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REALIZATION ALGORITHM FOR DEFINING FRACTIONAL ORDER
IN OSCILLATING SYSTEMS WITH LIQUID DAMPER

N.S. HAJIYEVA! 1.V. ALIYEVA?, F.A. ALIEV®*, §

ABSTRACT. In the paper the problem of defining the fractional order in oscillating sys-
tems with liquid damper. Firstly, the equation of the object is reduced to the Volterra
integral equation of the second kind with respect to the second order derivative of the
phase coordinate. Based on the statistical data the quadratic functional has been con-
structed. Using the method of successive approximations the obtained Volterra integral
equation has been solved and its solution has the form of the Neumann series. By means
of the least squares method, we ensure that the theoretical results coincide with the
statistical data, and as a result, a more effective fractional order is determined. Then,
an effective algorithm is proposed. Since some steps of this algorithm need explanation,
the issue of the implementation of the algorithm is considered.

Keywords: fractional order differential equations, the least squares method, statistical
data.
AMS Subject Classification: 49J15, 49J35.

1. INTRODUCTION

It is known that in recent years, the most widespread method of exploitation of oil
wells [18,19,21,28] is the method of exploitation with rod pumping units [10,14,22,23], after
the fountain method. Recently, much attention has been paid to the use of fractional order
differential equations [1,2,5-9,13,15,16,20,24,26,36-38] in various problems of mechanics
and physics [27,29, 30, 35]. Determining the fractional order [11] in these equations is
one of the most important issues. In fact, this problem has been considered previously
[3]. However, to solve this problem, the fractional order linear differential equation is
reduced to the Volterra-type integral equation of the second kind with respect to the phase
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coordinate, and the method of dividing the interval into two parts is used to determine
the fractional linear equation.

But in the current work for determining this order the computational algorithm has
been proposed reducing the fractional order linear differential equation to the Volterra-
type integral equation of the second kind with respect to the second order derivative of
phase coordinate [11] and some steps of this algorithm have been implemented. A table
is introduced to determine the fractional order based on a simple example using the least
squares method, and the effective fractional order is taken as the value at which the first
variation of the functional approaches zero with an accuracy of 1078.

2. PROBLEM STATEMENT

Suppose the motion of an object is described by a system of fractional linear differential
equations as follows [11]:

mij (z) + aDy (x) + by (2) = f (&) , 3 = 70 > 0, 1)

y (z0) = 0,9 (w0) = y1, (2)
a € (1,2),y(x)- the desired function, m, a, b,y1, zo-given parameters,f (z) - external
force.
Let us compose the following quadratic functional to find « :
2

J(oz):moin y(l)—z% ; (3)
j=1

where y;, j = 1,s statistical data for finding «, y () — the value of the solution to the
problem (1)-(2) at the point L

To solve the problem (1)-(3), we first reduce the problem (1)-(2) to the Volterra integral
equation [12, 17, 25, 31, 32] of the second kind with respect to the phase coordinate y(z):

/Kg;—t (t)dt = F (z), (4)

where
- 11—«
K(:c—t):;;(x(l_tlé)!+:;L(x—t)EK0(:L‘—t), (5)
T a e
F(z) = ffn) A ey %ylx. (6)

To solve the equation (4) using the method of successive approximations [33, 34] and its
solution has the form of the Neumann series

y(m):ylx—i—/x(x—t)F(t)dt—i—Z/x(x—t)F(t)dt/ij(f—t)dﬁ. )
=07 %0 t

zo

n+1 (n+D)—k [ b k (33 . t)2(n+1)717(n+17k)a
K (z =) Z ( ) <m> 2n+1)—1—(n+1-ka)’ ®)

Let us consider (7) in funct10nal (3):

l o0 l 1 s
J(@) = min y11+/ (l—t)F(t)dt—l—Z/ (l—t)F(t)dt/t Kj(g_t)dg_z%
zo =0 X0 1
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Using the least squares method, the following condition is checked to determine the pa-
rameter o:

0J(a) J(a+h)—J(a) _
5 - ~ 0. (10)

So, let us present the following algorithm for solving problems (1)-(3).
Algorithm.

(1) Enter the values of the parameters m, a, b, yi1, f, n, k, [, zoincluded in problem
(1)-(2).

(2) Substitute the expression for F(t) according (6).

(3) Substitute the expression for K,, (z — t) according (8).

(4) Enter the statistical data y,, p=1,s.

(5)

(6)

Construct the functional (9).
Using the least squares method, we check condition (10) to determine the param-
eter a.

3. ALGORITHM REALIZATION
Let the parameters in problem (1)-(3) as follows [14] :
m=10°, a=3,b=1, 11 =0, f=8 n=1,k=1,1=1,s =11,

yl(x) = 07 yQ(:E) = —067, yg(l') = —034a y4(l‘) = 0813 y5(:l:) = 1227 y6($) = 1447
yr(x) = 1.57,ys(x) = 1.66, yo(x) = 1.72, y10(z) = 1.77,y11(z) = 1.81.
Note that some steps of the algorithm above need explanations. The first step does not
require much additional work. The following explanations are necessary for the subsequent
steps:

.1. Construction of the function F(t). We can write for each a; (1 < oy < 2, i =
1,10) in equation (9):

f a gl b
== ——y— — —uyt. 11
m myl(l ") myl (11)

Lets write the expression of (1 — a;)! through the Green’s function:

I'a)=(a—1)!= /OO e 't dt, (12)
) 0
(1—o)! :/ e 2t (13)
Let us consider the expression (13) in (11): 0
f a pl-ai

b
TmomY [Peteidt m ¥t (14)

Then we substitute the expression (14) in the second term of expression (7):

/Il(l—t) ; () dt = /zl(l—t)@ am% ;y1t>dt. (15)

0 0

Using Matlab Software thedefinite integral (15) is calculated and entered into a table as
follows:
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fi, A=) F(t)dt, i=1,9
a=11 2399/600000-1/51300/gamma(9,/10)
a=1.2 2399/600000-1/38400/gamma(4/5)
a=13 2399,/600000-3,/83300/gamma(7/10)
a=14 2399,/600000-1 /19200 /gamma(3/5)
a=15 2399,/600000-1/12500/piA(1/2)
a=16 9399 /600000-3,/22400 /pi*sin(2/5%pi)*gamma(3/5)
a=1.7 2399,/600000-1/3900/pi*sin(3/10*pi)*gamma(7/10)
a=128 9399,/600000-1/1600%sin(1/5*pi)*gamma(4/5)/pi
a=19 9399/600000-3/1100/pi*sin(1/10%pi)*gamma(9,/10)

Table 1. Calculating ! (I—t) F; () dt.

3.2. Constructing the Kernel. K, (z —t) We write for each a;; (1 < a; <2, i =1,9)
in equation (8):

0 t)2n—1—(n—k)ai

5 n - _—
;;Kij(f_t):_’OkZOCﬁ(m) k(:;) (z(le(nk)ai)!‘ (16)

=

Then we write through the Greens’ function (12) as
o0
2n—1—(n—k)a) = /0 et (n=k)ai gy, (17)
Further we consider the expression (17) in (16):

0 0o n n—k (b k (5 B t)anl—(nfk)ai
K (6 —1t)=— k(@ o . 1
jgo 1j (5 t) Z Cn (m) (m> fooo o—tan—(n—k)a gt ( 8)

§=0 k=0

Let us substitute the expressions (15) and (18) in the third term of expression (7):

1—0(1'
Z/ (I1—1t)F, dt/KZ] —t)d Z/ (1—1) <_my1 xittQ — iyﬁ)dtx
n b k (éit)2n717(nfk)ai
k —
/ZZC ) (m) foooe—tth—(n—k)aidtdg' (19)

7=0 k=0

Using Matlab Software the definite integral (19) is calculated and entered into a table as
follows:

S0 i (L= ) Fy () dt [} Ky (€ —t)de, i=1,9
a=1.1 1.0010e-005
a=1.2 1.1928e-005
a=1.3 1.4361e-005
a=14 1.7541e-005
a=1.5 2.1879e-005
a=1.6 2.8185e-005
a=1.7 3.8315e-005
a=1.8 5.7681e-005
a=1.9 1.1153e-004

Table 2. Calculating 3270, [1 (I—1t) F; (t)dt [} K (€ — t) de.
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3.3. Calculating the expression (7). Let us consider the expressions (15) and (19) in
expression (7):

l 1—av;
f a T b
i = -t |~ ——Yy1————— — —uy1t | dt—
vi () /x ( )<m m?! o e it aidt mt

0

o) 1 1—o;
f a r T b
_Z/O (I—1) <m y1—7tt2 iy mylt dt x
j=0"2
n _k k _ n\2n—1—(n—k)oy
IS (E) (L) S et 20)
j=0 k=0 o €

Using Matlab Software the definite integral (20) is calculated and entered into a table as
follows:

yi (1)
a=11 604478113496515799549963/1511157274518286468382720000(
a=12 604481049166196771624963/1511157274518286468382720000(
a=13 151121196029719102303897/3777893186295716170956800000
a=14 604489684607079565487463/1511157274518286468382720000(
a=15 302248202213488927429669/7555786372591432341913600000
a=16 37781640282981918200193/944473296573929042739200000
a=17 37782639511996705100193/944473296573929042739200000
a=138 75569179797960375053511/18889465931478580854 78400000
a=19 2361895314937669572473/59029581035870565171200000

Table 3. Calculating y; (1).

3.4. Constructing the functional J(«;). Let us consider the expression (20) and the
statistical data in (9):

! 1-q;
f a T b
J(ay) = mln (/ (l—1) (m my1 i myuﬁ dt

1—a
_Z/ (1 —1t) ( ay1 x*tt2 T y1t> dtx
n nk [ b k (§ t)Qn—l (n— k:)oaZ
/Zzok ) <m> fo e—t2n— (n—k)a Z

7=0 k=0 =1

(21)

Using Matlab Software the definite integral (21) is calculated and entered into a table as
follows:

J(Oél)
a=1.1 1.4399039991854506749399714749094
a=12 1.4399039987192270400422118620174
a=1.3 1.4399039981260665678548636218649
a=14 1.4399039973478034557978132288056
a=1.5 1.4399039962806061219767630649706
a=1.6 1.4399039947178664324068548419640
a=1.7 1.4399039921788113854528329993152
a=1.8 1.4399039872228505054173814614358
a=1.9 1.4399039726497787317126594810796

Table 4. Calculating J(a;).
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3.5. Constructing J(«;+h). Let us write the expression (21) at the point (a;+hy), v

1,5:
. l f a xlfaifhv b
J(ai + hv) - Hcilin </ro (l N t) <m B %yl OOO e—tt2—ai—hy d¢ B mylt) =
_ Z/ i-n(l -2 oo b aix
. m mo o e trmeihedy m?!

t) 2n—1—(n—k)(ai+ho)

(22)

Z )

Using Matlab Software thedefinite integral (22) is calculated and entered into a table as

/chk ) (m> J(« o—t12n—(n—k)(aithe) g
7=0 k=0 0

follows:

J(Oéi + hv) J(Oél' + hv) J(Oéi + hv) J(O&i + hv)
a=1.1 a=1.2 a=14 a=1.85
h; =101 1.439903998719 | 1.439903998126 | 1.43990399628 | 1.4399039437
hy = 1072 1.439903999143 | 1.439903998666 | 1.43990399725 | 1.4399039809
hs = 1073 1.439903999181 | 1.439903998713 | 1.43990399733 | 1.4399039822
hy = 1077 1.439903999185 | 1.439903998718 | 1.43990399734 | 1.4399039823
hs = 107° 1.439903999185 | 1.439903998719 | 1.43990399734 | 1.4399039823

Table 5. Calculating J(a; + hy).

3.6. Constructing the variation. ag—(o‘f) Let us consider the expressions (21) and (22)
n (10):
0J () /l f a pl=ai=hy b
= Y E— — —yt ) dt—
da; 20 (t=1) m mot JoS e trmeimhedt m?!
o0 l 1—a;—h
f a pr T b
-3 I—t) (=~ — — it ) dt
= o/m (=) (m m [ etgz—ai—hug  m”? %

t) 2n—1—(n—k)(ai+ho)

Iy () -y ) -

—t42n—(n—k)(a;+ho)
7=0 k=0
l 1—ay
f a xr T b
- N A I T
</ch (=) (m m”! o ettt m?!
[ a xl b
- [ A S A
= /zo( ) <m m?! o et2madt m?! x

2
t)2n 1—(n— k)al

o 2 / he.  (23)

Using Matlab Software the definite integral (23) is calculated and entered into a table as
follows:

L e (B
NI =
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P0) a=11 [ 20) q=12 |2l o =1 | O
1.85

h=10" —0.46622-107% [ —0.5931 - 108 | —0.1067 - 10~ | —0.3858 - 10— °
h =102 —0.42037-10~8 | —0 .5287-10~% | —0.9140 - 10~® | —0.1388 - 10~ °
h=1073 —0.41625-1078 | —0.5230-10~% [ —0.9011 - 10~® | —0.1305-10~°
h=10"1 —0.41584-1078 | —0.5224-107% [ —0.8998 - 108 | —0.1298 - 10~ °
h=10"° —0.41580-10% | —0.5223-10~% | —0.8997 - 10~% | —0.1297 - 10~ ©
Table 6. Constructing the variation %Oil) .

As can be seen from the Table 6,when o = 1.1,the expression (23), that is, the first

variation of the functional (9) approaches zero with an accuracy of 1078, But for @ = 1.85
obtained in the previous problem [3], the first variation of the functional approaches zero
with an accuracy of 107*. Even when we check o = 1.85 with our method, the first
variation of the functional approaches zero with an accuracy of 107%. From this it is clear
once again that the most effective fractional order is

4. CONCLUSIONS

In the paper the calculation algorithm for defining the fractional order in oscillating
systems with liquid damper. Using Matlab Software some steps of this algorithm has
been explained.
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