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MORE ON CONTINUOUS AND IRRESOLUTE MAPS IN

PYTHAGOREAN FUZZY TOPOLOGICAL SPACES

A. VADIVEL1,2,∗, G. GAVASKAR2, C. JOHN SUNDAR3, §

Abstract. The new dimension of non-standard fuzzy sets called Pythagorean fuzzy sets
which can handle the inaccurate data very strongly has been established in recent days.
Even though intuitionistic fuzzy sets were generously used in decision making to handle
the imprecise data the novelty and the voluminous of Pythagorean fuzzy environment
gives motivation to use it in decision making process. The Pythagorean fuzzy topological
spaces are the novel generalization of fuzzy topological spaces. In this paper, we develop
the concept of Pythagorean fuzzy δ continuity which is stronger than Pythagorean fuzzy
continuous function in Pythagorean fuzzy topological spaces and specialize some of their
basic properties with examples. Also, we introduce and discuss about properties and
characterization of Pythagorean fuzzy δ irresolute maps. Interrelations have been studied
elaborately for the defined functions using various examples.

Keywords: Pythagorean fuzzy δ open set, Pythagorean fuzzy δ Continuous and Pythagorean
fuzzy δ Irresolute.

AMS Subject Classification: 03E72, 54A40, 54C05, 94D05

1. Introduction

In 1965, Zadeh [37] familiarized the concept of fuzzy set which has several applications
in decision theory, artificial intelligence, operations research, expert systems, computer
science, data analytics, pattern recognition, management science and robotics. In 1968,
Chang and Warren [11, 32] defined fuzzy topological spaces, the basic philosophies of
topology such as open set, closed set, neighbourhood, interior set, closure, continuity,
compactness to fuzzy topological spaces (FTS). Applications of fuzzy sets were studied [1,
10, 21, 26]. Later numerous fuzzy topological spaces raised which have unique properties.
In 1997, Dogan Coker [6, 12, 17] introduced Intuitionistic fuzzy topological spaces and

1 PG and Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal-
637 002, India.
e-mail: avmaths@gmail.com; ORCID: https://orcid.org/0000-0001-5970-035X.

2 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India.
e-mail: gurugavaskar001@gmail.com; ORCID: https://orcid.org/0009-0000-7398-5654.

3 Department of Mathematics, Sri Venkateshwaraa College of Engineering and Technology, Puducherry-
605 102, India.
e-mail: johnphdau@hotmail.com; ORCID: https://orcid.org/0000-0002-7455-4976.

∗ Corresponding author.
§ Manuscript received: September 03, 2024; accepted: November 22, 2024.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.11; © Işık University, Depart-
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studied its continuity and compactness. Intuitionistic fuzzy sets have many applications
[26, 23] and also flagged approach to study Pythagorean fuzzy sets. In both the sets
membership and non-membership are incorporated in a different way. In Intuitionistic
fuzzy set the membership µ and non-membership γ are incorporated in such a way that
µ + γ ≤ 1 where as in Pythagorean fuzzy set it is µ2 + γ2 ≤ 1. In 2013, Yager [34]
introduced the non-standard fuzzy sets called Pythagorean fuzzy sets in comparison with
Intuitionistic fuzzy sets. He gave the basic definition of Pythagorean fuzzy set (PFS) and
its application in decision making [3, 36, 35]. PFS has its applications in career placements
based on academic performance [18], selection of mask during COVID-19 pandemic using
Pythagorean TOPSIS technique [20], etc. Later Murat et.al [16] introduced the conception
of Pythagorean fuzzy topological space (PFTS) by provoking from the conviction of FTS
[13, 14, 19]. He defined Pythagorean fuzzy continuous function between PFTS.

Saha [22] defined δ-open sets in fuzzy topological spaces. In 2019, Acikgoz and Esenbel
[2] defined neutrosophic soft δ-topology. Aranganayagi et al., Surendra et al. and Vadivel
et al. [4, 5, 15, 24, 25, 28, 29, 30, 31] introduced δ-open sets in neutrosophic, neutrosophic
soft, neutrosophic hypersoft and neutrosophic nano topological spaces and studied its
maps and separation axioms.
Research Gap: No investigation on some stronger and weaker forms of Pythagorean
fuzzy continuous and irresolute maps such as Pythagorean fuzzy δ continuous map, Pythag-
orean fuzzy δ-semi continuous map, Pythagorean fuzzy δ-pre continuous map, Pythagorean
fuzzy δα continuous map and Pythagorean fuzzy δβ continuous maps and their respec-
tive irresolute functions on Pythagorean fuzzy topological space has been reported in the
Pythagorean fuzzy literature.

This leads to encompass the notion of PFTS by introducing Pythagorean fuzzy δ
continuous map, pythagorean fuzzy δ-semi continuous map, pythagorean fuzzy δ-pre con-
tinuous map, pythagorean fuzzy δα continuous map and pythagorean fuzzy δβ continuous
maps and discuss its properties. Also, we introduce the concept of Pythagorean fuzzy
irresoluteness called Pythagorean fuzzy δ irresolute map, pythagorean fuzzy δ-semi irres-
olute map, pythagorean fuzzy δ-pre irresolute map, pythagorean fuzzy δα irresolute map
and pythagorean fuzzy δβ irresolute maps and study some of their basic properties. This
enables us to obtain conditions under which maps and inverse maps preserve respective
open sets.

2. Preliminaries

We recall some basic notions of fuzzy sets, IFS’s and pfs’s .

Definition 2.1. [37] Let X be a nonempty set. A fuzzy set A in X is characterized by a
membership function µA : X → [0, 1]. That is:

µA(x) =


1, if x ∈ X

0, if x /∈ X

(0, 1) if x is partly in X.

Alternatively, a fuzzy set A in X is an object having the form A = {< x, µA(x) > |x ∈
X} or A =

{〈
µA(x)

x

〉
|x ∈ X

}
, where the function µA(x) : X → [0, 1] defines the degree

of membership of the element, x ∈ X.
The closer the membership value µA(x) to 1, the more x belongs to A, where the grades

1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of
objects with graded membership, that is, having degree of membership. Fuzzy set is an
extension of the classical notion of set. In classical set theory, the membership of elements
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in a set is assessed in a binary terms according to a bivalent condition; an element either
belongs or does not belong to the set. Classical bivalent sets are in fuzzy set theory called
crisp sets. Fuzzy sets are generalized classical sets, since the indicator function of classical
sets is special cases of the membership functions of fuzzy sets, if the latter only take values
0 or 1. Fuzzy sets theory permits the gradual assessment of the membership of element
in a set; this is described with the aid of a membership function valued in the real unit
interval [0, 1].

Let us consider two examples:
(i) all employees of XY Z who are over 1.8m in height; (ii) all employees of XY Z

who are tall. The first example is a classical set with a universe (all XY Z employees)
and a membership rule that divides the universe into members (those over 1.8m) and
nonmembers. The second example is a fuzzy set, because some employees are definitely
in the set and some are definitely not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, µ. If we return to our second example and let A represent the fuzzy
set of all tall employees and x represent a member of the universe X (i.e. all employees),
then µA(x) would be µA(x) = 1 if x is definitely tall or µA(x) = 0 if x is definitely not tall
or 0 < µA(x) < 1 for borderline cases.

Definition 2.2. [6, 7, 8, 9] Let a nonempty set X be fixed. An IFS A in X is an object

having the form: A = {< x, µA(x), νA(x) > |x ∈ X} or A =
{〈

µA(x),νA(x)
x

〉
|x ∈ X

}
,

where the functions µA(x) : X → [0, 1] and νA(x) : X → [0, 1] define the degree of
membership and the degree of nonmembership, respectively, of the element x ∈ X to A,
which is a subset of X, and for every x ∈ X : 0 ≤ µA(x) + νA(x) ≤ 1. For each A in X:
πA(x) = 1 − µA(x) − νA(x) is the intuitionistic fuzzy set index or hesitation margin of x
in X. The hesitation margin πA(x) is the degree of nondeterminacy of x ∈ X to the set A
and πA(x) ∈ [0, 1]. The hesitation margin is the function that expresses lack of knowledge
of whether x ∈ X or x /∈ X. Thus: µA(x) + νA(x) + πA(x) = 1.

Example 2.1. Let X = {x, y, z} be a fixed universe of discourse and

A =
{〈

0.6,0.1
x

〉
,
〈
0.8,0.1

y

〉
,
〈
0.5,0.3

z

〉}
, be the intuitionistic fuzzy set inX. The hesitation

margins of the elements x, y, z to A are as follows: πA(x) = 0.3, πA(y) = 0.1 and πA(z) =
0.2.

Definition 2.3. [33, 34, 36] Let X be a universal set. Then, a Pythagorean fuzzy
set A, which is a set of ordered pairs over X, is defined by the following: A = {<
x, µA(x), νA(x)|x ∈ X} or A =

{〈
µA(x),νA(x)

x

〉
|x ∈ X

}
, where the functions µA(x) : X →

[0, 1] and νA(x) : X → [0, 1] define the degree of membership and the degree of nonmem-
bership, respectively, of the element x ∈ X to A, which is a subset of X, and for every
x ∈ X, 0 ≤ (µA(x))

2 + (νA(x))
2 ≤ 1. Supposing (µA(x))

2 + (νA(x))
2 ≤ 1, then there is

a degree of indeterminacy of x ∈ X to A defined by πA(x) =
√
1− [(µA(x))2 + (νA(x))2]

and πA(x) ∈ [0, 1]. In what follows, (µA(x))
2 + (νA(x))

2 + (πA(x))
2 = 1. Otherwise,

πA(x) = 0 whenever (µA(x))
2 + (νA(x))

2 = 1. We denote the set of all PFS’s over X by
pfs(X).

Definition 2.4. [36] Let A and B be pfs’s of the forms A = {< a, λA(a), µA(a) > |a ∈ X}
and B = {< a, λB(a), µB(a) > |a ∈ X}. Then
(i) A ⊆ B if and only if λA(a) ≤ λB(a) and µA(a) ≥ µB(a) for all a ∈ X.
(ii) A = B if and only if A ⊆ B and B ⊆ A.
(iii) Ā = {< a, µA(a), λA(a) > |a ∈ X}.
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(iv) A ∩B = {< a, λA(a) ∧ λB(a), µA(a) ∨ µB(a) > |a ∈ X}.
(v) A ∪B = {< a, λA(a) ∨ λB(a), µA(a) ∧ µB(a) > |a ∈ X}.
(vi) ϕ = {< a, ϕ,X > |a ∈ X} and X = {< a,X, ϕ > |a ∈ X}.
(vii) X̄ = ϕ and ϕ̄ = X.

Definition 2.5. [16] An Pythagorean fuzzy topology by subsets of a non-empty set X is
a family τ of pfs’s satisfying the following axioms.

(i) ϕ, X ∈ τ .
(ii) G1 ∩G2 ∈ τ for every G1, G2 ∈ τ and
(iii)

⋃
Gi ∈ τ for any arbitrary family {Gi|i ∈ j} ⊆ τ. The pair (X, τ) is called an

Pythagorean fuzzy topological space (pfts in short) and any pfs G in τ is called
an Pythagorean fuzzy open set (pfos in short) in X. The complement Ā of an
Pythagorean fuzzy open set A in an pfts(X, τ) is called an Pythagorean fuzzy closed
set (pfcs in short).

Definition 2.6. [16] Let (X, τ) be an pfts and A = {< a, λA(a), µA(a) > |a ∈ X}
be an pfs in X. Then the interior and the closure of A are denoted by pfint(A) and
pfcl(A) and are defined as follows: pfcl(A) = ∩{K|K is an pfcs and A ⊆ K} and
pfint(A) = ∪{G|G is an pfos and G ⊆ A}. Also, it can be established that pfcl(A) is an
pfcs and pfint(A) is an pfos, A is an pfcs if and only if pfcl(A) = A and A is an pfos
if and only if pfint(A) = A. We say that A is pf -dense if pfcl(A) = X.

Lemma 2.1. [27] For any Pythagorean fuzzy set A in (X, τ), we have X − pfint(A) =
pfcl(X −A) and X − pfcl(A) = pfint(X −A).

Definition 2.7. [27] Let (X, τ) be an pfts and A be an pfs. Then A is said to be an
Pythagorean fuzzy (i) regular open set (pfros in short) if A = pfint(pfcl(A)). (ii) regular
closed set (pfrcs in short) if A = pfcl(pfint(A)). By Lemma 2.1, it follows that A is an
pfros iff Ā is an pfrcs.

Definition 2.8. [14] Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. A mapping hP : (X1,ΓP )
→ (X2,ΨP ) is said to be a Pythagorean fuzzy continuous (briefly, pfCts ) if the inverse
image of every pfos in (X2,ΨP ) is a pfos.

3. Pythagorean Fuzzy δ-continuous mappings

In this section, we introduce Pythagorean fuzzy δ-continuous mappings and discuss
some of their properties.

Definition 3.1. Let (X, τ) be an pfts and A = {< a, λA(a), µA(a) > |a ∈ X} be an pfs in
X. Then the δ-interior and the δ-closure of A are denoted by pfδint(A) and pfδcl(A) and
are defined as follows. pfδcl(A) = ∩{K|K is an pfrcs and A ⊆ K}, (pfδint(A) = ∪{G|G
is an pfros and G ⊆ A}.

Definition 3.2. Let (X, τ) be an pfts and A = {< a, λA(a), µA(a) > |a ∈ X} be an pfs
in X. A set A is said to be pf

(i) δ-open set (briefly, pfδos) if A = pfδint(A),
(ii) δ-pre open set (briefly, pfδPos) if A ⊆ pfint(pfδcl(A)).
(iii) δ-semi open set (briefly, pfδSos) if A ⊆ pfcl(pfδint(A)).
(iv) δ-α open set or a-open set (briefly, pfδαos or pfaos) if A ⊆ pfint(pfcl(pfδint(A))).
(v) δ-β open set or e∗-open set (briefly, pfδβos or pfe∗os) if A ⊆ pfcl(pfint(pfδcl(A))).
(vi) δ (resp. δ-pre, δ-semi, δ-α and δ-β) dense if pfδcl(A) (resp. pfδpcl(A), pfδScl(A),

pfδαcl(A) and pfδβcl(A)) = X.
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The complement of an pfδos (resp. pfδPos, pfδSos, pfδαos and pfδβos) is called an
pfδ (resp. pfδP, pfδS, pfδα and pfδβ) closed set (briefly, pfδcs (resp. pfδPcs, pfδScs,
pfδαcs and pfδβcs in X.

The family of all pfδos (resp. pfδcs, pfδPos, pfδPcs, pfδSos, pfδScs, pfδαos,
pfδαcs, pfδβos and pfδβcs) of X is denoted by pfδOS(X), (resp. pfδCS(X),
pfδPOS(X), pfδPCS(X), pfδSOS(X), pfδSCS(X), pfδαOS(X), pfδαCS(X), pfδβOS
(X) and pfδβCS(X)).

Definition 3.3. Let (X, τ) be an pfts and A = {< a, λA(a), µA(a) > |a ∈ X} be an pfs
in X. Then the pfδ-pre (resp. pfδ-semi, pfδα and pfδβ)-interior and the pfδ-pre (resp.
pfδ-semi, pfδα and pfδβ)-closure of A are denoted by pfδPint(A) (resp. pfδSint(A),
pfδαint(A) and pfδβint(A)) and the pfδPcl(A) (resp. pfδScl(A), pfδαcl(A) and pfδβ
cl(A) and are defined as follows:

pfδPint(A) (resp. pfδSint(A), pfδαint(A) and pfδβint(A) = ∪{G|G in a pfδPos
(resp. pfδSos, pfδαos and pfδβos)

and G ⊆ A} and pfδPcl(A) (resp. pfδScl(A), pfδαcl(A) and pfδβcl(A) = ∩{K|K is
an pfδPcs (resp. pfδScs, pfδαcs, pfδβcs) and A ⊆ K}.

Example 3.1. Let X = {a, b} and the pfs’s A1, A2, A3, A4 and A5 are defined as
µA1(a) = 0.5, γA1(a) = 0.7, µA1(b) = 0.2, γA1(b) = 0.4; µA2(a) = 0.6, γA2(a) = 0.5,
µA2(b) = 0.3, γA2(b) = 0.9; µA3(a) = 0.4, γA3(a) = 0.8, µA3(b) = 0.1, γA3(b) = 0.95;
µA4(a) = 0.6, γA4(a) = 0.5, µA4(b) = 0.3, γA4(b) = 0.4; µA5(a) = 0.5, γA5(a) = 0.7,
µA5(b) = 0.2, γA5(b) = 0.9.

Let τ = {0P , 1P , A1, A2, A3, A4, A5} be a pfts on X. Then the pfs

(i) A2 is pfos (resp. pfδPos) but not pfδos.
(ii) Ac

1 is pfδSos but not pfδos.
(iii) A2 is pfδβos but not pfδPos.
(iv) Ac

1 is pfδβos but not pfδSos.
(v) A5 is pfδSos but not pfδαos.
(vi) A5 is pfδPos but not pfδαos.

Definition 3.4. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. A mapping hP : (X1,ΓP ) →
(X2,ΨP ) is said to be a Pythagorean fuzzy δ (resp. δα, δS, δP & δβ or e∗)-continuous
(briefly, pfδCts (resp. pfδαCts, pfδSCts, pfδPCts & pfδβCts or pfe∗Cts)) if the
inverse image of every pfos in (X2,ΨP ) is a pfδos (resp. pfδαos, pfδSos, pfδPos &
pfδβos or pfe∗os) in (X1,ΓP ).

Theorem 3.1. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. Let hP : (X1,ΓP ) → (X2,ΨP ) be a
mapping. Then the following statements are hold for pfts, but not conversely.

(i) Every pfδCts is a pfCts.
(ii) Every pfδCts is a pfδSCts.
(iii) Every pfδCts is a pfδPCts.
(iv) Every pfδSCts is a pfδβCts.
(v) Every pfδPCts is a pfδβCts.
(vi) Every pfδαCts is a pfδSCts.
(vii) Every pfδαCts is a pfδPCts.

Proof. (i) Let hP be a pfδCts and K is a pfos in X2. Then h−1
P (K) is pfδos in X1. Since

for each pfδos is pfos, h−1
P (K) is pfos in X1. Therefore, hP is pfCts.

(ii) Let hP be a pfδCts and K is a pfos in X2. Then h−1
P (K) is pfδos in X1. Since for

each pfδos is pfδSos, h−1
P (K) is pfδSos in X1. Therefore, hP is pfδSCts.
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(iii) Let hP be a pfCts and K is a pfos in X2. Then h−1
P (K) is pfδos in X1. Since for

each pfδos is pfδPos, h−1
P (K) is pfδPos in X1. Therefore, hP is pfδPCts.

(iv) Let hP be a pfδSCts and K is a pfos in X2. Then h−1
P (K) is pfδSos in X1. Since

for each pfδSos is pfδβos, h−1
P (K) is pfδβos in X1. Therefore, hP is pfδβCts.

(v) Let hP be a pfδPCts and K is a pfos in X2. Then h−1
P (K) is pfδPos in X1. Since

for each pfδPos is pfδβos, h−1
P (K) is pfδβos in X1. Therefore, hP is pfδβCts.

(vi) Let hP be a pfδαCts and K is a pfos in X2. Then h−1
P (K) is pfδαos in X1. Since

for each pfδαos is pfδSos, h−1
P (K) is pfδSos in X1. Therefore, hP is pfδSCts.

(vii) Let hP be a pfδαCts and K is a pfos in X2. Then h−1
P (K) is pfδαos in X1. Since

for each pfδαos is pfδPos, h−1
P (K) is pfδPos in X1. Therefore, hP is pfδPCts. □

Remark 3.1. The following Figure shows the relations among the different types of
Pythagorean fuzzy δ continuous mappings that were studied in this section.

pfCts

pfδCts

pfδSCts pfδβCts pfδPCts

pfδαCts

Figure : pfδcts mappings in pfts

Example 3.2. Let X = X1 = X2 = X3 = X4 = X5 = {x1, x2} and the pfs’s A1, A2 and
A3 are defined as

A1 = {< x1, 0.020, 0.040 >,< x2, 0.050, 0.050 >}
A2 = {< x1, 0.010, 0.040 >,< x2, 0.050, 0.050 >}
A3 = {< x1, 0.020, 0.030 >,< x2, 0.050, 0.050 >}

Here we have τ1 = {0X1 , 1X1 , A1, A2}, τ2 = {0X2 , 1X2 , A2}, τ3 = {0X3 , 1X3 , A
c
1}, τ4 =

{0X4 , 1X4 , A
c
2} and τ5 = {0X5 , 1X5 , A3} be a pfts’s on X. Let h1P : (X1, τ1) → (X2, τ2),

h2P : (X1, τ1) → (X3, τ3), h3P : (X1, τ1) → (X4, τ4), h4P : (X1, τ1) → (X5, τ5) be an
identity mapping. Then

(i) h1P is pfCts (resp. pfδβCts and pfδPCts) but not pfδCts (resp. pfδSCts and
pfδαCts), because the set A2 is a pfos in X2 but h1−1

P (A2) = A2 is not pfδos (resp.
pfδSos and pfδαos) in X1.

(ii) h2P is pfδSCts but not pfδCts, because the set Ac
1 is a pfos X3 but h2

−1
P (Ac

1) = Ac
1

is not pfδos in X1.
(iii) h3P is pfδPCts but not pfδCts, because the set Ac

2 is a pfos X4 but h3
−1
P (Ac

2) = Ac
2

is not pfδPos in X1.
(iv) h4P is pfδβCts (resp. pfδSCts) but not pfδPCts (resp. pfδαCts), because the set

A3 is a pfos X5 but h4−1(A3) = A3 is not pfδPos (resp. pfδαos) in X1.
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Theorem 3.2. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. A mapping hP : (X1,ΓP ) →
(X2,ΨP ) satisfies the following conditions are equivalent.

(i) hP is pfδβCts;
(ii) The inverse h−1

P (K) of all pfδos K in X2 is pfδβos in X1.

Proof. The proof is directly, since h−1
P (K) = h−1

P (K) for all pfδos K of X2. □

Theorem 3.3. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. A mapping hP : (X1,ΓP ) →
(X2,ΨP ) satisfies the following conditions are hold.

(i) hP (pfδβcl(L)) ⊆ pfδcl(hP (L)), for all pfcs L in X1.
(ii) pfδβcl(h−1

P (K)) ⊆ h−1
P (pfδcl(K)), for all pfcs K in X2.

Proof. (i) Since pfδcl(hP (L)) is a pfδcs inX2 and hP is pfδβCts, then h−1
P (pfδcl( hP (L)))

is pfδβc in X1. Now, since L ⊆ h−1
P (pfδcl(hP (L))), pfδβcl(L) ⊆ h−1

P (pfδ cl(hP (L))).
Therefore, hP (pfδβcl(L)) ⊆ pfδcl(hP (L)).

(ii) By replacing L with K in (i), we obtain hP (pfδβcl(h
−1
P (K))) ⊆ pfδcl(hP ( h

−1
P (K)))

⊆ pfδcl(K). Hence, pfδβcl(h−1
P (K)) ⊆ h−1

P (pfδcl(K)). □

Remark 3.2. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. Let hP : (X1,ΓP ) → (X2,ΨP ) be a
mapping. If hP is pfδβCts, then

(i) hP (pfδβcl(L)) is not necessarily equal to pfδcl(hP (L)) where L ∈ X1.
(ii) pfδβcl(h−1

P (K)) is not necessarily equal to h−1
P (pfδcl(K)) where K ∈ X2.

Example 3.3. Let X = Y = {x1, x2} and the pfs’s A is defined as A = B = {<
x1, 0.8, 0.3 >,< x2, 0.9, 0.3 >} Here we have τP = {0P , 1P , A} is pfts on X. Let hP :
(X, τP ) → (Y, τP ) be an identity mapping. Then hP is pfδβCts.

(i) hP (pfδβcl(A)) = A. But pfδcl(hP (A)) = 1.
Thus hP (pfδβcl(A)) ̸= pfδcl(hP (A)).

(ii) pfδβcl(h−1
P (A)) = A. But h−1

P (pfδcl(A)) = 1.

Thus pfδβcl(h−1
P (A)) ̸= h−1

P (pfδcl(A)).

Theorem 3.4. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. Let hP : (X1,ΓP ) → (X2,ΨP ) be a
mapping. If hP is pfδβCts, then h−1

P (pfδint(L)) ⊆ pfδβint(h−1
P (L)), for all pfs L in X2.

Proof. If hP is pfδβCts and L ⊆ X2. pfδint(L) is pfδo in X2 and hence, h−1
P (pfδ

int(L)) is pfδβo in X1. Therefore pfδβint(h−1
P (pfδint(L))) = h−1

P (pfδint(L)). Also,

pfδint(L) ⊆ L, implies that h−1
P (pfδint(L)) ⊆ h−1

P (L). Therefore pfδβint(h−1
P (pfδ

int(L))) ⊆ pfδβint(h−1
P (L)). That is h−1

P (pfδint(L)) ⊆ pfδβint (h−1
P (L)).

Conversely, let h−1
P (pfδint(L)) ⊆ pfδβint(h−1

P (L)) for all subset L of X2. If L is pfδo

in X2, then pfδint(L) = L. By assumption, h−1
P (pfδint(L)) ⊆ pfδβint(h−1

P (L)). Thus

h−1
P (L) ⊆ pfδβint(h−1

P (L)). But pfδβint (h−1
P (L)) ⊆ h−1

P (L). Therefore pfδβint(h−1
P (L))

= h−1
P (L). That is, h−1

P (L) is pfδβo in X1, for all pfδos L in X2. Therefore hP is pfδβCts
on X1. □

Remark 3.3. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. Let hP : (X1,ΓP ) → (X2,ΨP )
be a mapping. If hP is pfδβCts, then pfδβint(h−1

P (K)) is not necessarily equal to

h−1
P (pfδint(K)) where K ∈ X2.

Example 3.4. In Example 3.3, hP is a pfδβCts.
Then pfδβint(h−1

P (A)) = A. But h−1
P (pfδint(A)) = 0. Thus pfδβint(h−1

P (K)) ̸=
h−1
P (pfδint(K)).
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Remark 3.4. Theorems 3.2, 3.3, 3.4 and Remarks 3.2, 3.3 are true for pfδPos, pfδSos
and pfδαos.

4. Pythagorean fuzzy δ-irresolute maps

In this section, we introduce the concept of Pythagorean fuzzy irresoluteness called
Pythagorean fuzzy δ irresolute map, pythagorean fuzzy δ-semi irresolute map, pythagorean
fuzzy δ-pre irresolute map, pythagorean fuzzy δα irresolute map and pythagorean fuzzy
δβ irresolute maps and study some of their basic properties. This enables us to obtain
conditions under which maps and inverse maps preserve respective open sets.

Definition 4.1. A map hP : (X1,ΓP ) → (X2,ΨP ) is known as a pythagorean fuzzy (resp.
δ, δP, δS, δα and δβ)-irresolute (in short, pfIrr (resp. pfδIrr, pfδPIrr, pfδSIrr, pf
δαIrr and pfδβIrr)) map if h−1

P (K) is a pfSos (resp. pfδos, pfδPos, pfδSos, pfδαos
and pfδβos) in (X1,ΓP ) for each pfSos (resp. pfδos,pfδPos, pfδSos, pfδαos and
pfδβos) K of (X2,ΨP ).

Theorem 4.1. Let (X1,ΓP ) & (X2,ΨP ) be a pfts’s. Let hP : (X1,ΓP ) → (X2,ΨP ) be a
mapping. Then the following statements are hold for pfts, but not conversely.

(i) Every pfIrr map is a pfSCts.
(ii) Every pfδSIrr map is a pfδSCts.
(iii) Every pfδPIrr map is a pfδPCts.
(iv) Every pfδαIrr map is a pfδαCts.
(v) Every pfδβIrr map is a pfδβCts.

But the converse is not true.

Proof. (i) Consider a pfIrr map hP and a pfos K in X2. As each pfos is a pfSos, K is
a pfSos in X2. By presumption, h−1

P (K) is a pfSos in X1. Thus f is a pfSCts map.
(ii) Consider a pfδSIrr map hP and a pfδos K in X2. As each pfδos is a pfos and

pfδSos, K is a pfδos and pfδSos in X2. By presumption, h−1
P (K) is a pfδSos in X1.

Thus f is a pfδSCts map.
(iii) Consider a pfδPIrr map hP and a pfδos K in X2. As each pfδos is a pfos and

pfδPos, K is a pfδos and pfδPos in X2. By presumption, h−1
P (K) is a pfδPos in X1.

Thus f is a pfδPCts map.
(iv) Consider a pfδαIrr map hP and a pfδos K in X2. As each pfδos is a pfos and

pfδαos, K is a pfδos and pfδαos in X2. By presumption, h−1
P (K) is a pfδαos in X1.

Thus f is a pfδαCts map.
(v) Consider a pfδβIrr map hP and a pfδos K in X2. As each pfδos is a pfos and

pfδβos, K is a pfδos and pfδβos in X2. By presumption, h−1
P (K) is a pfδβos in X1.

Thus f is a pfδβCts map. □

Example 4.1. Let X = Y = {x1, x2} and the pfs’s A1, A2, A3, A4, A5, A6 and A7 are
defined as
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A1 = {< x1, 0.020, 0.080 >,< x2, 0.040, 0.060 >}
A2 = {< x1, 0.010, 0.090 >,< x2, 0.030, 0.070 >}
A3 = {< x1, 0.090, 0.010 >,< x2, 0.070, 0.030 >}
A4 = {< x1, 0.020, 0.080 >,< x2, 0.030, 0.070 >}
A5 = {< x1, 0.020, 0.080 >,< x2, 0.030, 0.060 >}
A6 = {< x1, 0.040, 0.020 >,< x2, 0.040, 0.040 >}
A7 = {< x1, 0.080, 0.020 >,< x2, 0.060, 0.040 >}.

Here we have τ1 = {0X , 1X , A1, A2, A3, A4}, τ2 = {0X , 1X , A2} and τ3 = {0X , 1X , A3} be
a pfts’s on X.

(i) Let hP : (X, τ1) → (Y, τ2) be an identity mapping. Then hP is pfScts (resp. pfδScts)
but not pfSIrr (resp. pfδSIrr), because the set Ac

4 (resp. A4) is a pfSos (resp.

pfδSos) in Y but h−1
P (Ac

4) = Ac
4 (resp. h−1

P (A4) = A4) is not pfSos (resp. pfδSos)
in X.

(ii) Let hP : (X, τ1) → (Y, τ3) be an identity mapping. Then hP is pfδPcts but not
pfδPIrr, because the set Ac

1 is a pfδPos in Y but h−1
P (Ac

1) = Ac
1 is not pfδPos in

X.

Definition 4.2. A pfts (X1,ΓP ) is known as a Pythagorean fuzzy δSU 1
2
(resp. δPU 1

2
,

δαU 1
2
and δβU 1

2
) (in short, pfδSU 1

2
(resp. pfδPU 1

2
, pfδαU 1

2
and pfδβU 1

2
))-space, if each

pfδSos (resp. pfδPos, pfδαos and pfδβos) in X is pfos in X.

Theorem 4.2. Let hP : (X1,ΓP ) → (X2,ΨP ) and gP : (X2,ΨP ) → (X3,ΦP ) be pfδIrr
(resp. pfδSIrr, pfδPIrr, pfδαIrr and pfδβIrr ) maps, then gP ◦ hP : (X1,ΓP ) →
(X3,ΦP ) is a pfδIrr (resp. pfδSIrr, pfδPIrr, pfδαIrr and pfδβIrr ) map.

Proof. Consider a pfδos K in X3. So g−1
P (K) is a pfδos in X2. As hP is a pfδIrr map,

f−1
P (g−1

P (K)) is a pfδos in X1. Thus gP ◦ hP is a pfδIrr map. The other cases are
similar. □

Theorem 4.3. Consider a pfδIrr (resp. pfδSIrr, pfδPIrr, pfδαIrr and pfδβIrr )
map hP : (X1,ΓP ) → (X2,ΨP ) and a pfδCts (resp. pfδSCts, pfδPCts, pfδαCts and
pfδβCts ) map gP : (X2,ΨP ) → (X3,ΦP ). Then gP ◦ hP : (X1,ΓP ) → (X3,ΦP ) is a
pfδCts (resp. pfδSCts, pfδPCts, pfδαCts and pfδβCts ) map.

Proof. Consider a pfos K in X3. So g−1
P (K) is a pfδos in X2. As hP is a pfδIrr map,

f−1
P (g−1

P (U)) is a pfδos in X1. Thus gP ◦ hP is a pfδCts map. The other cases are
similar. □

Theorem 4.4. Consider a map hP : (X1,ΓP ) → (X2,ΨP ) from a pfts X1 into a pfts X2.
The following are equivalent if X1 and X2 are pfδU 1

2
(resp. pfδSU 1

2
, pfδPU 1

2
, pfδαU 1

2

and pfδβU 1
2
)-spaces.

(i) hP is a pfδIrr (resp. pfδSIrr, pfδPIrr, pfδαIrr and pfδβIrr ) map.
(ii) h−1

P (K) is a pfδos (resp. pfδPos, pfδSos, pfδαos and pfδβos) in X1 for every
pfδos (resp. pfδPos, pfδSos, pfδαos and pfδβos) K in X2.

(iii) pfcl(h−1
P (K)) ⊆ h−1

P (pfcl(K)) for every pfs K of X2.
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Proof. (i) → (ii): Consider a pfδβcs K in X2. It follows K
c is a pfδβos in X2. As hP is

pfδβIrr, h−1
P ((K)c) is a pfδβos in X1. We know that h−1

P ((K)c) =
(
h−1
P (K)

)c
. Hence

h−1
P (K) is a pfδβcs in X1.

(ii) → (iii): Consider a pfs K in X2 and K ⊆ pfδβcl(K). Then h−1
P (K) ⊆ h−1

P (pfδβ
cl(K)). Since pfδβcl(K)) is a pfδβcs in X2, pfδβcl(K) is a pfδβcs in X2. Therefore
(pfδβcl(K))c is a pfδβos in X2. By presumption, h−1

P ((pfδβcl(K))c) is a pfδβos in X1.

We know that h−1
P ((pfδβcl(K))c) =

(
h−1
P (pfδβcl(K))

)c
. So h−1

P (pfδβcl(K)) is a pfδβcs

in X1. Also, as X1 is pfδβU 1
2
-space, h−1

P (pfδβcl(K)) is a pfδβcs in X1.

(iii) → (i): Consider a pfδβcs K in X2. As X2 is pfδβU 1
2
-space, K is pfcs in X2 and

pfcl(K) = (K). Thus h−1
P (K) = h−1

P (pfδβcl(K)) ⊇ pfδβcl(h−1
P (K)) = pfcl(h−1

P (K)).

But clearly (h−1
P (K)) ⊆ pfcl(h−1

P (K)). Therefore pfcl((h−1
P (K))) = h−1

P (K). It follows

h−1
P (K) is a pfcs and so it is a pfδβcs in X1. Hence hp is pfδβirr map. The proof is

similar for other cases. □

5. Conclusions

In this paper, the notions of Pythagorean fuzzy δ-continuous maps (pfδCts), Pythagorean
fuzzy continuous maps (pfCts), Pythagorean fuzzy δ-semi-continuous maps (pfδSCts),
Pythagorean fuzzy δ-pre-continuous maps (pfδPCts), Pythagorean fuzzy δα-continuous
maps (pfδαCts), and Pythagorean fuzzy δβ-continuous maps (pfδβCts) are introduced
and investigated in detail. For each of these mappings, the corresponding irresolute maps
are defined with respect to the sets pfδo, pfδSo, pfδPo, pfδαo, and pfδβo. Their fun-
damental properties are analyzed and illustrated through suitable examples to provide a
deeper understanding of their topological behavior.

Furthermore, a comparative study is carried out between Pythagorean fuzzy continuous
maps and other generalized forms of Pythagorean fuzzy continuous mappings to highlight
their interrelationships and distinctions. The concept is then extended to define and
characterize Pythagorean fuzzy open and closed maps, emphasizing their structural and
functional significance.

The proposed Pythagorean fuzzy continuous and irresolute functions also establish a
foundation for further extensions to Fermatean fuzzy sets and Fermatean neutrosophic sets,
thereby enriching the theoretical framework and expanding their potential applications in
advanced research. Additionally, these mappings are examined within specific subclasses
of Pythagorean fuzzy topological spaces, such as “somewhat,” “regular,” and “normal”
spaces, to explore their specialized roles and implications in these particular contexts.
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