vn > 3, a(Cy(2)) =
|5]. Additionally, LMJ = |§]. Therefore a(Cy(2)) < LMJ Hence, from
the necessary condition 2 (Theorem 1.3), C,,(2) is not a Diophantine graph.
Conversely, let n be an even number. We want to prove that C,,(2) is a Diophantine graph.
Let V(Cp(2)) = {v1,v2,...,v,} and

E<Cn(2)) = E(CTZ) U {vivi+2(modn) S {17 2,3,... 7n}}

There exists a labeling function f: V(C,(2)) — {1,2,3,...,n}, which can be defined as
follows:

fo1) =1, f(vaip1) = 2i + 1, f(va) = 2i, for 1 < i < 252 f(v,) = n (Figure 3).
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Uy

L1

FIGURE 3. A Diophantine labeling for the circulant graph C),(2) for n is
even and n > 3.

Since n is even, (f(v2), f(vn)) = (2,n) = 2 | n, (f(v2), f(veit2)) = (2i,2i +2) = 2 | n,
1<i<(n—=2)/2, (f(vn—2), f(vn)) = (n—2,n) = 2 | n. The remaining labels are assigned
as consecutive numbers such that their greatest common divisor is equal to 1, hence C,,(2)
is a Diophantine graph. ]

Theorem 2.5. The cartesian product of the graph C3 x C,, is Diophantine if and only if
m s an even number, m > 3.

Proof. Suppose, by contrapositive, let m be odd and m > 3. In fact |V (C3 x Cp,)| = 3m,

and m is odd. Therefore, a(C3 x Cy,) = m < [3] = MJ, hence from the

necessary condition 2 (Theorem 1.3), the graph C5 x C, is not Diophantine for m > 3.
Conversely, let m be even, we want to prove that C3 x C,, is a Diophantine graph.

Let V(C5 x Cpy) = {w0, U1, U2y -+« y Um—13 V0, U1, V2, -« + y Upp— 15 W0, W1, W, - . ., Win—1 }, there
exists a labeling function f: V(C5 x Cy,) — {1,2,3,...,3m}, the labeling function can
be defined as follows: f(u;) = 3i+ 1, f(v;) = 3i+ 2, f(w;) =3i+ 3, for 0 <i <m—1
(Figure 4).

F1GURE 4. A Diophantine labeling for the graph C3 x C,,,, m is even and
m > 3.

Since (f(w;), f(wi+1)) = (3i+3,3i+6) =3 |3m,0<i<m—1,
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(FCu), f(wi)) = (3i + 1,31 + 3) = {; oo

The remaining labels are assigned as consecutive numbers such that their greatest common
divisor is equal to 1, hence, C'3 x (), is a Diophantine graph. O

Theorem 2.6. If the normal product graph P, o P, is Diophantine, then n € {1,2,3} or
n = 6k for k> 1.

Proof. Suppose, by contrapositive, n ¢ {1,2,3} and n # 6k for k > 1. We have two cases:
Case 1. If n is odd and n # 1,3, i.e. n =2k' + 1, ¥ > 1. From lemma 1.2, a(P, o P,) =
[212,n =2K'4+1, k' > 1, 50, a(Poyry10Por 1) = (K)>+2K +1, K > 1, |[V(P,0P,)| = n?,

lv(P2k/+1 OP2k1+1)’ — 4<k/)2 +4(k/) 4 17 k?/ > 1’ L‘V(PQk/+§OP2k/+1)‘J — 2(]€/>2 +2]€/,k/ > 1,

a(Pojrs1 0 Popri1) = (K)2 + 2K +1 < 2(K')? + 2k = ['V(P 2w/ +1°F %’H)'J K > 1, hence

from the necessary condition 2 (Theorem 1.3), the graph P, o P, is not Diophantine in

this case.

Case (2) : If n is even, n # 2 and n # 6k for any k ji.e. n %0 mod 6 , then we have two

subcases: Subcase (i) If n =2 mod 6 ,i.e. n =2+ 6.k" k" € N | it follows that :
a(Pyygrr © Poygrr) = [2"'76]“//]2 =1+ 6k" +9(k")%, k" € N. In this case, from lemma

1.6, where |V (P, o P,)| = n?, we have that

max 7(2 + 6k")” = 7(2 + 6k")? ' >1
2<p< (2+6k”)2 pU;(2+6k‘”)2 3 ’ - ’
SPET

since 3 is the least prime power that does not divide such n, [(QH?H)QJ = 12(k")?4-8k" +1,

11\2
k" > 1, therefore o Poyar © Payerr) = 9(K")2 +6k" +1 < 12k + 8k +1 = {%J =

{ (246K
2<p< CE | p(aron)?
based on the necessary conditions 1 and 3 (Theorems 1.2 and 1.4). Likewise subcase (ii)
If n = 4 mod 6, we similarly conclude from the necessary conditions 1 and 3 (Theorems
1.2 and 1.4) that P, o P, is not a Diophantine graph also in this case. We proved that for
n ¢ {1,2,3} and n # 6k, k > 1, then P, o P, is not a Diophantine graph. O
Remark 2.1. [t is clear to see that the graph P, o P, is Diophantine if n € {1,2,3} and
n = 6k, for k=1 and 2.

max J , hence, we have that P, o P, is not a Diophantine graph,

Conjecture 2.7. The normal product graph Py o Pgy for k > 3 is Diophantine.

Theorem 2.8. If G and H are two graphs with n and m vertices respectively and o (H) <
% such that n > 3 is odd and m > 2 is even, then the corona G © H is not a Diophantine

graph. Moreover, this upper bound %5 of oo (H) is the best possible.

Proof. Since a(G® H) = na(H) (lemma 1.1), V(GO H) | =n(l4+m), a«(GOH) =
na(H) < n'g, [@J = LWJ:L%J + n%, therefore o(GOH) < n§ <

|2] + n = LMJ, from the necessary condition 2 (Theorem 1.3), G ® H is not

a Diophantine graph. Moreover, % is the best possible upper bound to guarantee that

G ® H is a non -Diophantine graph. Since o (G ® H) = na (H) < [%]| + n%, dividing
both sides of the inequality by n > 3 gives a(H) < % L%J + 4. Since % L%J <1, we
have a (H) < 3. If a(H) = %5 + 1, then we cannot judge the corona graph G ® H is not
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Diophantine. However, there are cases where this theorem does not apply. If m > 2 is
even, a (H) =5 4+ 1, and n > 3 is odd, then we cannot apply this theorem (See example
2.1).

Example 2.1. For instance, the graph TS5 ® S4 shown in Figure 5 is Diophantine.

FIGURE 5. A Diophantine labeling for the graph 7S5 ® S.

We cannot guarantee the validity of the theorem in the cases: n and m are even, n and
m are odd, and n is even and m is odd. The following graphs in example 2.2 ensures the
last cases respectively.

Example 2.2. The following graphs Py ® P, P3 ® K3 and P> ® C3 respectively are
Diophantine (Figure 6).

1 2 3 4 1 3 12 4 5
5 6 7 8 10 N1 12
5 10 7 2 7

FIGURE 6. Diophantine labeling graphs.

O

Corollary 2.2. There are several families of graphs satisfying the conditions of theorem
[2.8] which are not Diophantine, such as the following below:

(TS, o K, 2)TS,6Knm (3)P, 0P, (4)H:oCy

(B)TS], ® Py, (6)K, ® Cp, (NH; © K,, 8)H} ® Kpm

(9TS, ®Cn (10)K,® P,  (11)H: G P, (12)H;® K,

Where H}; is the flower graph.

Theorem 2.9. The double fan graph g, = p, + Kz is Diophantine for all n > 3.

Proof. |V (gn)] = n+ 2. Let V(gn) = {v1,v2;u1,u2,...,uy}. In fact, for all n > 3,
there exists a labeling function f: V (g,) — {1,2, ..., n+ 2} which we can defined it as
follows:

fv)=1, f(va)=n+2, f(u;))=1i+1, 1<i<n (Figure 7).

This labeling guarantees that each two adjacent labeled vertices in the graph g, have

greatest common divisor which divides the order of g,, hence, the graph g, is Diophantine.
O
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u "

L]
FIGURE 7. A Diophantine labeling for the double fan graph for all n > 3.

Theorem 2.10. The square of the path graph P2 is Diophantine if and only if
n € {1,3,5,7} orn is even.

Proof. Suppose, by contrapositive, that n ¢ {1,3,5,7} and n is odd, we have three cases:
n=1mod6 or n=3 mod 6 or n=>5 mod 6.
Case 1: If n # 1, Tand n = 1 mod 6, i.e. n = 1+ 6k, where k > 2, we know that

o (P) = [§] and |V (P7)] = n, therefore, a (PP ) = [F5%] = 2k + 1, [V (P )| =

) 2
1+ 6k for k > 2. Thus, « (P12+6k) =2k+1<3k= LGI"’Q‘HJ = MV(P;*G’“)’J , for k> 2,

hence, from the necessary condition 2 (Theorem 1.3), we conclude that the graph P12+6k
is not Diophantine for k£ > 2.

Similarly, in case 2, when n = 3 mod 6, and n # 3, and in case 3, when n = 5 mod 6
and n # 5, from the last three cases, we can show that the graph P? is not Diophantine.

Conversely, it is obvious that the graph P2 is Diophantine for n € {1,3,5,7}, and also
for n is even, n > 2, as follows : let V' (P,%) = {v1,v9,...,v,} . There exists a labeling
function f : V (Pﬁ) — {1,2,3,...,n}, which can be defined as follows: f (v;) = i, for
1 <i <n (Figure 8).

vy ) V3 Va Vg Ve Vp—2 Vp-a L%

FIGURE 8. A Diophantine labeling of the graph P? for n is even, n > 2.

The labels (f(vi), f(viye)) = (i,i +2) = 2 | n for i even and equal to 1 | n otherwise.
Similarly, (f(vn—2),f(vn)) = (n —2,n) = 2 | n. The remaining labels are assigned as
consecutive numbers such that their greatest common divisor is equal to 1, hence, P? is
a Diophantine graph.

O
Corollary 2.3. The graph P? is labeled isomorphic to the path graph P, (2).

Figure 9 shows P¢ is labeled isomorphic to Ps (2).

1 6
2 5 1 2 3 4 5 5}
3
4

FIGURE 9. A Diophantine labeling for P2 and Ps(2).
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Corollary 2.4. The graph C? is labeled isomorphic to the circulant graph C, (2).
It follows from Theorem 2.4 that the square graph C? is a Diophantine if and only if n
is even.

Corollary 2.5. If the diameter in a graph G is k, then the k" power of the cycle graph
C, will be a complete graph K,, i.e., C* = K, s labeled isomorphic, for 1 < k < L%J,
hence, the graph CF is Diophantine if and only if n € {1,2,3,4,6} and 1 < k < L%J

Proof. Consequently, since C¥ = K, , it follows from theorem 2.1 that C* is a Diophantine
graph if and only if n € {1,2,3,4,6} and 1 <k < L%J
O

Theorem 2.11. For n > 4, the cube of the path graph P2 is Diophantine if and only if
n € {4,5,8,10,14} or n =0 (mod 6).

Proof. Suppose, by contrapositive, for n >4, n ¢ {4,5,8,10,14} and n # 0 (mod 6), then
we have the following cases:
Case 1: If n > 5 is odd, then we have n = 1 (mod 6), i.e., n = 1 + 6k for £ > 1. From

lemma (2:3), a(P) = [F]=THP]=T} + 4] for k= 1. [ B =[] = | 59%) =k

3
for k > 1, therefore, (P}, ;) = [1+3k] < 3k = LW(P;%’“)'J for k > 1, hence, from
the necessary condition 2 (Theorem 1.3), we have that the graph P2 in this case is not
Diophantine. Similarly, the other cases, when n = 3 (mod 6) and n =5 (mod 6).
Case 2: If niseven and n ¢ {4,8,10, 14} and n # 0 (mod 6), then we have: n = 2 (mod 6),
ie, n=2+6.L for L > 3. From lemma 2.3 and lemma 1.6, «(P2) = [2] = [#£E] =

% + %L} for L > 3, since 3 is the least prime power that does not divide such n, so

Max| <p<n /2 {V&MJ = L%J = L@J = L% + 2LJ = 2L for L > 3, therefore, oz(P32+6L) =
p

[% + %L} < 2L = L% + 2LJ = L%J = maXicpcn/2 LJV&”)J for L > 3, hence, from the

necessary conditions 1 and 3 (Theorems 1.2 and 1.4), we have that the graph P? in this
case is not Diophantine. Similarly, in the case, when n = 4 (mod 6). From the last five
cases we proved the first direction of the theorem.

Conversely, it is obvious that P32 is Diophantine for n € {4,5,8,10,14}. Now, consider
n =0 mod 6, let V (Pf;’) = {v1,v9,...,v,} be the vertices of P2, where n = 6k for k > 1.
There exists a labeling function f : V (P,:f) — {1,2,3,...,n}, which can be defined as
follows:

f(vi) =1, for 1 <i <n (Figure 10).

FIGURE 10. A Diophantine labeling for the graph P32, when n = 0 mod 6.
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Since
. 1 ifi£0 mod?2

vi), f (s =(4,1+2) = o
(P f ) = (i 2) =, 07 00

if i£Z0 mod 3
3 ifi=0 mod3
Which divides the order of P3, hence, the graph P3, n = 6.k for k > 1 is Diophantine. [J
Remark 2.2. Forn = 1,2 and 3 (it’s obvious that the graph P3 is Diophantine).

(f (vi), f (vigs)) = (4,0 +3) =

3. CONCLUSION

This manuscript examines various graph families, including complete graphs, wheel
graphs, circulant graphs, and Cartesian products, to determine their Diophantine nature
and establishing necessary and sufficient conditions for Diophantine labeling. We extend
the concept of prime labeling, concluding that all prime graphs are also Diophantine.
Furthermore, we proved that complete graphs K, are Diophantine for specific values of n,
while wheel graphs W,, are Diophantine for all n > 1. Additionally, we identify conditions
for more complex structures, such as normal product graphs and cubes of path graphs,
exhibit Diophantine properties. For our future research, we may focus on generalizing
these conditions and identifying new Diophantine graph families.
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