REALIZATION ALGORITHM FOR DEFINING FRACTIONAL ORDER IN OSCILLATING SYSTEMS WITH LIQUID DAMPER

N.S. HAJIYEVA¹, I.V. ALIYEVA², F.A. ALIEV^{3*}, §

ABSTRACT. In the paper the problem of defining the fractional order in oscillating systems with liquid damper. Firstly, the equation of the object is reduced to the Volterra integral equation of the second kind with respect to the second order derivative of the phase coordinate. Based on the statistical data the quadratic functional has been constructed. Using the method of successive approximations the obtained Volterra integral equation has been solved and its solution has the form of the Neumann series. By means of the least squares method, we ensure that the theoretical results coincide with the statistical data, and as a result, a more effective fractional order is determined. Then, an effective algorithm is proposed. Since some steps of this algorithm need explanation, the issue of the implementation of the algorithm is considered.

Keywords: fractional order differential equations, the least squares method, statistical data.

AMS Subject Classification: 49J15, 49J35.

1. Introduction

It is known that in recent years, the most widespread method of exploitation of oil wells [18,19,21,28] is the method of exploitation with rod pumping units [10,14,22,23], after the fountain method. Recently, much attention has been paid to the use of fractional order differential equations [1,2,5–9,13,15,16,20,24,26,36–38] in various problems of mechanics and physics [27, 29, 30, 35]. Determining the fractional order [11] in these equations is one of the most important issues. In fact, this problem has been considered previously [3]. However, to solve this problem, the fractional order linear differential equation is reduced to the Volterra-type integral equation of the second kind with respect to the phase

 $^{^{1}}$ Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan

² Baku State University, Baku, Azerbaijan

³ Institute of Information Technology, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan

e-mail: nazile.m@mail.ru; ORCID: https://orcid.org/0000-0002-9227-9007.

e-mail: irade.alieva14@gmail.com; ORCID: https://orcid.org/0009-0005-4694-8571.

e-mail: f_aliev@yahoo.com; ORCID: https://orcid.org/0000-0001-5402-8920.

^{*} Corresponding author.

[§] Manuscript received: October 14, 2024; accepted: February 26, 2025.

TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.11; © Işık University, Department of Mathematics, 2025; all rights reserved.

coordinate, and the method of dividing the interval into two parts is used to determine the fractional linear equation.

But in the current work for determining this order the computational algorithm has been proposed reducing the fractional order linear differential equation to the Volterratype integral equation of the second kind with respect to the second order derivative of phase coordinate [11] and some steps of this algorithm have been implemented. A table is introduced to determine the fractional order based on a simple example using the least squares method, and the effective fractional order is taken as the value at which the first variation of the functional approaches zero with an accuracy of 10^{-8} .

2. Problem Statement

Suppose the motion of an object is described by a system of fractional linear differential equations as follows [11]:

$$m\ddot{y}(x) + aD^{\alpha}y(x) + by(x) = f(x), x \ge x_0 > 0,$$
 (1)

$$y(x_0) = 0, \dot{y}(x_0) = y_1,$$
 (2)

 $\alpha \in (1,2), y(x)$ - the desired function, m, a, b, y_1, x_0 -given parameters, f(x) - external force.

Let us compose the following quadratic functional to find α :

$$J(\alpha) = \min_{\alpha} \left(y(l) - \sum_{j=1}^{s} \frac{y_j}{s} \right)^2, \tag{3}$$

where y_j , $j = \overline{1,s}$ statistical data for finding α , y(l) — the value of the solution to the problem (1)-(2) at the point l.

To solve the problem (1)-(3), we first reduce the problem (1)-(2) to the Volterra integral equation [12, 17, 25, 31, 32] of the second kind with respect to the phase coordinate y(x):

$$\ddot{y}(x) + \int_{x_0}^{x} K(x-t) \ddot{y}(t) dt = F(x),$$
 (4)

where

$$K(x-t) = \frac{a}{m} \frac{(x-t)^{1-\alpha}}{(1-\alpha)!} + \frac{b}{m} (x-t) \equiv K_0(x-t),$$
 (5)

$$F(x) = \frac{f(x)}{m} - \frac{a}{m} y_1 \frac{x^{1-\alpha}}{(1-\alpha)!} - \frac{b}{m} y_1 x.$$
 (6)

To solve the equation (4) using the method of successive approximations [33, 34] and its solution has the form of the Neumann series

$$y(x) = y_1 x + \int_{x_0}^x (x - t) F(t) dt + \sum_{j=0}^\infty \int_{x_0}^x (x - t) F(t) dt \int_t^x K_j(\xi - t) d\xi.$$
 (7)

$$K_n(x-t) = -\sum_{k=0}^{n+1} C_{n+1}^k \left(\frac{a}{m}\right)^{(n+1)-k} \left(\frac{b}{m}\right)^k \frac{(x-t)^{2(n+1)-1-(n+1-k)\alpha}}{(2(n+1)-1-(n+1-k)\alpha)!}, \quad (8)$$

Let us consider (7) in functional (3):

$$J(\alpha) = \min_{\alpha} \left(y_1 l + \int_{x_0}^{l} (l-t) F(t) dt + \sum_{j=0}^{\infty} \int_{x_0}^{l} (l-t) F(t) dt \int_{t}^{l} K_j(\xi - t) d\xi - \sum_{p=1}^{s} \frac{y_p}{s} \right)^2.$$
(9)

Using the least squares method, the following condition is checked to determine the parameter α :

$$\frac{\partial J(\alpha)}{\partial \alpha} \approx \frac{J(\alpha+h) - J(\alpha)}{h} \approx 0. \tag{10}$$

So, let us present the following algorithm for solving problems (1)-(3).

Algorithm.

- (1) Enter the values of the parameters m, a, b, y_1 , f, n, k, l, x_0 included in problem (1)-(2).
- (2) Substitute the expression for F(t) according (6).
- (3) Substitute the expression for $K_n(x-t)$ according (8).
- (4) Enter the statistical data y_p , $p = \overline{1, s}$.
- (5) Construct the functional (9).
- (6) Using the least squares method, we check condition (10) to determine the parameter α .

3. Algorithm realization

Let the parameters in problem (1)-(3) as follows [14]:

$$m = 10^5$$
, $a = 3$, $b = 1$, $y_1 = 0$, $f = 8$, $n = 1$, $k = 1$, $l = 1$, $s = 11$,

$$y_1(x) = 0, y_2(x) = -0.67, y_3(x) = -0.34, y_4(x) = 0.81, y_5(x) = 1.22, y_6(x) = 1.44, y_7(x) = 1.57, y_8(x) = 1.66, y_9(x) = 1.72, y_{10}(x) = 1.77, y_{11}(x) = 1.81.$$

Note that some steps of the algorithm above need explanations. The first step does not require much additional work. The following explanations are necessary for the subsequent steps:

3.1. Construction of the function F(t). We can write for each α_i $(1 < \alpha_i < 2, i = \overline{1,10})$ in equation (9):

$$F_i(t) = \frac{f}{m} - \frac{a}{m} y_1 \frac{x^{1-\alpha_i}}{(1-\alpha_i)!} - \frac{b}{m} y_1 t. \tag{11}$$

Lets write the expression of $(1 - \alpha_i)!$ through the Green's function:

$$\Gamma(\alpha) = (\alpha - 1)! = \int_0^\infty e^{-t} t^{-\alpha} dt, \tag{12}$$

$$(1 - \alpha_i)! = \int_0^\infty e^{-t} t^{2 - \alpha_i} dt. \tag{13}$$

Let us consider the expression (13) in (11):

$$F_i(t) = \frac{f}{m} - \frac{a}{m} y_1 \frac{x^{1-\alpha_i}}{\int_0^\infty e^{-t} t^{2-\alpha_i} dt} - \frac{b}{m} y_1 t.$$
 (14)

Then we substitute the expression (14) in the second term of expression (7):

$$\int_{x_0}^{l} (l-t) F_i(t) dt = \int_{x_0}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_1 \frac{x^{1-\alpha_i}}{\int_0^{\infty} e^{-t} t^{2-\alpha_i} dt} - \frac{b}{m} y_1 t \right) dt.$$
 (15)

Using Matlab Software the definite integral (15) is calculated and entered into a table as follows:

	$\int_{x_0}^{l} (l-t) F_i(t) dt, i = \overline{1,9}$
$\alpha = 1.1$	2399/600000-1/51300/gamma(9/10)
$\alpha = 1.2$	2399/600000-1/38400/gamma(4/5)
$\alpha = 1.3$	2399/600000-3/83300/gamma(7/10)
$\alpha = 1.4$	2399/600000-1/19200/gamma(3/5)
$\alpha = 1.5$	$2399/600000-1/12500/pi \land (1/2)$
$\alpha = 1.6$	2399/600000-3/22400/pi*sin(2/5*pi)*gamma(3/5)
$\alpha = 1.7$	2399/600000-1/3900/pi*sin(3/10*pi)*gamma(7/10)
$\alpha = 1.8$	$2399/600000-1/1600*\sin(1/5*pi)*gamma(4/5)/pi$
$\alpha = 1.9$	2399/600000-3/1100/pi*sin(1/10*pi)*gamma(9/10)

Table 1. Calculating $\int_{x_0}^{l} (l-t) F_i(t) dt$.

3.2. Constructing the Kernel. $K_n(x-t)$ We write for each α_i $(1 < \alpha_i < 2, i = \overline{1,9})$ in equation (8):

$$\sum_{j=0}^{\infty} K_{ij}(\xi - t) = -\sum_{j=0}^{\infty} \sum_{k=0}^{n} C_n^k \left(\frac{a}{m}\right)^{n-k} \left(\frac{b}{m}\right)^k \frac{(\xi - t)^{2n-1-(n-k)\alpha_i}}{(2n-1-(n-k)\alpha_i)!}.$$
 (16)

Then we write through the Greens' function (12) as

$$(2n - 1 - (n - k)\alpha_i)! = \int_0^\infty e^{-t} t^{2n - (n - k)\alpha_i} dt.$$
 (17)

Further we consider the expression (17) in (16):

$$\sum_{j=0}^{\infty} K_{ij}(\xi - t) = -\sum_{j=0}^{\infty} \sum_{k=0}^{n} C_n^k \left(\frac{a}{m}\right)^{n-k} \left(\frac{b}{m}\right)^k \frac{(\xi - t)^{2n-1-(n-k)\alpha_i}}{\int_0^{\infty} e^{-t} t^{2n-(n-k)\alpha_i} dt}.$$
 (18)

Let us substitute the expressions (15) and (18) in the third term of expression (7):

$$\sum_{j=0}^{\infty} \int_{0}^{l} (l-t) F_{i}(t) dt \int_{t}^{l} K_{ij}(\xi - t) d\xi = -\sum_{j=0}^{\infty} \int_{0}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt \times \frac{1}{m} \int_{0}^{\infty} \int_{0}^{t} (l-t) F_{i}(t) dt \int_{t}^{t} K_{ij}(\xi - t) d\xi = -\sum_{j=0}^{\infty} \int_{0}^{t} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt$$

$$\times \int_{t}^{l} \sum_{i=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m}\right)^{n-k} \left(\frac{b}{m}\right)^{k} \frac{\left(\xi - t\right)^{2n-1-(n-k)\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2n-(n-k)\alpha_{i}} dt} d\xi. \tag{19}$$

Using Matlab Software the definite integral (19) is calculated and entered into a table as follows:

HOWS:	
	$\sum_{j=0}^{\infty} \int_{x_0}^{l} (l-t) F_i(t) dt \int_{t}^{l} K_{ij}(\xi - t) d\xi, i = \overline{1,9}$
$\alpha = 1.1$	1.0010e-005
$\alpha = 1.2$	1.1928e-005
$\alpha = 1.3$	1.4361e-005
$\alpha = 1.4$	1.7541e-005
$\alpha = 1.5$	2.1879e-005
$\alpha = 1.6$	2.8185e-005
$\alpha = 1.7$	3.8315e-005
$\alpha = 1.8$	5.7681e-005
$\alpha = 1.9$	1.1153e-004

Table 2. Calculating $\sum_{j=0}^{\infty} \int_{x_0}^{l} (l-t) F_i(t) dt \int_{t}^{l} K_{ij} (\xi-t) d\xi$.

2713

3.3. Calculating the expression (7). Let us consider the expressions (15) and (19) in expression (7):

$$y_{i}(l) = \int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt -$$

$$- \sum_{j=0}^{\infty} \int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt \times$$

$$\times \int_{t}^{l} \sum_{i=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m} \right)^{n-k} \left(\frac{b}{m} \right)^{k} \frac{(\xi-t)^{2n-1-(n-k)\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2n-(n-k)\alpha_{i}} dt} d\xi.$$

$$(20)$$

Using Matlab Software the definite integral (20) is calculated and entered into a table as follows:

uows.	
	$y_i(l)$
$\alpha = 1.1$	604478113496515799549963/15111572745182864683827200000
$\alpha = 1.2$	604481049166196771624963/15111572745182864683827200000
$\alpha = 1.3$	151121196029719102303897/3777893186295716170956800000
$\alpha = 1.4$	604489684607079565487463/15111572745182864683827200000
$\alpha = 1.5$	302248202213488927429669/7555786372591432341913600000
$\alpha = 1.6$	37781640282981918200193/944473296573929042739200000
$\alpha = 1.7$	37782639511996705100193/944473296573929042739200000
$\alpha = 1.8$	75569179797960375053511/1888946593147858085478400000
$\alpha = 1.9$	2361895314937669572473/59029581035870565171200000

Table 3. Calculating $y_i(l)$.

3.4. Constructing the functional $J(\alpha_i)$. Let us consider the expression (20) and the statistical data in (9):

$$J(\alpha_{i}) = \min_{\alpha_{i}} \left(\int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt - \frac{1}{2} \int_{x_{0}}^{\infty} \int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt \times \int_{t}^{l} \sum_{j=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m} \right)^{n-k} \left(\frac{b}{m} \right)^{k} \frac{(\xi-t)^{2n-1-(n-k)\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2n-(n-k)\alpha_{i}} dt} d\xi - \sum_{p=1}^{s} \frac{y_{p}(x)}{s} \right)^{2}.$$
 (21)

Using Matlab Software the definite integral (21) is calculated and entered into a table as follows:

uows.	
	$J(lpha_i)$
$\alpha = 1.1$	1.4399039991854506749399714749094
$\alpha = 1.2$	1.4399039987192270400422118620174
$\alpha = 1.3$	1.4399039981260665678548636218649
$\alpha = 1.4$	1.4399039973478034557978132288056
$\alpha = 1.5$	1.4399039962806061219767630649706
$\alpha = 1.6$	1.4399039947178664324068548419640
$\alpha = 1.7$	1.4399039921788113854528329993152
$\alpha = 1.8$	1.4399039872228505054173814614358
$\alpha = 1.9$	1.4399039726497787317126594810796

Table 4. Calculating $J(\alpha_i)$.

3.5. Constructing $J(\alpha_i + h)$. Let us write the expression (21) at the point $(\alpha_i + h_v)$, $v = \overline{1.5}$:

$$J(\alpha_{i} + h_{v}) = \min_{\alpha_{i}} \left(\int_{x_{0}}^{l} (l - t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1 - \alpha_{i} - h_{v}}}{\int_{0}^{\infty} e^{-t} t^{2 - \alpha_{i} - h_{v}} dt} - \frac{b}{m} y_{1} t \right) dt -$$

$$- \sum_{j=0}^{\infty} \int_{x_{0}}^{l} (l - t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1 - \alpha_{i} - h_{v}}}{\int_{0}^{\infty} e^{-t} t^{2 - \alpha_{i} - h_{v}} dt} - \frac{b}{m} y_{1} t \right) dt \times$$

$$\times \int_{t}^{l} \sum_{j=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m} \right)^{n-k} \left(\frac{b}{m} \right)^{k} \frac{(\xi - t)^{2n - 1 - (n-k)(\alpha_{i} + h_{v})}}{\int_{0}^{\infty} e^{-t} t^{2n - (n-k)(\alpha_{i} + h_{v})} dt} d\xi - \sum_{p=1}^{s} \frac{y_{p}(x)}{s} \right)^{2}.$$
 (22)

Using Matlab Software the definite integral (22) is calculated and entered into a table as follows:

niows.						
$J(\alpha_i + h_v)$	$J(\alpha_i + h_v)$	$J(\alpha_i + h_v)$	$J(\alpha_i + h_v)$			
$\alpha = 1.1$	$\alpha = 1.2$	$\alpha = 1.4$	$\alpha = 1.85$			
1.439903998719	1.439903998126	1.43990399628	1.4399039437			
1.439903999143	1.439903998666	1.43990399725	1.4399039809			
1.439903999181	1.439903998713	1.43990399733	1.4399039822			
1.439903999185	1.439903998718	1.43990399734	1.4399039823			
1.439903999185	1.439903998719	1.43990399734	1.4399039823			
	$\begin{array}{c} \alpha = 1.1 \\ 1.439903998719 \\ 1.439903999143 \\ 1.439903999181 \\ 1.439903999185 \end{array}$	$\begin{array}{lll} \alpha = 1.1 & \alpha = 1.2 \\ 1.439903998719 & 1.439903998126 \\ 1.439903999143 & 1.439903998666 \\ 1.439903999181 & 1.439903998713 \\ 1.439903999185 & 1.439903998718 \\ \end{array}$				

Table 5. Calculating $J(\alpha_i + h_v)$.

3.6. Constructing the variation. $\frac{\partial J(\alpha)}{\partial \alpha}$ Let us consider the expressions (21) and (22) in (10):

$$\frac{\partial J(\alpha_{i})}{\partial \alpha_{i}} = \left\{ \left(\int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}-h_{v}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}-h_{v}} dt} - \frac{b}{m} y_{1} t \right) dt - \right. \\
\left. - \sum_{j=0}^{\infty} \int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}-h_{v}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}-h_{v}} dt} - \frac{b}{m} y_{1} t \right) dt \times \right. \\
\times \int_{t}^{l} \sum_{j=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m} \right)^{n-k} \left(\frac{b}{m} \right)^{k} \frac{(\xi - t)^{2n-1-(n-k)(\alpha_{i}+h_{v})}}{\int_{0}^{\infty} e^{-t} t^{2n-(n-k)(\alpha_{i}+h_{v})} dt} d\xi - \sum_{p=1}^{s} \frac{y_{p}(x)}{s} \right)^{2} - \\
- \left(\int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt - \\
- \sum_{j=0}^{\infty} \int_{x_{0}}^{l} (l-t) \left(\frac{f}{m} - \frac{a}{m} y_{1} \frac{x^{1-\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2-\alpha_{i}} dt} - \frac{b}{m} y_{1} t \right) dt \times \\
\times \int_{t}^{l} \sum_{j=0}^{\infty} \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a}{m} \right)^{n-k} \left(\frac{b}{m} \right)^{k} \frac{(\xi - t)^{2n-1-(n-k)\alpha_{i}}}{\int_{0}^{\infty} e^{-t} t^{2n-(n-k)\alpha_{i}} dt} d\xi - \sum_{p=1}^{s} \frac{y_{p}(x)}{s} \right)^{2} \right\} / h_{v}. \quad (23)$$

Using Matlab Software the definite integral (23) is calculated and entered into a table as follows:

			$\frac{\partial J(\alpha_i)}{\partial \alpha_i}$, $\alpha = 1.4$	
$h = 10^{-1}$	$-0.46622 \cdot 10^{-8}$	$-0.5931 \cdot 10^{-8}$	$-0.1067 \cdot 10^{-7}$	$-0.3858 \cdot 10^{-6}$
$h = 10^{-2}$	$-0.42037 \cdot 10^{-8}$	$-0.5287 \cdot 10^{-8}$	$-0.9140 \cdot 10^{-8}$	$-0.1388 \cdot 10^{-6}$
$h = 10^{-3}$	$-0.41625 \cdot 10^{-8}$	$-0.5230 \cdot 10^{-8}$	$-0.9011 \cdot 10^{-8}$	$-0.1305 \cdot 10^{-6}$
$h = 10^{-4}$	$-0.41584 \cdot 10^{-8}$	$-0.5224 \cdot 10^{-8}$	$-0.8998 \cdot 10^{-8}$	$-0.1298 \cdot 10^{-6}$
$h = 10^{-5}$	$-0.41580 \cdot 10^{-8}$	$-0.5223 \cdot 10^{-8}$	$-0.8997 \cdot 10^{-8}$	$-0.1297 \cdot 10^{-6}$

Table 6. Constructing the variation $\frac{\partial J(\alpha_i)}{\partial \alpha_i}$.

As can be seen from the Table 6,when $\alpha=1.1$, the expression (23), that is, the first variation of the functional (9) approaches zero with an accuracy of 10^{-8} . But for $\alpha=1.85$ obtained in the previous problem [3], the first variation of the functional approaches zero with an accuracy of 10^{-4} . Even when we check $\alpha=1.85$ with our method, the first variation of the functional approaches zero with an accuracy of 10^{-6} . From this it is clear once again that the most effective fractional order is

4. Conclusions

In the paper the calculation algorithm for defining the fractional order in oscillating systems with liquid damper. Using Matlab Software some steps of this algorithm has been explained.

References

- Agarwal G., Yadav L.K., Nisar K.S., Alqarni M.M., Mahmoud E.E., (2024), A hybrid method for the analytical solution of time fractional Whitham-Broer-Kaup equations, Appl. Comput. Math., 23(1), pp.3-17.
- [2] Ahmad B., Alsaedi A., Ntouyas S.K., Alotaibi F.M., (2024), A coupled Hilfer-Hadamard fractional differential system with nonlocal fractional integral boundary conditions, TWMS J. Pure and Appl. Math., 15(1), pp.95-114.
- [3] Aliev F.A., Aliev N.A., Mutallimov M.M., Namazov A.A., (2019), Identification method for determining the order of the fractional derivative of an oscillatory system, Proceedings of IAM, 8(1), pp.3-13. (in Russian)
- [4] Aliev F.A., Aliev N.A., Rasulzade A.F., Hajiyeva N.S., (2023), Solution of the optimal program trajectory and control of the discretized equation of motion of sucker-rod pumping unit in a Newtonian fluid, TWMS J. App. and Eng. Math., 13(4), pp.1369-1382.
- [5] Aliev F.A., Aliev N.A., Rasulzade A.F., Hajiyeva N.S., Alieva I.V., (2024), Development of discrete asymptotic algorithm for the optimal trajectory and control in oscillatory systems with liquid damper, SOCAR Proceedings, (2), pp.122-127.
- [6] Aliev F.A., Aliev N.A., Velieva N.I., Gasimova K.G., (2021), A Method for the Discretization of Linear Systems of Ordinary Fractional Differential Equations with Constant Coefficients, Journal of Mathematical Sciences, 256, pp.567-575.
- [7] Aliev F.A., Aliyev N.A, Hajiyeva N.S., Ismailov N.A., Magarramov I.A., Ramazanov A.B., Abdullayev V.C., (2021), Solution of an oscillatory system with fractional derivative including to equations of motion and to nonlocal boundary conditions, SOCAR Proceedings, (4), pp.115-121.
- [8] Aliev F.A., Aliyev N.A, Hajiyeva N.S., Mahmudov N.I., (2021), Some mathematical problems and their solutions for the oscillating systems with liquid dampers: A review, Applied and Computational Mathematics, 20(3), pp.339-365.
- [9] Aliev F.A., Aliyev N.A., Hajiyeva N.S., Safarova N.A., Aliyeva R., (2022), Asymptotic method for solution of oscillatory fractional derivative, Computational Methods for Differential Equations, 10(4), pp.1123-1130.
- [10] Aliev F.A., Jamalbayov M.A., Valiyev N.A., Handajiyeva N.S., (2023), Computer model of pump—well–reservoir system based on the new concept of imitational modeling of dynamic systems, International Applied Mechanics, 59(3), pp.352-362.

- [11] Aliev N.A., Hajiyeva N.S., Alieva I.V., Farajova Sh.A., (2024), Algorithm for defining the fractional order of an oscillatory system with liquid dampers, Proceedings of IAM, 13(2), pp.262-279. (in Russian)
- [12] Aydinlik S., Kiris A., (2024), An efficient method for solving fractional integral and differential equations of Bratu type, TWMS J. App. and Eng. Math., 14(1), pp.94-102.
- [13] Benmerrous A., Chadli L.S., Moujahid A., Elomari M., Melliani S., (2024), Generalized solutions for fractional Schrödinger equation, TWMS J. App. and Eng. Math., 14(4), pp.1361-1374.
- [14] Bonilla B., Rivero M., Trujillo J.J., (2007), On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., (??), pp.68-78.
- [15] Celik B., Akdemir A.O., Set E., Aslan S., (2024), Ostrowski-Mercer type integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators conditions, TWMS J. Pure and Appl. Math., 15(1), pp.269-285.
- [16] Çelik Bariş, Set Erhan, Akdemir Ahmet Ocak, Özdemir M. Emin, (2023), Novel generalizations for Grüss type inequalities pertaining to the constant proportional fractional integrals, Appl. Comput. Math., 22(2), pp.275-291.
- [17] Fikhtengolts G.M., (1966), Course of Differential and Integral Calculus, Moscow: Nauka, 616p.
- [18] Guliyev A. M., Jamalbayov M.A., (2017), The Prediction of the Development Indicators of Creeping Reservoirs of Light Oils, SOCAR Proceedings, (3), pp.51-57.
- [19] Hajiyeva N.S., Aliev F.A., (2023), Algorithm for finding program trajectories and controls during oil production by the gas lift method in general case, Proceedings of IAM, 12(1), pp.76-84.
- [20] Hamdy M. Ahmed, A.M. Sayed Ahmed, Maria Alessandra Ragusa, (2023), On some non-instantaneous impulsive differential equations with fractional Brownian motion and poisson jumps, TWMS J. Pure and Appl. Math., 14(1), pp.125-140.
- [21] Jamalbayov M., Jamalbayli T., Hajiyeva N., Allahverdi J., Aliev F.A., (2022), Algorithm for Determining the Permeability and Compaction Properties of a Gas Condensate Reservoir based on a Binary Model, Journal of Applied and Computational Mechanics, 8(3), pp.1014-1022.
- [22] Jamalbayov M., Valiyev N., (2024), The Discrete-Imitational Modeling of the Pump-Well-Reservior System with a Intermittent Sucker-Rod Pumping, Society of Petroleum Engineers - SPE Middle East Artificial Lift Conference and Exhibition, MEAL, Paper Number: SPE-221528-MS. https://doi.org/10.2118/221528-MS.
- [23] Jamalbayov M.A., Valiyev N.A., (2024), The discrete-imitation modeling concept of the "sucker-rod pump-well-reservoir" system and the optimization of the pumping process, Petroleum Research, 9(4), pp.686-694.
- [24] Kaczorek T., (2010), Positive linear systems with different fractional orders, Bull. Pol. Acad. Sci. Tech. Sci., 58, pp.453-458.
- [25] Krushna B.M.B., (2024), Extremal points for a (n,p)-type Riemann-liouville fractional-order boundary value problems, TWMS J. App. and Eng. Math., 14(1), pp.247-258.
- [26] Mahdi N.K., Khudair A.R., (2024), Toward stability investigation of fractional dynamical systems on time scale, TWMS J. App. and Eng. Math., 14(4), pp.1495-1513.
- [27] Miller K.S., Ross B., (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 336p.
- [28] Mirzajanzadeh A.Kh., (1997), Dynamic processes in oil and gas production, Moscow: Nauka, 246 p. (in Russian)
- [29] Mittag-Leffler G., (1905), Sur la representation analytique d'une branche uniforme d'une function monogene: cinquieme note, Acta Mathematica, 29, pp.101-181.
- [30] Monje C.A., Chen Y.Q, Vinagre B.M, Xue D., Feliu V., (2010), Fractional-Order Systems and Controls Fundamentals and Applications, London: Springer, 414p.
- [31] Petrovski I.G., (1965), Lectures on the Theory of Integral Equations, Moscow: Science, 128 p.
- [32] Petrovsky I.G., (1952), Lectures on the Theory of Ordinary Equations, Gostekhizdat, 232p. (in Russian).
- [33] Sadek L., Yüzbaşi Ş., Alaoui H.T., (2024), Two numerical solutions for solving linear and nonlinear systems of differential equations, Appl. Comput. Math., 23(4), pp.421-436.
- [34] Samarsky A.A., (1989), Numerical Methods, Moscow: Science, 432p.
- [35] Samko S., Marichev O., Kilbas A., (1987), Fractional Integrals and Derivatives and Some of Their Applications, Science and Technica, Minsk.
- [36] Temirbekov A.N., Temirbekova L.N., Zhumagulov B.T., (2023), Fictitious domain method with the idea of conjugate optimization for non-linear Navier-Stokes equations, Appl. Comput. Math., 22(2), pp.172-188.

- [37] Thabet Abdeljawad, Kamal Shah, Mohammed S. Abdo, Fahd Jarad, (2023), An Analytical Study of Fractional Delay Impulsive Implicit Systems with Mittag-Leffler Law, Appl. Comput. Math., 22(1), pp.31-44.
- [38] Xu C.J., Lin J., Zhao Y., Li P.L., Han L.Q., Qin Y.X., Peng X.Q., Shi S., (2023), Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, Appl. Comput. Math., 22(4), pp.495-519.

Hajiyeva Nazile She has graduated from the faculty of Mechanics and Mathematics of Baku State University in 2009 with honors degree. She received her M.Sc. degree with honors degree in 2011 at the faculty of Mechanics and Mathematics of Baku State University. She received the Ph.D. degree in 2016 from the Institute of Applied Mathematics of Baku State University. She is leading researcher of the Department of "Inverse Problems and Image Recognition" at the Institute of Applied Mathematics of Baku State University. Professional Interests are optimization, numerical analysis, fractional order differential equa-

tions. She has 32 scientific papers, 18 of them are in the list of Web of Science.

Aliyeva Irade She has graduated from the faculty of Mechanics and Mathematics of Baku State University in 2023. She received her M.Sc. degree in 225 at the faculty of Mechanics and Mathematics of Baku State University. Professional Interests are mechanics, optimization, numerical analysis, fractional order differential equations. She has 10 scientific papers..

F.A. Aliev for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.7, No.1.