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ON SOME FAMILIES OF LINEAR DIOPHANTINE GRAPHS

O. M. SALAMA1,∗, M.A. SEOUD1, M. ANWAR1, A. ELSONBATY1, §

Abstract. Diophantine labeling of graphs is an extension of the prime labeling of
graphs. In this manuscript, we introduce some necessary conditions for determining
whether a given graph admits Diophantine labeling or not, and if yes, we will find such a
Diophantine labeling. We also study specific families of graphs, including the Complete
graphs Kn, Wheel graphs Wn and Wn,n, Circulant graphs Cn(j), Path graphs Pn(j),
Cartesian product graphs C3 × Cm, Normal Product graphs Pn ◦ Pn, Corona graphs
G⊙H, Double Fan graphs gn = Pn +K2, Power graphs P 2

n and P 3
n , to ascertain their

Diophantine nature.

Keywords: Graph labeling, Prime labeling, Diophantine labeling, Families of Diophan-
tine graphs.
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1. Introduction

In this work, we deal with finite, simple and undirected graph G = (V,E), where
V = V (G) denotes the vertex set and E = E(G) denotes the edge set. |V | = n vertices
and |E| = m edges. The term |V | is called the order of the graph G, while |E| is called the
size of the graph G. A set of vertices S ⊂ V (G) is said to be independent if no two vertices
u and v in S are adjacent in G. The maximum number of vertices of an independent set in
G is called the vertex independence number of G or simply independence number, usually
denoted by α(G) [1, 6, 9, 11]. The Cartesian product G1 ×G2 of G1 with n vertices and
G2 with m vertices is the graph with vertex set V (G1)× V (G2) and edge set

{(u1, v1)(u2, v2) : (u1 = u2 and v1v2 ∈ E(G2)) or (v1 = v2 and u1u2 ∈ E(G1))},
this means that we have n copies of G2 and m copies of G1 [8, 13]. The corona graph
G1 ⊙ G2 of graphs G1 and G2 obtained by taking one copy of G1(which has n1 vertices)
and n1 copies of G2(which has n2 vertices), and then joining the ith vertex of G1 ̸= 0 to
every vertex in the ith copy of G2, G1 ⊙G2 has n1.(n2 + 1) [8, 13].
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Definition 1.1. The normal product G1 ◦G2 of two graphs G1 and G2 is the graph with
vertex-set V (G1 ◦G2) = V (G1)× V (G2), where

V (G1) = {u1, u1, . . . , un}, V (G2) = {v1, v2, . . . , vm},
and (x1, y1), (x2, y2) ∈ V (G1)× V (G2) are adjacent in G1 ◦G2 if and only if

(1) x1 = x2 and y1 is adjacent to y2 in G2

(2) y1 = y2 and x1 is adjacent to x2 in G1

(3) x1 is adjacent to x2 in G1 and y1 is adjacent to y2 in G2.

The kth power of a graph G, denoted as Gk, is a graph with the same vertex set as
G, but where two vertices are adjacent if their distance in G is at most k [1]. Powers of
graphs are referred to using terminology similar to that of exponentiation of numbers :
G2 is called the square of G, G3 is called the cube of G, etc. The kth power of a graph
G contains all the original edges of this graph G [1]. The Diameter of a graph G is the
maximum distance between pairs of vertices in this graph G [1, 2, 11, 22]. A circulant
graph Cn(j) of order n, for a fixed j is a super graph of the cycle graph Cn, defined as
follows:

V (Cn(j)) = V (Cn) = {v1, v2, . . . , vn},
and edge set

E(Cn(j)) = E(Cn) ∪ {vivi+j(modn) : i ∈ {1, 2, 3, . . . , n}}, j ≤ n

2

[10]. A graph Pn(j) of order n, for a fixed j is a super graph of the path graph Pn,
defined as follows:

V (Pn(j)) = V (Pn) = {v1, v2, . . . , vn},
and edge set

E(Pn(j)) = E(Pn) ∪ {vivi+j(modn) : i ∈ {1, 2, 3, . . . , n}}, j ≤ n

2

[10]. The wheel graph Wn, denoted as Cn +K1 has n+ 1 vertices [5, 8].

Definition 1.2. [5, 8, 23]. The double wheel graph is a graph consisting of two cycles of
vertices connected to a common center (hub). For every n ≥ 4, |V (Wn,n)| = 2n+ 1 and

α(Wn,n) =

{
n if n even

n− 1 if n odd

A triangular snake TS′
n is obtained from a path Pn = {u1, u2, u3, . . . , un} by joining ui

and ui+1 to a new vertex vi, where 1 ≤ i ≤ n − 1, and joining vi to vi+1, 1 ≤ i ≤ n − 2,
TS′

n has 2n− 1 vertices [6].
The terminology and notations in this manuscript follow from Harary [11] and Allan

Bickel [1]. Graph labeling involves assigning real values to vertices and edges while satis-
fying certain conditions. The Literature of this field which began with the seminal paper
of Rosa [14], includes thousands of papers covering hundred of methods of labelings.

Definition 1.3. [21] Let G = (V,E) be a simple graph of order n. The graph G is called a
prime graph if there exists a bijective map f : V −→ {1, 2, . . . , n} such that (f(u), f(v)) = 1
for all uv ∈ E .i.e, f(u) and f(v) are relatively prime, this bijective map f is referred to
as a prime labeling of G.

The concept of prime labeling was introduced by Roger Entringer and discussed in a
paper by Tout [21]. Vertex prime labeling was also discussed in a paper by Deretsky [4].
Seoud and Youssef discussed necessary and sufficient conditions for prime labeling [19].



2676 TWMS J. APP. ENG. MATH. V.15, N.11, 2025

Many researchers have studied prime graphs and made significant contributions to the
field. In 1994, Fu and Huang proved that the path Pn on n vertices is a prime graph [7].
In 1991, Deretsky et al. proved that the cycle Cn on n vertices is a prime graph [4]. In
1998, S. Lee et al. showed that the Wheel Wn is a prime graph if and only if n is even
[12]. Around 1980 Roger Etringer conjectured that all trees have prime labeling, but this
conjecture remains unsettled to this day.

Definition 1.4. [20] Let G = (V,E) be a simple graph of order n. The graph G is called
Diophantine if there exists a bijective map f : V −→ {1, 2, . . . , n} such that (f(u), f(v)) | n
for all uv ∈ E, where (f(u), f(v)) is the greatest common divisor of f(u) and f(v), this
bijective map f is referred to as a Diophantine labeling of G.

The notion of Diophantine labeling is clearly an extension of the concept of prime
labeling. The complete graph K4 is Diophantine but not prime and K5 is not Diophantine.

Lemma 1.1. [8] If G and H are two graphs of n and m vertices respectively, then

α(G⊙H) = nα(H)

Lemma 1.2. [6] For every n ≥ 2, the order of the maximum independent set for the

normal product graph Pn ◦ Pn is
⌈
n
2

⌉2
, |V (Pn ◦ Pn)| = n2.

The independence numbers of circulant graphs satisfy the following relations.

Lemma 1.3. [6, 10] Let Cn be the cycle graph on n vertices, Cn(j) be the circulant graph
with one jump j ≤ n

2 , then,

(1) ∀n ≥ 3, α(Cn(2)) =
⌊
n
3

⌋
,

(2) ∀ even number j ≤ n
2 , α(Cn(j)) <

⌊
n
2

⌋
,

(3) ∀ odd number j ≤ n
2 , α(Cn(j)) =

{
n
2 , if n is even⌊
n
2

⌋
−
⌊
j
2

⌋
, if n is odd

The Gauss’s Pi function π(x) is defined as the number of primes not exceeding a non-
negative real number x [3, 15]. In modular arithmetic, for integers a,b, and m where
m > 0, we say that a is congruent to b modulo m if and only if m divides a− b, denoted as
a ≡ b (mod m) [3, 15]. The greatest common divisor of two integers a and b, denoted as
(a, b), is the largest positive integer that divides both a and b [3, 15]. If (a, b) = 1 we say
that a and b are relatively prime. (See [3]). In this paper, we follow the basic definitions
and notations of number theory as presented in [3] and [15].

Theorem 1.1. (Ramanujan’s theorem) [16, 18]
Let π(x) denote the number of primes not exceeding x.

Then π(x)− π(x/2) ≥ 1, 2, 3, 4, 5, . . . , if x ≥ 2, 11, 17, 29, 41, . . . , respectively.

Definition 1.5. [17, 20] For a given prime p, the p−adic valuation νp is a function from
N to N defined for all n ∈ N, νp(n) := t, where pt|n and pt+1 ∤ n, t > 0 and νp(0) := ∞.
Moreover, a critical prime power number for n with respect to p which is the number
pν

′
p(n) = cr(p, n) is the least prime power of a prime p which does not divide n, where

ν ′p(n) := νp(n) + 1.

Theorem 1.2 (Necessary condition 1). [20] Suppose G is a simple graph with n vertices

and m edges. If α(G) < max
1<p<n/2

⌊
n

pν
′
p(n)

⌋
, where v′p(n) = νp(n) + 1, then G is not a

Diophantine graph.
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Theorem 1.3 (Necessary Condition 2). Let G be a graph with n vertices. When n is
an odd number, if α(G) < ⌊n2 ⌋, then G is not a Diophantine graph.

Proof. Since the number of vertices of even labels in {1, 2, . . . , n} is ⌊n2 ⌋, where n is odd,
and α(G) < ⌊n2 ⌋, at least two vertices of even labels, say x and y, must be adjacent, hence
(f(x), f(y)) is even, which does not divide n, so the graph G is not Diophantine. □

Theorem 1.4 (Necessary condition 3). Let G be a graph with n vertices and n is even.
If n ≡ 2 mod 6 or n ≡ 4 mod 6, α(G) < ⌊n3 ⌋, then G is not Diophantine.

Proof. It is a special case from Theorem 1.2, since 3 is the least prime power that does
not divide such n. □

The following three lemmas can be proven using mathematical induction.

Lemma 1.4. max{⌊a1⌋, ⌊a2⌋, . . . , ⌊an⌋} = ⌊max{a1, a2, . . . , an}⌋, ai ∈ Q+ for 1 ≤ i ≤ n.

Lemma 1.5. Let n ∈ N, n
ai

∈ Q+ for 1 ≤ i ≤ m, then max{ n
a1
, n
a2
, . . . , n

am
} = n

min{a1,a2,...,am} .

Lemma 1.6. max
2≤p≤n/2

⌊
n

pν
′
p(n)

⌋
=

⌊
max

2≤p≤n/2

{
n

pν
′
p(n)

}⌋
=

⌊
n

min
2≤p≤n/2

{
pν

′
p(n)

}
⌋
, ∀n ≥ 4, p ∈ P.

2. Main Results

Lemma 2.1. For a positive integer n, 4
√
n ≤ n if and only if n ≥ 16.

Proof. If 4
√
n ≤ n, then, by squaring, 16n ≤ n2. Therefore, for n ̸= 0, 16 ≤ n. Conversely,

if n ≥ 16, then, by multiplying by n ̸= 0, n2 ≥ 16n. Consequently n ≥ 4
√
n. □

Lemma 2.2. Let a > 1. There exists at most one prime p >
√
a such that p | a.

Proof. Let a > 1 be a composite number. If there exist two primes, say p1 and p2, such
that p1, p2 >

√
a, we will show that either p1 ∤ a or p2 ∤ a. Assume for contradiction

that both p1 and p2 divide a, i.e., p1 | a and p2 | a. Since gcd(p1, p2) = 1 (because
they are prime numbers), we have p1 · p2 | a. Now, since p1, p2 >

√
a, we can conclude

that p1 · p2 >
√
a ·

√
a = a. However, this contradicts the assumption that p1 · p2 | a.

Therefore, if p1, p2 >
√
a, it follows that p1 ∤ a or p2 ∤ a. In summary, we have proved that

if p1, p2 >
√
a, then p1 ∤ a or p2 ∤ a. □

Corollary 2.1. Let a > 1 be a composite number. If there exist two primes, say p1 and
p2, such that p1, p2 >

√
a, then either p1 ∤ a or p2 ∤ a.

Lemma 2.3. For n ≥ 4 The vertex independence number of the cubic power of the Path
graph P 3

n which is denoted by α(P 3
n) is equal to

⌈
n
4

⌉
.

Proof. Using mathematical induction. □

Theorem 2.1. The complete graph Kn is Diophantine if and only if n ∈ {1, 2, 3, 4, 6}.

Proof. Let Kn be a Diophantine graph. We aim to prove that n ∈ {1, 2, 3, 4, 6}. Suppose,
by contrapositive, that n /∈ {1, 2, 3, 4, 6}. Our goal is to demonstrate that Kn is not
a Diophantine graph. According to Ramanujan’s Theorem 1.1, we are guaranteed the
existence of at least two prime numbers, denoted as p1 and p2 by utilizing the equation
π(x)− π(x2 ) ≥ 2 for x ≥ 11. Furthermore, from corollary 2.1, we know that these primes
p1 and p2 >

√
n , implying that p1 ∤ n or p2 ∤ n. By selecting two primes within the range

of n/4 and n/2, as per Ramanujan’s Theorem 1.1, we obtain further insight. If
√
n < n

4 ,
then 16 < n (from Lemma 2.1) and n ̸= 0. Additionally, according to Ramanujan 1.1,
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if n ≥ 22, then π(n/2) − π(n/4) ≥ 2, ensuring the existence of two primes p1 and p2
between n/4 and n/2, with 2p1, 2p2 < n for all n ≥ 22. This implies that p1, p2 >

n
4 >

√
n

for all n ≥ 22 from corollary 2.1. Consequently, we have p1 ∤ n or p2 ∤ n. Let p1 be a
prime number such that p1 ∤ n and n

4 < p1 < n
2 < n, f(u) and f(v) be the labels of u

and v, respectively in V (Kn), such that f(u) = p1 < n and f(v) = 2p1 < n. Therefore,
(f(u), f(v)) = (p1, 2p1) = p1 ∤ n for all n ≥ 22. Hence, for all n ≥ 22, we conclude that
Kn is not a Diophantine graph. Finally, it is easy to show that Kn is not a Diophantine
graph for n = 5 and 7 ≤ n ≤ 21. Conversly, it is evident that the proof also works in the
other direction. □

Theorem 2.2. The wheel Wn is a Diophantine graph for all n > 1.

Proof. Let V (Wn) = {u0;u1, u2, . . . , un}, where u0 is the central vertex for Wn. There
exists a labeling function f : V (Wn) −→ {1, 2, 3, . . . , n+ 1}, which satisfies the condition
in Definition 1.4, the labeling function can be defined as follows:
f(u0) = 1, f(u1) = 2, f(u2) = 3, . . . , f(un−1) = n, f(un) = n+ 1 (Figure 1).

Figure 1. A Diophantine labeling for the wheel graph Wn, for all n > 1.

Since

(f(u1), f(un)) = (2, n+ 1) =

{
2 if n is odd

1 if n is even
,

which divides the order of Wn. The remaining labels are assigned as consecutive numbers
such that their greatest common divisor is equal to 1, hence, Wn is a Diophantine graph
for all n > 1. □

Theorem 2.3. The double wheel Wn,n is a Diophantine graph if and only if n is even,
n ≥ 4.

Proof. Let V (Wn,n) = {u0, u1, u2, . . . , un; v1, v2. . . . , vn}, where u0 is the central vertex for

Wn,n. Case 1. Let n be odd. α(Wn,n) = n − 1 < n =
⌊
2n+1

2

⌋
=

⌊
|V |
2

⌋
. Therefore, from

the necessary condition 2 (Theorem 1.3), the graph Wn,n is not Diophantine.
Case 2. Let n be even and n ≥ 4, then there exists a labeling function
f : V (Wn,n) −→ {1, 2, 3, . . . , |V (Wn,n)|}, which satisfies the condition in Definition 1.4,
the labeling function can be defined as follows:
f(u0) = 1, f(u1) = 2, f(u2) = 3, . . . , f(un−1) = n, f(un) = n + 1; f(v1) = n + 2, f(v2) =
n+ 3, . . . , f(vn−1) = 2n, f(vn) = 2n+ 1 (Figure 2).
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Figure 2. A Diophantine labeling for the double wheel graph Wn,n for n
is even and n ≥ 4.

Since (f(u1), f(un)) = (2, n+ 1) = 1 | |V (Wn,n)| whenever n is even,

(f(v1), f(vn)) = (n+ 2, 2n+ 1) =

{
3 if n ≡ 4 mod 6

1 if n ̸≡ 4 mod 6
.

In case of n ̸≡ 4 mod 6 and n is even, then we have either, n ≡ 0 mod 6,i.e. n = 6k,
k ∈ N,therefore, (2n+ 1, n+ 2) = (2(6k) + 1, 6k + 2) = (12k + 1, 6k + 2) = 1. Or,
n ≡ 2 mod 6, i.e., n = 2+ 6k′, k′ ∈ N, therefore, (2n+ 1, n+ 2) = (5 + 12k′, 4 + 6k′) = 1.

In case of n ≡ 4 mod 6 and n is even, (2n+ 1, n+ 2) = 3 | |V (Wn,n)| = 2n+ 1, since
n ≡ 4 mod 6, i.e. n = 4 + 6k′′, k′′ ≥ 0. Thus, |V (Wn,n)| = 2n + 1 = 2(4 + 6k′′) + 1 =
8 + 12k′′ + 1 = 3(3 + 4k′′) = 3t, where t = 3 + 4k′′ ∈ N, therefore (2n + 1, n + 2) =
3 | |V (Wn,n)|. The remaining labels are assigned as consecutive numbers such that their
greatest common divisor is equal to 1, hence, Wn,n is a Diophantine graph for all n is an
even number, n ≥ 4. □

Theorem 2.4. The circulant graph Cn(2) with jump = 2 and n ≥ 3 is Diophantine if and
only if n is even.

Proof. Suppose, by contrapositive, that n is odd. From lemma 1.3, ∀n ≥ 3, α(Cn(2)) =

⌊n3 ⌋. Additionally,
⌊
|V (Cn(2))|

2

⌋
= ⌊n2 ⌋. Therefore α(Cn(2)) <

⌊
|V (Cn(2))|

2

⌋
. Hence, from

the necessary condition 2 (Theorem 1.3), Cn(2) is not a Diophantine graph.
Conversely, let n be an even number. We want to prove that Cn(2) is a Diophantine graph.
Let V (Cn(2)) = {v1, v2, . . . , vn} and

E(Cn(2)) = E(Cn) ∪ {vivi+2(modn) : i ∈ {1, 2, 3, . . . , n}}.
There exists a labeling function f : V (Cn(2)) −→ {1, 2, 3, . . . , n}, which can be defined as
follows:
f(v1) = 1, f(v2i+1) = 2i+ 1, f(v2i) = 2i, for 1 ≤ i ≤ n−2

2 , f(vn) = n (Figure 3).
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Figure 3. A Diophantine labeling for the circulant graph Cn(2) for n is
even and n ≥ 3.

Since n is even, (f(v2), f(vn)) = (2, n) = 2 | n, (f(v2i), f(v2i+2)) = (2i, 2i + 2) = 2 | n,
1 ≤ i ≤ (n− 2)/2, (f(vn−2), f(vn)) = (n− 2, n) = 2 | n. The remaining labels are assigned
as consecutive numbers such that their greatest common divisor is equal to 1, hence Cn(2)
is a Diophantine graph. □

Theorem 2.5. The cartesian product of the graph C3 ×Cm is Diophantine if and only if
m is an even number, m ≥ 3.

Proof. Suppose, by contrapositive, let m be odd and m ≥ 3. In fact |V (C3 × Cm)| = 3m,

and m is odd. Therefore, α(C3 × Cm) = m <
⌊
3m
2

⌋
=

⌊
|V (C3×Cm)|

2

⌋
, hence from the

necessary condition 2 (Theorem 1.3), the graph C3 × Cm is not Diophantine for m ≥ 3.
Conversely, let m be even, we want to prove that C3 × Cm is a Diophantine graph.
Let V (C3 × Cm) = {u0, u1, u2, . . . , um−1; v0, v1, v2, . . . , vm−1;w0, w1, w2, . . . , wm−1}, there
exists a labeling function f : V (C3 × Cm) −→ {1, 2, 3, . . . , 3m}, the labeling function can
be defined as follows: f(ui) = 3i + 1, f(vi) = 3i + 2, f(wi) = 3i + 3, for 0 ≤ i ≤ m − 1
(Figure 4).

Figure 4. A Diophantine labeling for the graph C3 × Cm, m is even and
m ≥ 3.

Since (f(wi), f(wi+1)) = (3i+ 3, 3i+ 6) = 3 | 3m, 0 ≤ i ≤ m− 1,
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(f(ui), f(wi)) = (3i+ 1, 3i+ 3) =

{
1 if i even

2 if i odd.

The remaining labels are assigned as consecutive numbers such that their greatest common
divisor is equal to 1, hence, C3 × Cm is a Diophantine graph. □

Theorem 2.6. If the normal product graph Pn ◦ Pn is Diophantine, then n ∈ {1, 2, 3} or
n = 6k for k ≥ 1.

Proof. Suppose, by contrapositive, n /∈ {1, 2, 3} and n ̸= 6k for k ≥ 1. We have two cases:
Case 1. If n is odd and n ̸= 1, 3, i.e. n = 2k′ + 1, k′ > 1. From lemma 1.2, α(Pn ◦ Pn) =
⌈n2 ⌉

2, n = 2k′+1, k′ > 1, so, α(P2k′+1◦P2k′+1) = (k′)2+2k′+1, k′ > 1, |V (Pn◦Pn)| = n2,

|V (P2k′+1 ◦ P2k′+1)| = 4(k′)2 + 4(k′) + 1, k′ > 1,
⌊
|V (P2k′+1◦P2k′+1)|

2

⌋
= 2(k′)2 + 2k′, k′ > 1,

α(P2k′+1 ◦ P2k′+1) = (k′)2 + 2k′ + 1 < 2(k′)2 + 2k′ =
⌊
|V (P2k′+1◦P2k′+1)|

2

⌋
, k′ > 1, hence

from the necessary condition 2 (Theorem 1.3), the graph Pn ◦ Pn is not Diophantine in
this case.
Case (2) : If n is even, n ̸= 2 and n ̸= 6k for any k ,i.e. n ̸≡ 0 mod 6 , then we have two
subcases: Subcase (i) If n ≡ 2 mod 6 , i.e. n = 2 + 6.k′′, k′′ ∈ N , it follows that :

α(P2+6k′′ ◦ P2+6k′′) = ⌈2+6k′′

2 ⌉2 = 1 + 6k′′ + 9(k′′)2, k′′ ∈ N. In this case, from lemma

1.6, where |V (Pn ◦ Pn)| = n2, we have that

max
2≤p≤ (2+6k′′)2

2

⌊
(2 + 6k′′)2

pv
′
p(2+6k′′)2

⌋
=

⌊
(2 + 6k′′)2

3

⌋
, k′′ ≥ 1,

since 3 is the least prime power that does not divide such n,
⌊
(2+6k′′)2

3

⌋
= 12(k′′)2+8k′′+1,

k′′ ≥ 1, therefore α(P2+6k′′ ◦P2+6k′′) = 9(k′′)2+6k′′+1 < 12k′′2+8k′′+1 =
⌊
(2+6k′′)2

3

⌋
=

max
2≤p≤ (2+6k′′)2

2

⌊
(2+6k′′)2

pν
′
p(2+6k′′)2

⌋
, hence, we have that Pn ◦ Pn is not a Diophantine graph,

based on the necessary conditions 1 and 3 (Theorems 1.2 and 1.4). Likewise subcase (ii)
If n ≡ 4 mod 6, we similarly conclude from the necessary conditions 1 and 3 (Theorems
1.2 and 1.4) that Pn ◦Pn is not a Diophantine graph also in this case. We proved that for
n /∈ {1, 2, 3} and n ̸= 6k, k ≥ 1, then Pn ◦ Pn is not a Diophantine graph. □
Remark 2.1. It is clear to see that the graph Pn ◦ Pn is Diophantine if n ∈ {1, 2, 3} and
n = 6k, for k = 1 and 2.

Conjecture 2.7. The normal product graph P6k ◦ P6k for k ≥ 3 is Diophantine.

Theorem 2.8. If G and H are two graphs with n and m vertices respectively and α (H) ≤
m
2 such that n ≥ 3 is odd and m ≥ 2 is even, then the corona G⊙H is not a Diophantine
graph. Moreover, this upper bound m

2 of α (H) is the best possible.

Proof. Since α (G⊙H) = nα (H) (lemma 1.1), |V (G⊙H) | = n (1 +m), α (G⊙H) =

nα (H) ≤ nm
2 ,

⌊
|V (G⊙H)|

2

⌋
=

⌊
n(m+1)

2

⌋
=
⌊
n
2

⌋
+ nm

2 , therefore α (G⊙H) ≤ nm
2 <⌊

n
2

⌋
+ nm

2 =
⌊
|V (G⊙H)|

2

⌋
, from the necessary condition 2 (Theorem 1.3), G ⊙ H is not

a Diophantine graph. Moreover, m
2 is the best possible upper bound to guarantee that

G ⊙ H is a non -Diophantine graph. Since α (G⊙H) = nα (H) <
⌊
n
2

⌋
+ nm

2 , dividing

both sides of the inequality by n ≥ 3 gives α (H) < 1
n

⌊
n
2

⌋
+ m

2 . Since 1
n

⌊
n
2

⌋
< 1, we

have α (H) ≤ m
2 . If α(H) = m

2 + 1, then we cannot judge the corona graph G⊙H is not
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Diophantine. However, there are cases where this theorem does not apply. If m ≥ 2 is
even, α (H) = m

2 + 1, and n ≥ 3 is odd, then we cannot apply this theorem (See example
2.1).

Example 2.1. For instance, the graph TS′
3 ⊙ S4 shown in Figure 5 is Diophantine.

Figure 5. A Diophantine labeling for the graph TS′
3 ⊙ S4.

We cannot guarantee the validity of the theorem in the cases: n and m are even, n and
m are odd, and n is even and m is odd. The following graphs in example 2.2 ensures the
last cases respectively.

Example 2.2. The following graphs P4 ⊙ P2, P3 ⊙K3 and P2 ⊙ C3 respectively are
Diophantine (Figure 6).

Figure 6. Diophantine labeling graphs.

□

Corollary 2.2. There are several families of graphs satisfying the conditions of theorem
[2.8] which are not Diophantine, such as the following below:
(1)TS′

n ⊙Km (2)TS′
n ⊙Km,m (3)Pn ⊙ Pm (4)H∗

n ⊙ Cm

(5)TS′
n ⊙ Pm (6)Kn ⊙ Cm (7)H∗

n ⊙Km (8)H∗
n ⊙Km,m

(9)TS′
n ⊙ Cm (10)Kn ⊙ Pm (11)H∗

n ⊙ Pm (12)H∗
n ⊙Km,

Where H∗
n is the flower graph.

Theorem 2.9. The double fan graph gn = pn + K2 is Diophantine for all n ≥ 3.

Proof. |V (gn)| = n + 2. Let V (gn) = {v1, v2;u1, u2, . . . , un}. In fact, for all n ≥ 3,
there exists a labeling function f : V (gn) → {1, 2, . . . , n+ 2} which we can defined it as
follows:
f (v1) = 1, f (v2) = n+ 2, f (ui) = i+ 1, 1 ≤ i ≤ n (Figure 7).
This labeling guarantees that each two adjacent labeled vertices in the graph gn have
greatest common divisor which divides the order of gn, hence, the graph gn is Diophantine.

□
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Figure 7. A Diophantine labeling for the double fan graph for all n ≥ 3.

Theorem 2.10. The square of the path graph P 2
n is Diophantine if and only if

n ∈ {1, 3, 5, 7} or n is even.

Proof. Suppose, by contrapositive, that n /∈ {1, 3, 5, 7} and n is odd, we have three cases:
n ≡ 1 mod 6 or n ≡ 3 mod 6 or n ≡ 5 mod 6.
Case 1: If n ̸= 1, 7 and n ≡ 1 mod 6, i.e. n = 1 + 6k, where k ≥ 2, we know that
α
(
P 2
n

)
=

⌈
n
3

⌉
and

∣∣V (
P 2
n

)∣∣ = n, therefore, α
(
P 2
1+6k

)
=

⌈
1+6k
3

⌉
= 2k + 1,

∣∣V (
P 2
1+6k

)∣∣ =
1 + 6k for k ≥ 2. Thus, α

(
P 2
1+6k

)
= 2k + 1 < 3k =

⌊
6k+1
2

⌋
=

⌊
|V (P 2

1+6k)|
2

⌋
, for k ≥ 2,

hence, from the necessary condition 2 (Theorem 1.3), we conclude that the graph P 2
1+6k

is not Diophantine for k ≥ 2.
Similarly, in case 2, when n ≡ 3 mod 6, and n ̸= 3, and in case 3, when n ≡ 5 mod 6

and n ̸= 5, from the last three cases, we can show that the graph P 2
n is not Diophantine.

Conversely, it is obvious that the graph P 2
n is Diophantine for n ∈ {1, 3, 5, 7}, and also

for n is even, n ≥ 2, as follows : let V
(
P 2
n

)
= {v1, v2, . . . , vn} . There exists a labeling

function f : V
(
P 2
n

)
→ {1, 2, 3, . . . , n}, which can be defined as follows: f (vi) = i, for

1 ≤ i ≤ n (Figure 8).

Figure 8. A Diophantine labeling of the graph P 2
n for n is even, n ≥ 2.

The labels (f(vi), f(vi+2)) = (i, i + 2) = 2 | n for i even and equal to 1 | n otherwise.
Similarly, (f(vn−2), f(vn)) = (n − 2, n) = 2 | n. The remaining labels are assigned as
consecutive numbers such that their greatest common divisor is equal to 1, hence, P 2

n is
a Diophantine graph.

□
Corollary 2.3. The graph P 2

n is labeled isomorphic to the path graph Pn (2).

Figure 9 shows P 2
6 is labeled isomorphic to P6 (2).

Figure 9. A Diophantine labeling for P 2
6 and P6(2).
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Corollary 2.4. The graph C2
n is labeled isomorphic to the circulant graph Cn (2).

It follows from Theorem 2.4 that the square graph C2
n is a Diophantine if and only if n

is even.

Corollary 2.5. If the diameter in a graph G is k, then the kth power of the cycle graph
Cn will be a complete graph Kn, i.e., C

k
n
∼= Kn is labeled isomorphic, for 1 ≤ k ≤

⌊
n
2

⌋
,

hence, the graph Ck
n is Diophantine if and only if n ∈ {1, 2, 3, 4, 6} and 1 ≤ k ≤

⌊
n
2

⌋
.

Proof. Consequently, since Ck
n
∼= Kn, it follows from theorem 2.1 that Ck

n is a Diophantine
graph if and only if n ∈ {1, 2, 3, 4, 6} and 1 ≤ k ≤

⌊
n
2

⌋
.

□

Theorem 2.11. For n ≥ 4, the cube of the path graph P 3
n is Diophantine if and only if

n ∈ {4, 5, 8, 10, 14} or n ≡ 0 (mod 6).

Proof. Suppose, by contrapositive, for n ≥ 4, n /∈ {4, 5, 8, 10, 14} and n ̸≡ 0 (mod 6), then
we have the following cases:

Case 1: If n > 5 is odd, then we have n ≡ 1 (mod 6), i.e., n = 1 + 6k for k ≥ 1. From

lemma (2.3), α(P 3
n) =

⌈
n
4

⌉
=
⌈
1+6k
4

⌉
=
⌈
1
4 + 3

2k
⌉
for k ≥ 1.

⌊
|V (P 3

n)|
2

⌋
=

⌊
n
2

⌋
=

⌊
1+6k
2

⌋
= 3k

for k ≥ 1, therefore, α(P 3
1+6k) =

⌈
1
4 + 3

2k
⌉
< 3k =

⌊
|V (P 3

1+6k)|
2

⌋
for k ≥ 1, hence, from

the necessary condition 2 (Theorem 1.3), we have that the graph P 3
n in this case is not

Diophantine. Similarly, the other cases, when n ≡ 3 (mod 6) and n ≡ 5 (mod 6).
Case 2: If n is even and n /∈ {4, 8, 10, 14} and n ̸≡ 0 (mod 6), then we have: n ≡ 2 (mod 6),
i.e., n = 2 + 6.L for L ≥ 3. From lemma 2.3 and lemma 1.6, α(P 3

n) =
⌈
n
4

⌉
=

⌈
2+6L

4

⌉
=⌈

1
2 + 3

2L
⌉
for L ≥ 3, since 3 is the least prime power that does not divide such n, so

max1<p<n/2

⌊
n

pν
′
p(n)

⌋
=

⌊
n
3

⌋
=

⌊
2+6L

3

⌋
=

⌊
2
3 + 2L

⌋
= 2L for L ≥ 3, therefore, α(P 3

2+6L) =⌈
1
2 + 3

2L
⌉
< 2L =

⌊
2
3 + 2L

⌋
=

⌊
n
3

⌋
= max1<p<n/2

⌊
n

pν
′
p(n)

⌋
for L ≥ 3, hence, from the

necessary conditions 1 and 3 (Theorems 1.2 and 1.4), we have that the graph P 3
n in this

case is not Diophantine. Similarly, in the case, when n ≡ 4 (mod 6). From the last five
cases we proved the first direction of the theorem.
Conversely, it is obvious that P 3

n is Diophantine for n ∈ {4, 5, 8, 10, 14}. Now, consider
n ≡ 0 mod 6, let V

(
P 3
n

)
= {v1, v2, . . . , vn} be the vertices of P 3

n , where n = 6k for k ≥ 1.

There exists a labeling function f : V
(
P 3
n

)
→ {1, 2, 3, . . . , n}, which can be defined as

follows:
f (vi) = i, for 1 ≤ i ≤ n (Figure 10).

Figure 10. A Diophantine labeling for the graph P 3
n , when n ≡ 0 mod 6.



O. M. SALAMA et al.: ON SOME FAMILIES OF LINEAR DIOPHANTINE GRAPHS 2685

Since

(f (vi) , f (vi+2)) = (i, i+ 2) =

{
1 if i ̸≡ 0 mod 2

2 if i ≡ 0 mod 2

(f (vi) , f (vi+3)) = (i, i+ 3) =

{
1 if i ̸≡ 0 mod 3

3 if i ≡ 0 mod 3

Which divides the order of P 3
n , hence, the graph P 3

n , n = 6.k for k ≥ 1 is Diophantine. □

Remark 2.2. For n = 1, 2 and 3 (it’s obvious that the graph P 3
n is Diophantine).

3. Conclusion

This manuscript examines various graph families, including complete graphs, wheel
graphs, circulant graphs, and Cartesian products, to determine their Diophantine nature
and establishing necessary and sufficient conditions for Diophantine labeling. We extend
the concept of prime labeling, concluding that all prime graphs are also Diophantine.
Furthermore, we proved that complete graphs Kn are Diophantine for specific values of n,
while wheel graphs Wn are Diophantine for all n > 1. Additionally, we identify conditions
for more complex structures, such as normal product graphs and cubes of path graphs,
exhibit Diophantine properties. For our future research, we may focus on generalizing
these conditions and identifying new Diophantine graph families.

Acknowledgement. The authors would like to express their gratitude to the referees
for their insightful comments and valuable suggestions, which have greatly improved this
manuscript.
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