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C?> QUARTIC QUASI-INTERPOLANTS OVER A 6-DIRECTION MESH

A. LAMNII'*, M. LAMNII?, C. MOUHOUB?, F. OUMELLAL?, §

ABSTRACT. In this work, we are interested in constructing quasi-interpolants in the
space of splines S (Ag), where Ag designates a triangulation of a rectangular domain
generated by a uniform mesh with six directions. Firstly, we will show that we can
have a subspace of Si (Ag) containing P4 generated by the integer translates of a box
spline ¢ for which we specify the B-coefficients. We also give some main properties
of this box spline. Naturally, the B-coefficients of the box spline ¢ can be obtained
by convolution. However, for reasons of simplicity, we propose a method based on the
subdivision schemes to determine them quickly. Finally, given the importance of this
triangulation, we develop some discrete and differential quasi-interpolants, and we give
numerical examples.
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1. INTRODUCTION

Quasi-interpolation is an essential technique in numerical analysis and data processing,
known for its efficiency and simplicity in approximating functions from discrete data. The
main motivation behind developing the proposed quasi-interpolation scheme is to improve
the accuracy and continuity class of the approximations while reducing computational
complexity. In particular, spline-based quasi-interpolation schemes are known for their
exceptional flexibility and efficiency, making them well-suited for a wide range of applica-
tions in science and engineering. The work of Buhmann and Jéger [1] provides an essential
reference for understanding the theoretical foundations and recent developments in quasi-
interpolation. Several authors have studied box splines and their properties on uniform
meshes with 3 and 4 directions, including C.K. Chui [2] in 1988 and C. de Boor, K. Hollig,
and S. Riemenschneider [5] in 1993. The key properties of these functions are clearly

1 Abdelmalek Essaddi University, Laboratory ISI, ENSATe, 93030, Tétouan, Morocco.
e-mail: a.lamnii@uae.ac.ma; https://orcid.org/0000-0002-0538-8812.

2 Laboratoire LANO, Faculty of Science Oujda, University Mohamed First, Oujda, Morocco.
e-mail: m_lamniil@yahoo.fr; https://orcid.org/0000-0002-2532-3418.
e-mail: sheimamouhoub@gmail.com; https://orcid.org/0009-0007-6209-5307.
Hassan First University, Laboratoire d’éducation, sciences et Techniques, ESEF Berrechid, Morocco.
e-mail: fatima.oumellal@uhp.ac.ma; https://orcid.org/0009-0006-4429-4196.
Corresponding author.
Manuscript received: December 20, 2024; accepted: March 25, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.12; (©) Isik University, Depart-
ment of Mathematics, 2025; all rights reserved.

3

wn

2710



A. LAMNII et al.: 3 QUARTIC QUASI-INTERPOLANTS OVER A 6-DIRECTION MESH 2711

described in [2]. We also find fairly regular B-splines generalizing these classic box-splines
(see [2]). In the works we have just cited, they used the Cartesian lattice. The symmetry
of box-splines was not a concern for their authors. In [14], M. Kim and J. Peters presented
a collection focusing on low-degree symmetric box-splines on Cartesian and hexagonal lat-
tices (see Figure 2). In this collection, the authors introduced a symmetric box-spline,
denoted as Myj; on the hexagonal lattice. As indicated in [13], the B-coefficients of this
box-spline can be calculated stably and efficiently. Given the importance of the Cartesian
lattice in practical applications, especially in image processing, our objective is to work on
the box-spline generated by the directions e; = (1,0), e2 = (0,1), e3 = (-1, —1), ea(—1,1),
es = (2,1) and eg = (—1,—2). In the univariate case, it is always possible to construct a
basis of B-splines for the space Sl,j_l(A) where £ > 0 and A a subdivision of an interval
[a,b]. By expressing the monomials of the space Py in the B-spline basis, we can easily
construct quasi-interpolants (QIs) of degree k and class C*~1 with optimal approximation
order. However, due to connectivity issues particularly on arbitrary domains extending
this property to bivariate splines is nontrivial, especially for degrees exceeding 2. While
the B-spline technique can be generalized to 2D via tensor products, this extension intro-
duces additional challenges on non-rectangular domains. Recently, several authors have
investigated the space S3(Ag) from different perspectives (see [3, 12]). In particular, [6]
constructed discrete and differential quasi-interpolants in this space, demonstrating no-
table approximation properties. In this work, we aim to construct highly regular discrete
and differential QIs with improved approximation orders.

The content of this work is organized as follows: In section 2, we will present the
triangulation Ag and discuss the dimension of the space S on a rectangular domain.
Section 3 is devoted to the construction of the box spline ¢, defined by the six directions
e;, ©=1,...,6, using the concept of subdivision schemes. We also give in this section the
main properties of this box spline. In section 4, we will establish the Marsden identity
and give discrete and differential QIs of optimal order. A summary table of the numerical
tests relating to the different QIs developed will be given at the end of this section.

2. QUARTIC SPLINES OF CLASS C3 ON Ag

Let A3 be the uniform triangulation of R? with vertices at the integer lattice points
72 and edges parallel to the three directions ey, ez, and ez (see Fig. 1). Let Ag be the
refinement of As obtained by subdividing each triangle into six subtriangles using its
medians (Powell-Sabin type refinement of Asz). This triangulation can be obtained by
drawing the following six families of straight lines with equations:

(le): y—k=0,
(Dé): x—k=0,
(Dlg): y—x—k=0,
(D) : y+ax—k=0,
(Dé): y—2x—k=0,

k —%x—kzO, keZ.

—~
S
(=]
~

In Figure 1, we have represented the Cartesian lattice with the six directions e;, ¢ =
1,---,6 used to construct our box spline on the left. On the right, we see the figure on

the left multiplied by the matrix G = 1 [ B \/% \/% } . We notice that the box spline we

will construct here is not a transformation of the symmetric box spline M1 defined on
the hexagonal lattice, as presented in [14]. Let M and N be two positive integers, and
consider the rectangular region Qs = [0, M +1] x [0, N +1] provided with a triangulation
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L ==

FIGURE 1. On the left: Cartesian lattice with 6 directions, on the right:
hexagonal Cartesian lattice.

of type Ag. The obtained triangulation is denoted Ag\g)N. For r < d in Z, let us denote
by S (AS\?N> vector space of class functions C” (2p7n) such that the restriction on each

triangle of ASS)N is a polynomial in the space Pg.

Proposition 2.1. The dimension of the space S (AE\(/S[)N> is equal to M N +5(M + N +2).

Proof. According to Theorem ( [16] 2.1 ), the dimension of space S} (Ag\%\,) is given by:

Ny
15+ L+ aj(n)
i=1
where N, is the number of interior vertices Ay, --- , An,, L is the number of interior lines,

n; is the number of lines passing through vertex A;, and a; (n;) is the number given by
the following formula:

ai(n);(1[nf1}>+<2(n5)+(n1) {nflb (1)

[z] is the integer part of x and x4 = max(z,0).

By examining triangulation Ag\?[)N, we deduce that L = 6(M + N — 1). We also have
(M — 1)(N — 1) interior vertices crossed by six lines, 2M N interior vertices crossed by
three lines, and 3SM N — M — N interior vertices crossed by two lines.

By applying the formula (1), we obtain a3(6) = 1, a3(3) = 0 and a3(2) = 0, from which,
by a simple calculation, we find the result. ]

3. QUARTIC BOX SPLINE OF CLASS C3 ON TRIANGULATION Ag

In general, box splines are generated by directional convolutions in Z? (see [8, 9]).
Consider six directions e; (i = 1,...,6), and let ¢ be the box spline defined through
convolution along these directions. The box spline ¢ serves as the basic limit function of
the subdivision scheme with mask:

6
a(z) =2 [ (1 +2%) (2)
i=1

In the following, we note by S(¢) the space generated by the integer translates of ¢.

Proposition 3.1. The box spline ¢ verified the following properties:
6
(1) ¢est(afiy)-
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(2) The family {¢(- — o), a € Z*} is linearly dependent.
(3) Py C S(9).
Proof. 1. Let X¢ = {e1, €2, €3, €4, €5, €6} denote the set of directions and let d (resp. r ) be

the degree (resp. the class ) of the box spline ¢ generated by Xg. According to de Boor
and Holling [7] we have:

d=#Xs—2=6—-2=4
and
r=min {#Y :Y C Xg, (X6\Y) #R*} —2=5-2=3.

2. To show the linear dependence of the family {gb( —a),a € ZQ} we will proceed in the
same way as de Boor and Holling in [7]. It is enough to find a set Y5 C Xg such that
|det Ya| # 1 and (Y3) = R2.

In our case, we can take Y» = {e1, e} which generates R? and |det Y| = 2.

3. The fact that ¢ € S? (A(A(})N) gives Py C S(¢) (see [2]). 0

Remark 3.1. There exists (M + 5)(N + 5) translated integers of ¢ whose intersection
with Qprn is non-empty, this number is less than Dim <S§’L (A%?AJ) for M >1 and N >

1. We deduce that {¢(- — o), € Z?} is not a generating family of S} (A(G)).
The mask a(z) given by equation (2) can be written explicitly as follows:

a(z) = 1200 4 Lo Lo Loy %z(z,our

4 8 4 4

Tl(jz(—2,—3) n %Z(—L—@ n %Z<07—2) n 1i6z<—3,—2)+
éz(—z,—m n ézel,—z) n %620,—2) n %(o,—n+

%6 (=3,-1) 4 éz<—2 - %Z(—L—l) n ézu S
%62’(2"71) + iz(o’l) + %67:(72’1) + %z(fl’l) + iz(l’lﬂ—
%z(“) " 17162(3’1) n %z(“) " 17162(71,2) n éz(1,2)+
52(2,2) + 1—162(3’2) + %62(1’3) + %2(2’3).

It is clear that the only symmetries of this mask are with respect to the lines (D) :
x—y = 0and (D2) : * +y = 0 (see Fig. 2). We can thus calculate ¢ on part
{(3:, YeER Lz —y>0,2+y> O} and deduce the remaining parts by symmetry. This
support cutting poses some difficulties when we want to schematize the B-coefficients of
the box spline ¢ in a single figure.

The support of the box spline ¢ is the convex hull of the mask. To draw the graph of
¢, we can use the cascade algorithm, which operates as follows:
1. We choose an initial function with compact support .

2. We calculate 911 at step k+ 1 by 1 = Z Aok

a€Z?
Let us denote by fﬁ the value attached to the point 2 Fa,a € Z2. The refinement
relation at step k is given by:

frt = Z aa,glgfg,oc €72 (3)
pez?
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FIGURE 2. i
Support for the box spline, all coefficients are multiplied by 16
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Specifically, for the box spline ¢ the equation (3) at step k becomes:

5
A *kar fs (01)+ fa+(01)Jr fa 1T

1
*f]of+(1 1) + *fa+(1 0) + gfa—(1,0)7

1
f2a+(0 = kaF f§+(01 T f§+ 1—1)+*f§+(1 nT

]' k k
16 a+(12 + 16foz (11 + fa (10)+ 16fa+( 11)

1
fk;;l(lo) 16fk a, 1)+*f +*f§7(0 1)+T6fa+(01 +
L ok
16 a+(1,00 T fa+1o + fa+11)+ 16fa+(2 1)

k1 k k
f2;+(1 = 16fa+(’1’0) + Zfa + ifoﬁ»(l,l) + gfa+(0,1)+

1 k 1 k 1 k 1 k
176fa+(0,71) + gfa+(1,0) + T6fa+(1’2) + Efa+(2,1)'

Equation (3) can also be effectively described using subdivision masks as follows.

k+1 fk+1 fk+l fk+1

2 20+(0,1) 2a+(1,0) 2a+(1,1)
1 A
oo sl
. ! pa T
//%//? ] P 1 /'?_/' /'%_/'I i
e, e ¥y et
?:/"// , //"//': ?_//'
-4 J s

FIGURE 4. All coefficients in the subdivision masks are multiplied by 16.

While the B-coefficients of a box spline are naturally obtained through convolution,
they can alternatively be computed using refinement relations.

We present an algorithm for calculating the B-coefficients of the box spline ¢ via the
cascade algorithm. Since ¢ is a degree-4 polynomial on each triangular patch, we determine
it through interpolation by selecting 15 points satisfying the geometric characterization
(GC) condition. This geometric characterization enables a simplified expression for the
Lagrange interpolant, as detailed in [4].

For the interpolation problem, we use the principal lattice (regular grid) as the under-
lying structure.

Given that the box spline B-coefficients are rational numbers (see Lemma 2 of [13]) and
that the cascade algorithm converges, we can be confident that our algorithm will also
converge to rational numbers. Therefore, on each triangle T' of supp(¢), if we take f
satisfying condition (GC), the coefficients of the resulting Lagrange polynomial - when
expressed in the Bernstein basis - are approximations of rational numbers. With sufficient
approximation precision, we could use numerical techniques to recover the exact fractions.

The support of the box spline ¢ is very large; even with two available symmetries, we
cannot represent it in a single figure. Therefore, we divide it into nine pieces that can each
be considered as separate splines (see Fig. 5).

Let us denote these splines as ¢11(z,y), ¢12(z,y), d13(z, y), d21(x, y), d22(x, y), d23(, y),
¢31(x,y), ¢32(x,y), and ¢33(z,y). Examining the B-coefficients of these subsplines reveals
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symmetry about the center (0,0). More precisely, we have the following relationships:

$33(7,y) = d11(—2, —y)
P32(z,y) = ¢12(—, —y)
#31(z,y) = d13(—x, —y)
$23(2,y) = Pa1(—, —y)

FIGURE 5. Pieces of support of spline ¢ support.

Given these symmetry properties, we provide the B-controls of the five sub-splines ¢11,
P12, $13, P21, and ¢92. The others can be easily deduced by symmetry.
By combining the nine sub-splines, we construct the box spline ¢ (see Fig. 6f).

Algorithm 1 Cascade Algorithm
Require: Input:

e The support of supp(¢).
e An integer N for the refinement step.
Ensure: Output:
e The B-coefficients for box spline ¢.
Step 1: Initialization
For k = 0, set f(oo,O) =1and f2 =0 for a # (0,0).
Step 2: Refinement
Extend the refinement up to step N.
Step 3: Interpolation
For each triangle T' of supp(¢):
e Select 20 values f.¥ satisfying the (GC) condition.
e Compute the Lagrange interpolation polynomial p on 7.

7: Step 4: Conversion to Bernstein Basis

8: Express the polynomial p in the Bernstein basis relative to the triangle 7.

9: Deduce the B-coefficients.

10: Step 5: Coefficient Approximation

11: Approximate each B-coefficient by a fraction with the smallest possible numerator and
denominator.

12: Return the B-coeflicients.
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4. QUASI-INTERPOLATION IN S(¢) SPACE

4.1. Reproduction of polynomials. The concept of polynomial reproduction (also
called polynomial space preservation) plays a fundamental role in approximation theory,
particularly in the study of distances between functions and function spaces.

For a spline space S(¢) generated by the integer translates of a compactly supported
spline function ¢, establishing the Marsden identity represents a crucial step. This identity
provides an expansion of the monomials mq(z) := 2* (for z € R?, a € N?) in terms of
the integer translates of ¢. To construct such an expansion, we utilize Appell sequences
{Pa}aenz, defined recursively through:

go = myo.
o , (=)
ga_ma ];W¢<j>%(a_ﬂ)‘gﬁ’
B<a

Each monomial m,, is written:

ma(2) = Y ga(k)d(x — k).

keZ?

In the following, by dividing the B-coefficients by 28.32, we will normalize the box spline
¢, i.e., the sum of its integer translates is equal to 1.
The values of ¢ at integer points are given by:

1

102
6(0,0) = 755, 6(=2,-2) = 6(~2,0) = 6(0, -2) = ==,
1

$(0,2) = 6(2,2) = 6(2,0) = 1o,

B(=2,—1) = $(—1,-2) = 6(~1,1) = ——

432’
B, 1) = 9(1,2) = 6(2.1) = 1o
H(=1,-1) = 6(=1,0) = 6(0,-1) = 7,
47

Therefore, we derive the expressions for the monomials of P4 in terms of the integer
translates of ¢ for k = (k1, ko) € Z? as follows:

1= 6@k, o= ko k),

kez? kez?

T2 =Y kop(x— k), map= ) (; +k1k2) oz — k),

kez? kez?

=3 (-3 +m)ota-n. =% (<2+82) o,

kez? keZ2

wf =Y (=2ky + KY) ¢z — k),

keZ?

xmz(

<m+kg+ﬁ@>axm,
kez?

Wl o
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kez?
vy = (~2ky +k3) (x — k),
kez?
3
rp=Y" (2 —4k? + k;*) oz — k),
kez?
3 [
T1To = Z <4 — k% — 2]{31]432 + kfkg) ¢(l’ - k),
kez?
3 2 2 2 4 21.2
r1Ty = Z 173 (ki +k3) - gkﬂfz + kiks | o(x — k),
kezZ?
3
zay =) <4 — k2 — 2k kg + klk;”) o(x — k),

ry= Y (Z —4k§+k3> o(x — k).

kez?

4.2. Construction of quasi-interpolants in the space S(¢). Now consider the fol-
lowing differential quasi-interpolant:

Q" f(x) = D*f(k)p(x — k),
kez?

where D* is the differential operator defined by:

1 1 1
D =13 (0F + 010> + 03) + 3 (870, + 0103) + G (01 + 93) + 13—6 9703,

. . i+
where 0705 = 821'76?;3"

From the results of the previous section, it is easy to deduce the following result:

Proposition 4.1. The differential quasi-interpolant Q* is exact on the space of quartic
polynomials Py.

Proof. 1t is easy to just check the exactness of Q* on the monomials of the space Py. [

Now, using the D* operator, we can easily derive the Marsden identity. For any poly-
nomial p € P4, we have
p(x) =Y D*p(k)g(z — k). (4)
kez?
Following the approach of Sbibih et al. in [15], we apply the operator D* rather than

polar forms in local approximations to construct discrete and differential quasi-interpolants
(QIs). In general, we establish the following proposition:

Proposition 4.2. Let I, k € Z? be a polynomial approzimant which approzimates f in a
neighborhood of k and which is exact on Py, then the following quasi-interpolant is exact
on Py

Qf(x) =) D" (Tnf) (K)d(z — k),

keZ?
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Proof. Let p be a polynomial of Py, from the exactness of the approximation operators
Ty, k € 72 obtaining us Zr(p) = p, hence

=Y D" (Zip)( =Y D*p( — k).

keZ? kez?
By applying the Marsden identity given by formula (4), we obtain the result. O

To construct differential QIs, we can take as operator Z; the Hermite interpolant in
the neighborhood of £ of the function f. Now let f be enough regular function, and
Tif, k € Z? be the Taylor polynomial of degree 4 at the point k = (ky, k2).

We have )
Tiof (wr,20) = Y = fUR (k) (21 — k)" (22— ka)"”,

21:19.
0<iytip<a 1772

where f(1i2)(k) = 222 f(k).
8z,  0x?
By applying Proposition (4.2), we find the differential QI @Q*. This quasi-interpolant is

given explicitly by'
=3 D" (@) ¢ = > ()l — k),

kez? kez?

where
pe(F) =) = 5 (700 + SO0 K + FOIE)) + 2 (FO0®) + 709 (8)
1 1
+ 75 (FOO®) + FOOw)) + = FOD (k).
We can construct discrete quasi-interpolants of the form
= > u(f)dle — k), (5)
kez?

by taking Zj, the Lagrange operator. To simplify things, we give two discrete Qls, which
are based on values satisfying the geometric characterization (CG) (see Fig. 7).

The first discrete quasi-interpolant, denoted Q(), of the form (5) that we propose is based
on the Lagrange polynomial evaluated at the following points:

(=2, -2) + (k1,k2) , (=1, =1) + (k1, k2) , (K1, ko), (1,1) + (k1, k2) , (2, 2) + (k1 k2)
(=2, =1) + (k1,k2) , (=2,0) + (k1, k2) , (=2,1) + (k1, k2) , (=2,2) + (k1, k2) , (1,2) + (k1 k2),
(0,2) + (k1,k2) , (—1,2) + (k1, ko), (0,1) + (k1, k2), (=1,0) + (b1, k2), (—1,1) + (k1, ko) .

In this case, we have the following result:

13 1 19 4
pi(f) =taaf k=2 k2 =2) = S f (k1 = 2,k2 = 1) = o f (k1 = 2,k2) + 5 f (k1 — 1, k2)
47 61 4

_2f(k1_17k2+1)+5f(k1_17k2+2)+ZSf(klak2)+gf(klvk2+1)

19 49 1 13
_ng(kl’k2+2)_ﬁf(kl+1’k2+1)_ﬁf(k1+1’k2)+ 144f(k1+2 ko + 2)

49 47 35
—ﬁf(kl—l,kg—l)-f—ﬁf( 2k2+1) 144f(k1—2,k2+2).

The second discrete quasi-interpolant, denoted Q2), of the form (5) that we propose is
based on the Lagrange polynomial evaluated at the following points:

(727 72) + (klv kQ) ) (*]-a 71) + (klv kQ) ) (kl, kQ) s (1’ 1) + (klv k2) ) (2a 2) + (kl’ k2) ’
(_17 _2) + (kh k2) ) (07 _2) + (klv k?) ) (17 _2) + (kla k2) ) (27 _2) + (kla k2) ) (27 1) + (k17 k2) )
(270) + (kh kQ) ) (2’ _1) + (kh k2) ) (L 0) + (klv k2) ) (07 _1) + (kla k2) ; (1, _1) + (kla k2) .
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For this QI, the functionals are given by:

_13
T 144

4 61 47
+§f(k17k‘2 *1)+4*8f(k‘1,k2)+5f(k1 +1,ky —2) = 2f (k1 +1,ka — 1)
35
~ 1!

19 1 13
—@f(kl-FQ,kg)—ﬁf(kl+2,k2+1)+mf(k1+2,k2+2).

We can also obtain discrete QIs using finite differences to discretize the differential operator
Q*. The two discrete QIs that we have just constructed use the same coefficients; we can
deduce one from the other by symmetry with respect to the axis (D;) : x —y = 0, which is
the axis of symmetry of ¢. However, they differ because the function we are approximating
is not necessarily symmetric about this axis.

1 49 19
pi(f) f(kl*2,k2*2)*5f(k1*1’k2*2)*Ef(kl*1ak2*1)*@f(k17k2*2)

4 49 47
+gf(k1+1,k2)*ﬁf(k1+1,]€2+1) (k1+27k272)+ﬁf(k1+2,k271)

STTTTATT
[ Y o T T
I i e e e T T B Y Y B N
[ N Y R
o
24k——+-—4-—0—0 -0 -6 -0+ —
? | | | | | | | | | 2+k277%7%7*7J‘7J‘77}77“77%7L7
Ll _l_ ¢ ¢ & -@—L_d_1__
e cebedededo A obe b
L T B S S e e e k N R T R |
| }+#‘ Lo TTrTTTT T8 e e T
,,,,,, — —— e — | | | | | | | | |
Tt e e
24k ——r—7— @ —r—T—7——— 24k [ S S S SR A
RRERRENE e
BEEERREERE B S e el
T
24k R 24k Dok ok 24k

FIGURE 7. Quasi-interpolation points for discrete Qls.

A construction similar to this technique is described in [10].

4.3. Numerical examples. We note that our numerical calculations are performed using
Matlab on data sampled from two test functions. In example 1, we will use the Franke
function [11]:

—92)2 y—2)2 : 2
filz,y) :%exp (_(93: 2) Z(QJ 2) ) n %exp (_(93«51) _ (9;;131))

Lexp (—W) — 2 exp (—(9z — 4)? — (9y — 7)?)

On the domain © = [0, 1] x [0, 1], we consider the sequence of triangulations A,,, associated
with the vertices (ih, jh),i,j = 0,...,n. with A := 1/n and refined by a uniform Powell-
Sabin refinement.

On the triangulations A,,n = 4,8,16,32, we applied our QIs to the function f; and
calculated the following errors: e = max o |f1 (xr,ys) — Qf1 (zr,ys)],

r,s=1,...,
where x,, ys are points equidistant from [0, 1]. The numerical test results are presented in
Table 1.
In example 2, we will use the function test : fo(x,y) = w, (z,y) € [0,1]2.
On the same triangulations A,,,n = 4, 8,16, 32, we applied our QIs to the function fo and
calculated the errors as in example 1. The results of the numerical tests of this example
are detailed in Table 2.
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A I T T T

4 ) 16 32
QW | 2.77¢ — 001 | 4.84¢ — 002 | 8.44¢ — 003 | 6.36¢ — 004
Q@ | 2.66e — 001 | 5.05¢ — 002 | 1.14e — 002 | 6.37e — 004

TABLE 1. Errors of different quasi-interpolants of function f; for A,,n =
4,8,16, 32.

1 i 1 1
h 13 8 16 D)
QW | 2.54¢ — 001 | 4.50e — 002 | 7.44e — 003 | 5.65¢ — 004

Q@ | 2.42¢ — 001 | 4.70e — 002 | 1.07e — 002 | 1.06e — 004

TABLE 2. Errors of different quasi-interpolants of function fs for A,,n =
4,8,16, 32.

5. CONCLUSION

Our objective in this study was to construct degree 4 approximations with maximum
connectivity. To achieve this, we utilized a box spline with a slightly broader support. The
techniques we employed apply to various mesh types. In future work, we plan to utilize
these results in image-processing applications.
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