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MORE ON CONTINUOUS AND IRRESOLUTE MAPS IN
PYTHAGOREAN FUZZY TOPOLOGICAL SPACES

A. VADIVEL»®* G. GAVASKAR?, C. JOHN SUNDAR?, §

ABSTRACT. The new dimension of non-standard fuzzy sets called Pythagorean fuzzy sets
which can handle the inaccurate data very strongly has been established in recent days.
Even though intuitionistic fuzzy sets were generously used in decision making to handle
the imprecise data the novelty and the voluminous of Pythagorean fuzzy environment
gives motivation to use it in decision making process. The Pythagorean fuzzy topological
spaces are the novel generalization of fuzzy topological spaces. In this paper, we develop
the concept of Pythagorean fuzzy ¢ continuity which is stronger than Pythagorean fuzzy
continuous function in Pythagorean fuzzy topological spaces and specialize some of their
basic properties with examples. Also, we introduce and discuss about properties and
characterization of Pythagorean fuzzy ¢ irresolute maps. Interrelations have been studied
elaborately for the defined functions using various examples.

Keywords: Pythagorean fuzzy § open set, Pythagorean fuzzy 6 Continuous and Pythagorean
fuzzy 0 Irresolute.
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1. INTRODUCTION

In 1965, Zadeh [37] familiarized the concept of fuzzy set which has several applications
in decision theory, artificial intelligence, operations research, expert systems, computer
science, data analytics, pattern recognition, management science and robotics. In 1968,
Chang and Warren [11, 32] defined fuzzy topological spaces, the basic philosophies of
topology such as open set, closed set, neighbourhood, interior set, closure, continuity,
compactness to fuzzy topological spaces (FT'S). Applications of fuzzy sets were studied [1,
10, 21, 26]. Later numerous fuzzy topological spaces raised which have unique properties.
In 1997, Dogan Coker [6, 12, 17] introduced Intuitionistic fuzzy topological spaces and
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studied its continuity and compactness. Intuitionistic fuzzy sets have many applications
[26, 23] and also flagged approach to study Pythagorean fuzzy sets. In both the sets
membership and non-membership are incorporated in a different way. In Intuitionistic
fuzzy set the membership p and non-membership « are incorporated in such a way that
@+ v < 1 where as in Pythagorean fuzzy set it is u? + 2 < 1. In 2013, Yager [34]
introduced the non-standard fuzzy sets called Pythagorean fuzzy sets in comparison with
Intuitionistic fuzzy sets. He gave the basic definition of Pythagorean fuzzy set (PFS) and
its application in decision making [3, 36, 35]. PF'S has its applications in career placements
based on academic performance [18], selection of mask during COVID-19 pandemic using
Pythagorean TOPSIS technique [20], etc. Later Murat et.al [16] introduced the conception
of Pythagorean fuzzy topological space (PFT'S) by provoking from the conviction of FT'S
[13, 14, 19]. He defined Pythagorean fuzzy continuous function between PFT'S.

Saha [22] defined J-open sets in fuzzy topological spaces. In 2019, Acikgoz and Esenbel

[2] defined neutrosophic soft §-topology. Aranganayagi et al., Surendra et al. and Vadivel
et al. [4, 5, 15, 24, 25, 28, 29, 30, 31| introduced d-open sets in neutrosophic, neutrosophic
soft, neutrosophic hypersoft and neutrosophic nano topological spaces and studied its
maps and separation axioms.
Research Gap: No investigation on some stronger and weaker forms of Pythagorean
fuzzy continuous and irresolute maps such as Pythagorean fuzzy ¢ continuous map, Pythag-
orean fuzzy d-semi continuous map, Pythagorean fuzzy §-pre continuous map, Pythagorean
fuzzy da continuous map and Pythagorean fuzzy §3 continuous maps and their respec-
tive irresolute functions on Pythagorean fuzzy topological space has been reported in the
Pythagorean fuzzy literature.

This leads to encompass the notion of PFTS by introducing Pythagorean fuzzy 0
continuous map, pythagorean fuzzy d-semi continuous map, pythagorean fuzzy J-pre con-
tinuous map, pythagorean fuzzy da continuous map and pythagorean fuzzy §5 continuous
maps and discuss its properties. Also, we introduce the concept of Pythagorean fuzzy
irresoluteness called Pythagorean fuzzy ¢ irresolute map, pythagorean fuzzy d-semi irres-
olute map, pythagorean fuzzy d-pre irresolute map, pythagorean fuzzy da irresolute map
and pythagorean fuzzy ¢ irresolute maps and study some of their basic properties. This
enables us to obtain conditions under which maps and inverse maps preserve respective
open sets.

2. PRELIMINARIES
We recall some basic notions of fuzzy sets, IF'S’s and pfs’s .

Definition 2.1. [37] Let X be a nonempty set. A fuzzy set A in X is characterized by a
membership function 4 : X — [0, 1]. That is:
1, if reX
palz) =40, if x¢ X
(0,1) if x is partly in X.
Alternatively, a fuzzy set A in X is an object having the form A = {< z, pa(x) > |z €
X}or A= {<“AT(JC)> |z € X} , where the function pa(z) : X — [0,1] defines the degree

of membership of the element, z € X.

The closer the membership value 14 () to 1, the more x belongs to A, where the grades
1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of
objects with graded membership, that is, having degree of membership. Fuzzy set is an
extension of the classical notion of set. In classical set theory, the membership of elements
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in a set is assessed in a binary terms according to a bivalent condition; an element either
belongs or does not belong to the set. Classical bivalent sets are in fuzzy set theory called
crisp sets. Fuzzy sets are generalized classical sets, since the indicator function of classical
sets is special cases of the membership functions of fuzzy sets, if the latter only take values
0 or 1. Fuzzy sets theory permits the gradual assessment of the membership of element
in a set; this is described with the aid of a membership function valued in the real unit
interval [0, 1].

Let us consider two examples:

(i) all employees of XY Z who are over 1.8m in height; (ii) all employees of XY Z
who are tall. The first example is a classical set with a universe (all XY Z employees)
and a membership rule that divides the universe into members (those over 1.8m) and
nonmembers. The second example is a fuzzy set, because some employees are definitely
in the set and some are definitely not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, p. If we return to our second example and let A represent the fuzzy
set of all tall employees and x represent a member of the universe X (i.e. all employees),
then pa(x) would be pa(z) = 1if x is definitely tall or pa(x) = 0 if x is definitely not tall
or 0 < pa(x) <1 for borderline cases.

Definition 2.2. [6, 7, 8, 9] Let a nonempty set X be fixed. An IF'S A in X is an object
having the form: A = {< z,pua(z),va(z) > |x € X} or A = {<M> |z € X},
where the functions pa(xz) : X — [0,1] and va(z) : X — [0,1] define the degree of
membership and the degree of nonmembership, respectively, of the element x € X to A,
which is a subset of X, and for every z € X : 0 < pa(x) + va(x) < 1. For each A in X:
ma(x) =1 — pa(xz) — va(z) is the intuitionistic fuzzy set index or hesitation margin of =
in X. The hesitation margin 74(z) is the degree of nondeterminacy of x € X to the set A
and 74 (z) € [0,1]. The hesitation margin is the function that expresses lack of knowledge
of whether x € X or x ¢ X. Thus: pa(z) +va(z) +ma(x) = 1.

Example 2.1. Let X = {z,y, 2z} be a fixed universe of discourse and
A= {<0'6’0'1 > , <0‘8’0‘1 > , <0'5;O'3 >} , be the intuitionistic fuzzy set in X. The hesitation

@ y
margins of the elements x,y, z to A are as follows: m4(x) = 0.3, m4(y) = 0.1 and 74(2) =
0.2.

Definition 2.3. [33, 34, 36] Let X be a universal set. Then, a Pythagorean fuzzy
set A, which is a set of ordered pairs over X, is defined by the following: A = {<
z,ua(z),va(z)|z € X}or A= {<M> |z € X} , where the functions p4(z) : X —

xT

[0,1] and v4(z) : X — [0, 1] define the degree of membership and the degree of nonmem-
bership, respectively, of the element x € X to A, which is a subset of X, and for every
r € X,0 < (ua(x))?+ (va(z))? < 1. Supposing (pa(z))? + (va(x))? < 1, then there is
a degree of indeterminacy of x € X to A defined by ma(z) = /1 — [(ua())? + (va(z))?]
and 74(z) € [0,1]. In what follows, (ua(z))? + (va(z))? + (7a(x))? = 1. Otherwise,
7a(z) = 0 whenever (pa(z))? + (va(x))? = 1. We denote the set of all PF'S’s over X by
pfs(X).
Definition 2.4. [36] Let A and B be pfs’s of the forms A = {< a, Aa(a), pa(a) > |a € X}
and B = {< a,\g(a), up(a) > |a € X}. Then

(i) AC Bifand only if Ay(a) < Ap(a) and pa(a) > pp(a) for all a € X.

(il) A= B if and only if A C B and B C A.

(iii) A = {< a,pa(a), \a(a) > |a € X}.
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(iv) ANB ={<a, a(a) ANAg(a),pala)V pup(a) > |a € X}.
(v) AUB ={<a, a(a)VAg(a),pala) Apupla) > |a € X}.
(vi) ¢ = {<a¢,X>|an}andX {<a,X,¢>|ac X}
(vii) X = ¢ and ¢ = X.

Definition 2.5. [16] An Pythagorean fuzzy topology by subsets of a non-empty set X is
a family 7 of pfs’s satisfying the following axioms.

(i) ¢, X eT.
(i) G1 N Gq € 7 for every G1, G2 € T and
(i) UGi € 7 for any arbitrary family {G;|i € j} C 7. The pair (X,7) is called an
Pythagorean fuzzy topological space (pfts in short) and any pfs G in 7 is called
an Pythagorean fuzzy open set (pfos in short) in X. The complement A of an
Pythagorean fuzzy open set A in an pfts(X, 7) is called an Pythagorean fuzzy closed
set (pfes in short).

Definition 2.6. [16] Let (X,7) be an pfts and A = {< a, a(a),pa(a) > |la € X}
be an pfs in X. Then the interior and the closure of A are denoted by pfint(A) and
pfcl(A) and are defined as follows: pfcl(A) = N{K|K isan pfcs and A C K} and
pfint(A) = U{G|G is an pfos and G C A}. Also, it can be established that pfcl(A) is an
pfes and pfint(A) is an pfos, A is an pfes if and only if pfcl(A) = A and A is an pfos
if and only if pfint(A) = A. We say that A is pf-dense if pfcl(A) = X.

Lemma 2.1. [27] For any Pythagorean fuzzy set A in (X, 7), we have X — pfint(A) =
pfe(X — A) and X — pfcl(A) = pfint(X — A).

Definition 2.7. [27] Let (X, 7) be an pfts and A be an pfs. Then A is said to be an
Pythagorean fuzzy (i) regular open set (pfros in short) if A = pfint(pfcl(A)). (ii) regular
closed set (pfres in short) if A = pfel(pfint(A)). By Lemma 2.1, it follows that A is an
pfros iff A is an pfres.

Definition 2.8. [14] Let (X;,I'p) & (X2,Up) be a pfts’s. A mapping hp : (X1,I'p)
— (X9, ¥p) is said to be a Pythagorean fuzzy continuous (briefly, pfCts ) if the inverse
image of every pfos in (X2, ¥p) is a pfos.

3. PYTHAGOREAN FUZZY §-CONTINUOUS MAPPINGS

In this section, we introduce Pythagorean fuzzy dJ-continuous mappings and discuss
some of their properties.

Definition 3.1. Let (X, 7) bean pfts and A = {< a, \a(a),pa(a) > |a € X} beanpfsin
X. Then the d-interior and the d-closure of A are denoted by pfdint(A) and pfdcl(A) and
are defined as follows. pfocl(A) = N{K|K is an pfrcs and A C K}, (pféint(A) = U{G|G
is an pfros and G C A}.

Definition 3.2. Let (X, 7) be an pfts and A = {< a, a(a),pa(a) > |a € X} be an pfs
in X. A set A is said to be pf

(i) d-open set (brieﬂy, pfoos) if A= pféint( )
ii

pfoacl(A) and pfofcl(A)) = X.
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The complement of an pfdos (resp. pfdPos, pféSos, pfoaos and pfdfos) is called an
pfo (resp. pfoP, pfdS,pfda and pfof) closed set (briefly, pfdcs (resp. pfdPes, pfdSes,
pfdacs and pfdBcs in X.

The family of all pfdos (resp. pfocs, pfdPos, pfdPcs, pféSos, pfdScs, pfoaos,
pfoacs, pfofos and pfofes) of X is denoted by pfdOS(X), (resp. pfoCS(X),
pfOPOS(X),pfoPCS(X),pféSOS(X),pfdSCS(X),pfdaOS(X),pféaCS(X), pféB0S
(X) and pfépCS(X)).

Definition 3.3. Let (X, 7) be an pfts and A = {< a, a(a),na(a) > |a € X} be an pfs
in X. Then the pfdé-pre (resp. pfd-semi, pfoa and pfdf)-interior and the pfdo-pre (resp.
pfd-semi, pfda and pfdf)-closure of A are denoted by pfoPint(A) (resp. pfoSint(A),
pféaint(A) and pféfint(A)) and the pfdPcl(A) (resp. pfdScl(A),pfoacl(A) and pfoS
cl(A) and are defined as follows:

pfoPint(A) (resp. pfoSint(A),pfoaint(A) and pfifint(A) = U{G|G in a pfdPos
(resp. pfdSos, pfdaos and pfdfos)

and G C A} and pfdPcl(A) (resp. pfoScl(A),pfdacl(A) and pfopcl(A) = N{K|K is
an pfoPcs (resp. pfdScs, pfoacs, pfépes) and A C K}.

Example 3.1. Let X = {a,b} and the pfs’s A;, As, A3, A4 and Aj are defined as
A, (a’) = 0.5, YA (a) =0.7, A, (b) =0.2, YA (b) =04, KA (CL) = 0.6, ’YAQ(Q) = 0.5,
fa,(B) = 0.3, 4, (b) = 0.9; 4, (a) = 0.4, va,(a) = 0.8, pa,(b) = 0.1, va,(b) = 0.95;
pa,(a) =0.6, ya,(a) =0.5, pa,(b) =0.3, v4,(b) =0.4; pa,(a) =0.5, ya,(a) =0.7,
pas(b) =0.2, y4,(b) =0.9.

Let 7 ={0p, 1p, A1, Aa, A3, A4, As} be apfts on X. Then the pfs

i) Ay is pfos (resp. pfoPos) but not pfdos.
(ii) A§ is pfoSos but not pfdos.
(iii) Ay is pfdfos but not pfiPos.
(iv) A§ is pfdéBos but not pféSos.
(v) As is pfdSos but not pfdaos.
(vi) As is pfdPos but not pfdaos.

Definition 3.4. Let (X;,T'p) & (X2,¥p) be a pfts’s. A mapping hp : (X;,T'p) —
(X2, Up) is said to be a Pythagorean fuzzy 6 (resp. da, dS, 6P & 5 or e*)-continuous
(briefly, pféCts (resp. pféaCts, pféSCts, pfdPCts & pfépCts or pfe*Cts)) if the
inverse image of every pfos in (Xo,Up) is a pfdos (resp. pfdaos, pfoSos, pfoPos &
pfdpos or pfe*os) in (X1,I'p).

Theorem 3.1. Let (X1,I'p) & (X3, ¥p) be a pfts’s. Let hp : (X1,I'p) — (X2, ¥p) be a
mapping. Then the following statements are hold for pfts, but not conversely.
(i) Every pfdCts is a pfCts.
(ii) Every pfoCts is a pfdSCts.
(iii) Every pfoCts is a pfdPCts.
(iv) Every pfoSCts is a pféBCts.
(v) Every pfoPCts is a pféSCts.
(vi) Every pfoaCts is a pfdSCts.
(vii) Every pfdaCts is a pfdPCts.

Proof. (i) Let hp be a pfoCts and K is a pfos in X5. Then h;l(K) is pfdos in X1. Since
for each pfdos is pfos, h;l(K) is pfos in Xq. Therefore, hp is pfCts.

(ii) Let hp be a pfdéCts and K is a pfos in X5. Then h;l(K) is pfdos in X7. Since for
each pfdos is pfdSos, h;l(K) is pfdSos in X;. Therefore, hp is pfoSCts.
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(iii) Let hp be a pfCts and K is a pfos in Xy. Then h;l(K) is pfdos in X;. Since for
each pfdos is pfoPos, hp'(K) is pfdPos in X;. Therefore, hp is pfoPCts.

(iv) Let hp be a pfdSCts and K is a pfos in X5. Then h]_gl(K) is pfdSos in X;. Since
for each pfdSos is pféfos, h;l(K) is pfdfos in Xq. Therefore, hp is pfoBCts.

(v) Let hp be a pfoPCts and K is a pfos in Xs. Then h;l(K) is pfdPos in X;. Since
for each pfdéPos is pfoSos, h;l(K) is pfédBos in X;. Therefore, hp is pfoSCts.

(vi) Let hp be a pféaCts and K is a pfos in Xa. Then hp'(K) is pféaos in X;. Since
for each pfdaos is pfdSos, h;l(K) is pfdSos in Xy. Therefore, hp is pfdSCts.

(vii) Let hp be a pféaCts and K is a pfos in X2. Then hp' (K) is pfdaos in X;. Since
for each pfdaos is pfdPos, h;l(K) is pféPos in X;. Therefore, hp is pfoPCts. O

Remark 3.1. The following Figure shows the relations among the different types of
Pythagorean fuzzy ¢ continuous mappings that were studied in this section.

|

/ \

Figure : pfdcts mappings in pfts

Example 3.2. Let X = X; = X9 = X3 = Xy = X5 = {x1,22} and the pfs’s A;, As and
As are defined as

A1 = {< 21,0.020,0.040 >, < x2,0.050,0.050 >}
Ay = {< 21,0.010,0.040 >, < x2,0.050,0.050 >}
As = {< 21,0.020,0.030 >, < x2,0.050,0.050 >}

Here we have 7 = {0x,,1x,, 41,42}, = = {0x,,1x,, 42}, 73 = {Ox,, x5, A}, 71 =
{0x,,1x,,AS} and 75 = {0x,, 1x,, A3} be a pfts’s on X. Let hlp : (X1,71) — (X2,72),
h2p : (Xl,Tl) — (X3,7'3), h3p : (Xl,Tl) — (X4,7'4), h4p : (X1,7'1) — (X5,7'5) be an
identity mapping. Then
(i) hlp is pfCts (resp. pfofCts and pfdPCts) but not pféCts (resp. pfoSCts and
pfoaCts), because the set As is a pfos in Xs but hl;l(Ag) = A is not pfoos (resp.
pfoSos and pfdaos) in Xj.
(ii) h2p is pfoSCts but not pfdCts, because the set A is a pfos X3 but h2]_31(A§) = Af§
is not pfdos in Xj.
(iii) h3p is pfoPCts but not pfdCts, because the set A§ is a pfos X4 but h31§1(A§) = A§
is not pfdPos in X;.
(iv) hdp is pfépCts (resp. pfdSCts) but not pfoPCts (resp. pfdaCts), because the set
Az is a pfos X5 but hd=1(A3) = A3 is not pfdPos (resp. pféaos) in X;.
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Theorem 3.2. Let (X1,I'p) & (X2,Up) be a pfts’s. A mapping hp : (X1,T'p) —
(X2, Up) satisfies the following conditions are equivalent.

(i) hp is pfépCts;

(ii) The inverse h;l(K) of all pfoos K in Xs is pfdfos in X;.

Proof. The proof is directly, since hp' (K) = h' (K) for all pféos K of X,. O

Theorem 3.3. Let (X1,I'p) & (X2,Up) be a pfts’'s. A mapping hp : (X1,I'p) —
(X2, Up) satisfies the following conditions are hold.

(i) hp(pfoBcl(L)) C pfocl(hp(L)), for all pfes L in X;.

(ii) pfoBel(hp (K)) C hpt(pficl(K)), for all pfes K in Xo.

Proof. (i) Since pfdcl(hp(L)) is apfdcsin Xo and hp is pféBCts, then hp' (pfocl( hp(L)))
is pfoBe in X1. Now, since L C hp(pfdcl(hp(L))), pfoBcl(L) C hp'(pfs cl(hp(L))).
Therefore, hp(pfopcl(L)) C pfocl(hp(L)).

(ii) By replacing L with K in (i), we obtain hp(pfdBel(hp'(K))) C pfocl(hp( hp (K)))
C pfécl(K). Hence, pfoBcl(hp'(K)) C hp' (pfocl(K)). O

Remark 3.2. Let (X1,T'p) & (X2, Up) be a pfts’s. Let hp : (X1,T'p) — (X2, ¥Up) be a
mapping. If hp is pfdSCts, then

(i) hp(pfofcl(L)) is not necessarily equal to pfdcl(hp(L)) where L € X;.

(ii) pfoBel(hp'(K)) is not necessarily equal to hp' (pfocl(K)) where K € Xo.

Example 3.3. Let X = Y = {z1,z2} and the pfs’s A is defined as A = B = {<
r1,0.8,0.3 >, < 22,0.9,0.3 >} Here we have 7p = {Op,1p, A} is pfts on X. Let hp :
(X,7p) — (Y, 7p) be an identity mapping. Then hp is pfdBsCts.
(i) hp(pfoBcl(A)) = A. But pfocl(hp(A)) = 1.
Thus hp(pfopcl(A)) # pfocl(hp(A)).
(ii) pfoBel(hp'(A)) = A. But hp!(pficl(A)) = 1.
Thus pféfBel(hp'(A)) # hp'(pficl(A)).

Theorem 3.4. Let (X1,T'p) & (X3, ¥p) be a pfts’s. Let hp : (X1,T'p) — (X2, ¥p) be a
mapping. If hp is pfdSCts, then h;l(pfémt(L)) - pfdﬂmt(h;l(L)), for all pfs L in Xo.

Proof. If hp is pfoBCts and L C Xy. pfdint(L) is pfdo in X9 and hence, h;l(pfé
int(L)) is pfoBo in X;. Therefore pféﬁint(hgl(pf&nt(L))) = h;l(pféint(L)). Also,
pfoint(L) C L, implies that h;l(pf&nt(L)) - h;l(L). Therefore pf&ﬁint(h?(pfc?
int(L))) C pféBint(hp'(L)). That is hp' (pfdint(L)) C pféBint (hp(L)).

Conversely, let h;l(pf&nt(l})) C pféﬁint(hgl(l/)) for all subset L of Xo. If L is pfdo
in Xy, then pfoint(L) = L. By assumption, h;l(pfcsmt(L)) C pf&ﬁint(hlél(L)). Thus
hp! (L) C pfoBint(hp'(L)). But pféBint (hp' (L)) C hp'(L). Therefore pféBint(hp' (L))
= h;l(L). That is, h;l(L) is pfofoin Xy, for all pfdos L in Xo. Therefore hp is pfé5Cts
on Xj. ]

Remark 3.3. Let (X;,I'p) & (X2,¥p) be a pfts’s. Let hp : (X1,I'p) — (X2,¥p)
be a mapping. If hp is pfdsCts, then pféﬁint(hlgl(K)) is not necessarily equal to
hp! (pfdint(K)) where K € Xo.
Example 3.4. In Example 3.3, hp is a pfdBCts.

Then pfépint(hp'(A)) = A. But hp'(pfdint(A)) = 0. Thus pfoBint(hp'(K)) #
By (pf8int(K)).
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Remark 3.4. Theorems 3.2, 3.3, 3.4 and Remarks 3.2, 3.3 are true for pfdPos, pfdSos
and pfdaos.

4. PYTHAGOREAN FUZZY 0-IRRESOLUTE MAPS

In this section, we introduce the concept of Pythagorean fuzzy irresoluteness called
Pythagorean fuzzy ¢ irresolute map, pythagorean fuzzy §-semi irresolute map, pythagorean
fuzzy dé-pre irresolute map, pythagorean fuzzy d« irresolute map and pythagorean fuzzy
00 irresolute maps and study some of their basic properties. This enables us to obtain
conditions under which maps and inverse maps preserve respective open sets.

Definition 4.1. A map hp : (X1,I'p) — (X2, Up) is known as a pythagorean fuzzy (resp.
0, 6P, §S, da and 03)-irresolute (in short, pfIrr (vesp. pfolrr, pfoPIrr, pfoSIrr, pf
dadrr and pfopIrr)) map if h}l(K) is a pfSos (resp. pfdos, pfdPos, pfdSos, pfoaos
and pfofos) in (X1,I'p) for each pfSos (resp. pfdos,pféPos, pfdoSos, pfoaos and
pfofos) K of (Xa,¥p).

Theorem 4.1. Let (Xl,rp) & (XQ,\IIP) be a pfts’s. Let hp : (Xl,rp) — (XQ,\IIP) be a
mapping. Then the following statements are hold for pfts, but not conversely.

i) Every pfIrr map is a pfSCts.
(ii) Every pfdSIrr map is a pfoSCts.
(iii) Every pfdPIrr map is a pfoPCts.
(iv) Every pféalrr map is a pfdaCts.
(v) Every pféBIrr map is a pfdSsCts.

But the converse is not true.

Proof. (i) Consider a pfIrr map hp and a pfos K in X5. As each pfos is a pfSos, K is
a pfSos in Xs. By presumption, h;l(K) isa pfSos in X1. Thus f is a pfSCts map.

(ii) Consider a pfoSIrr map hp and a pfdos K in Xo. As each pfdos is a pfos and
pfoSos, K is a pfdos and pfdSos in X5. By presumption, h;l(K) is a pfdSos in Xj.
Thus f is a pfoSCts map.

(iii) Consider a pfdPIrr map hp and a pfdos K in X5. As each pfdos is a pfos and
pféPos, K is a pfdos and pféPos in X5. By presumption, h]_gl(K) is a pfoPos in Xj.
Thus f is a pfdPCts map.

(iv) Consider a pfdalrr map hp and a pfdos K in Xy. As each pfdos is a pfos and
pfoaos, K is a pfdos and pfdaos in Xs. By presumption, hl_gl(K) is a pfdaos in X;.
Thus f is a pfdaCts map.

(v) Consider a pfdSIrr map hp and a pfdos K in Xs. As each pfdos is a pfos and
pfoBos, K is a pfdos and pfdfos in Xo. By presumption, h;l(K) is a pfdfBos in X;.
Thus f is a pfdBCts map. O

Example 4.1. Let X =Y = {1, 22} and the pfs’s Ay, Ay, Az, A4, A5, Ag and A7 are
defined as
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Ay = {< 21,0.020,0.080 >, < x2,0.040,0.060 >}
Ay = {< 21,0.010,0.090 >, < x2,0.030,0.070 >}
As = {< 21,0.090,0.010 >, < x2,0.070,0.030 >}
Ay = {< 21,0.020,0.080 >, < x2,0.030,0.070 >}
As = {< x1,0.020,0.080 >, < x2,0.030,0.060 >}
Ag = {< 21,0.040,0.020 >, < x2,0.040,0.040 >}
A7 = {< 21,0.080,0.020 >, < x2,0.060,0.040 >}.

Here we have T = {Ox, 1X7A1,A2,A3,A4}, T2 — {Ox, 1)(,./42} and T3 — {Ox, 1x,A3} be
apfts’son X.

(i) Let hp : (X, 71) — (Y, 72) be an identity mapping. Then hp is pfScts (resp. pfdéScts)
but not pfSIrr (resp. pfoSIrr), because the set A§ (resp. A4) is a pfSos (resp.
pfoSos) in Y but hp'(A§) = A§ (vesp. hp'(A4) = Ay) is not pfSos (resp. pféSos)
in X.

(ii) Let hp : (X,71) — (Y, 73) be an identity mapping. Then hp is pfdPcts but not
pfdPIrr, because the set Af is a pfdPos in Y but h;l(A‘f) = A{ is not pfdPos in
X.

Definition 4.2. A pfts (X;,I'p) is known as a Pythagorean fuzzy 5SU% (resp. 579U%,
5aU% and 56U%) (in short, pf5SU% (resp. pf573U%, pf(SozU% and pféBU%))-space, if each
pfdSos (resp. pfdPos, pfoaos and pfdfos) in X is pfos in X.

Theorem 4.2. Let hp : (Xl,rp) — (XQ,\IIP) and gp : (XQ,\I’p) — (Xg,(I)p) be pf(SI'f‘T
(vesp. pfoSIrr, pfoPIrr, pféalrr and pfofIrr ) maps, then gp o hp : (X1,I'p) —
(X3, ®p) is a pfolrr (vesp. pfoSIrr, pfoPlrr, pféalrr and pfdfIrr ) map.

Proof. Consider a pfdos K in X3. So g}l(K) is a pfoos in Xo. As hp is a pfélrr map,
f;l(ggl(K)) is a pfdos in Xq7. Thus gp o hp is a pféIrr map. The other cases are
similar. g

Theorem 4.3. Consider a pfolrr (resp. pfoSIrr, pfoPlrr, pféalrr and pfoflrr )
map hp : (X1,I'p) = (X2,¥p) and a pfdCts (resp. pfdSCts, pféPCts, pféaCts and
pfépCts ) map gp : (X2, ¥p) — (X3,®p). Then gpohp : (X1,I'p) — (X3,Pp) is a
pfoCts (resp. pfoSCts, pféPCts, pfédaCts and pféSCts ) map.

Proof. Consider a pfos K in X3. So gj;l(K) is a pfdos in Xo. As hp is a pfdIrr map,
f;l(glgl(U)) is a pfdos in Xy. Thus gp o hp is a pfdCts map. The other cases are
similar. 0

Theorem 4.4. Consider a map hp : (X1,I'p) — (X2, VUp) from a pfts X; into a pfts Xo.
The following are equivalent if X; and X are pféU% (resp. pfc?SU%, pféPU%, pféozU%

and pf(SBU% )-spaces.

(i) hp is a pfélrr (vesp. pfoSIrr, pfoPIrr, pféalrr and pfoBIrr ) map.
(ii) h;l(K) is a pfdos (resp. pféPos, pféSos, pféaos and pféfos) in X; for every
pfoos (resp. pféPos, pféSos, pfdaos and pfipos) K in Xo.
(iii) pfel(hp'(K)) C hp' (pfel(K)) for every pfs K of X.
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Proof. (i) — (ii): Consider a pfdfcs K in Xo. It follows K€ is a pfdfos in Xo. As hp is
pfoBIrr, hp' (K)°) is a pfdBos in X1. We know that hp' ((K)°) = (h;l(K))c. Hence
h;l(K) isa pféfcs in Xj.

(ii) — (iii): Consider a pfs K in X5 and K C pfdBcl(K). Then hp'(K) C hp'(pfép
cl(K)). Since pfifcl(K)) is a pfdfes in Xo, pfofBcl(K) is a pféfSes in Xy. Therefore
(pfdpBcl(K))¢ is a pfofos in Xo. By presumption, h;l((pféﬁcl(K))c) is a pfdBos in X;.
We know that hp' ((pfdBcl(K))°) = (hp'(pfoBcl(K))) . So hp' (pféBel(K)) is a pfiBes
in X;. Also, as X is pf5BU%—space, h}_)l(pféﬁcl(K)) is a pfdfcs in Xj.

(iii) — (i): Consider a pfdfcs K in Xy. As Xy is pf&BU%—space, K is pfes in Xo and

pf(K) = (K). Thus hp'(K) = hp'(pfopc(K)) 2 pféBcl(hp (K)) = pfel(hp'(K)).
But clearly (hp'(K)) C pfel(hp'(K)). Therefore pfel((hp'(K))) = hp'(K). It follows
hl_)l(K) is a pfes and so it is a pfdBces in Xy. Hence hy, is pféBirr map. The proof is
similar for other cases. 0

5. CONCLUSIONS

In this paper, the notions of Pythagorean fuzzy §-continuous maps (pfdC'ts), Pythagorean
fuzzy continuous maps (pfCts), Pythagorean fuzzy J-semi-continuous maps (pfdSCts),
Pythagorean fuzzy dé-pre-continuous maps (pfdPCts), Pythagorean fuzzy da-continuous
maps (pfdaCts), and Pythagorean fuzzy ¢(-continuous maps (pfdsCts) are introduced
and investigated in detail. For each of these mappings, the corresponding irresolute maps
are defined with respect to the sets pfdo, pfdSo, pféPo, pfdao, and pfdBo. Their fun-
damental properties are analyzed and illustrated through suitable examples to provide a
deeper understanding of their topological behavior.

Furthermore, a comparative study is carried out between Pythagorean fuzzy continuous
maps and other generalized forms of Pythagorean fuzzy continuous mappings to highlight
their interrelationships and distinctions. The concept is then extended to define and
characterize Pythagorean fuzzy open and closed maps, emphasizing their structural and
functional significance.

The proposed Pythagorean fuzzy continuous and irresolute functions also establish a
foundation for further extensions to Fermatean fuzzy sets and Fermatean neutrosophic sets,
thereby enriching the theoretical framework and expanding their potential applications in
advanced research. Additionally, these mappings are examined within specific subclasses
of Pythagorean fuzzy topological spaces, such as “somewhat,” “regular,” and “normal”
spaces, to explore their specialized roles and implications in these particular contexts.
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