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C3 QUARTIC QUASI-INTERPOLANTS OVER A 6-DIRECTION MESH

A. LAMNII1∗, M. LAMNII2, C. MOUHOUB2, F. OUMELLAL3, §

Abstract. In this work, we are interested in constructing quasi-interpolants in the
space of splines S3

4 (∆6), where ∆6 designates a triangulation of a rectangular domain
generated by a uniform mesh with six directions. Firstly, we will show that we can
have a subspace of S3

4 (∆6) containing P4 generated by the integer translates of a box
spline ϕ for which we specify the B-coefficients. We also give some main properties
of this box spline. Naturally, the B-coefficients of the box spline ϕ can be obtained
by convolution. However, for reasons of simplicity, we propose a method based on the
subdivision schemes to determine them quickly. Finally, given the importance of this
triangulation, we develop some discrete and differential quasi-interpolants, and we give
numerical examples.
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1. Introduction

Quasi-interpolation is an essential technique in numerical analysis and data processing,
known for its efficiency and simplicity in approximating functions from discrete data. The
main motivation behind developing the proposed quasi-interpolation scheme is to improve
the accuracy and continuity class of the approximations while reducing computational
complexity. In particular, spline-based quasi-interpolation schemes are known for their
exceptional flexibility and efficiency, making them well-suited for a wide range of applica-
tions in science and engineering. The work of Buhmann and Jäger [1] provides an essential
reference for understanding the theoretical foundations and recent developments in quasi-
interpolation. Several authors have studied box splines and their properties on uniform
meshes with 3 and 4 directions, including C.K. Chui [2] in 1988 and C. de Boor, K. Höllig,
and S. Riemenschneider [5] in 1993. The key properties of these functions are clearly
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described in [2]. We also find fairly regular B-splines generalizing these classic box-splines
(see [2]). In the works we have just cited, they used the Cartesian lattice. The symmetry
of box-splines was not a concern for their authors. In [14], M. Kim and J. Peters presented
a collection focusing on low-degree symmetric box-splines on Cartesian and hexagonal lat-
tices (see Figure 2). In this collection, the authors introduced a symmetric box-spline,
denoted as Mh11 on the hexagonal lattice. As indicated in [13], the B-coefficients of this
box-spline can be calculated stably and efficiently. Given the importance of the Cartesian
lattice in practical applications, especially in image processing, our objective is to work on
the box-spline generated by the directions e1 = (1, 0), e2 = (0, 1), e3 = (−1,−1), e4(−1, 1),
e5 = (2, 1) and e6 = (−1,−2). In the univariate case, it is always possible to construct a

basis of B-splines for the space Sk−1
k (∆) where k ≥ 0 and ∆ a subdivision of an interval

[a, b]. By expressing the monomials of the space Pk in the B-spline basis, we can easily
construct quasi-interpolants (QIs) of degree k and class Ck−1 with optimal approximation
order. However, due to connectivity issues particularly on arbitrary domains extending
this property to bivariate splines is nontrivial, especially for degrees exceeding 2. While
the B-spline technique can be generalized to 2D via tensor products, this extension intro-
duces additional challenges on non-rectangular domains. Recently, several authors have
investigated the space S2

3 (∆6) from different perspectives (see [3, 12]). In particular, [6]
constructed discrete and differential quasi-interpolants in this space, demonstrating no-
table approximation properties. In this work, we aim to construct highly regular discrete
and differential QIs with improved approximation orders.

The content of this work is organized as follows: In section 2, we will present the
triangulation ∆6 and discuss the dimension of the space S3

4 on a rectangular domain.
Section 3 is devoted to the construction of the box spline ϕ, defined by the six directions
ei, i = 1, . . . , 6, using the concept of subdivision schemes. We also give in this section the
main properties of this box spline. In section 4, we will establish the Marsden identity
and give discrete and differential QIs of optimal order. A summary table of the numerical
tests relating to the different QIs developed will be given at the end of this section.

2. Quartic splines of class C3 on ∆6

Let ∆3 be the uniform triangulation of R2 with vertices at the integer lattice points
Z2 and edges parallel to the three directions e1, e2, and e3 (see Fig. 1). Let ∆6 be the
refinement of ∆3 obtained by subdividing each triangle into six subtriangles using its
medians (Powell-Sabin type refinement of ∆3). This triangulation can be obtained by
drawing the following six families of straight lines with equations:(

Dk
1

)
: y − k = 0,(

Dk
2

)
: x− k = 0,(

Dk
3

)
: y − x− k = 0,(

Dk
4

)
: y + x− k = 0,(

Dk
5

)
: y − 2x− k = 0,(

Dk
6

)
: y − 1

2x− k = 0, k ∈ Z.

In Figure 1, we have represented the Cartesian lattice with the six directions ei, i =
1, · · · , 6 used to construct our box spline on the left. On the right, we see the figure on

the left multiplied by the matrix G = 1
2

[
1 1

−
√
3

√
3

]
. We notice that the box spline we

will construct here is not a transformation of the symmetric box spline Mh11 defined on
the hexagonal lattice, as presented in [14]. Let M and N be two positive integers, and
consider the rectangular region ΩMN = [0,M+1]×[0, N+1] provided with a triangulation
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Figure 1. On the left: Cartesian lattice with 6 directions, on the right:
hexagonal Cartesian lattice.

of type ∆6. The obtained triangulation is denoted ∆
(6)
MN . For r < d in Z+, let us denote

by Srd

(
∆

(6)
MN

)
vector space of class functions Cr (ΩMN ) such that the restriction on each

triangle of ∆
(6)
MN is a polynomial in the space Pd.

Proposition 2.1. The dimension of the space S34

(
∆

(6)
MN

)
is equal to MN+5(M+N+2).

Proof. According to Theorem ( [16] 2.1 ), the dimension of space S34

(
∆

(6)
MN

)
is given by:

15 + L+

Nv∑
i=1

a34 (ni)

where Nv is the number of interior vertices A1, · · · , ANv , L is the number of interior lines,
ni is the number of lines passing through vertex Ai, and a

r
d (ni) is the number given by

the following formula:

a34(n) =
1

2

(
1−

[
4

n− 1

])
+

(
2(n− 5) + (n− 1)

[
4

n− 1

])
. (1)

[x] is the integer part of x and x+ = max(x, 0).

By examining triangulation ∆
(6)
MN , we deduce that L = 6(M + N − 1). We also have

(M − 1)(N − 1) interior vertices crossed by six lines, 2MN interior vertices crossed by
three lines, and 3MN −M −N interior vertices crossed by two lines.
By applying the formula (1), we obtain a34(6) = 1, a34(3) = 0 and a34(2) = 0, from which,
by a simple calculation, we find the result. □

3. Quartic box spline of class C3 on triangulation ∆6

In general, box splines are generated by directional convolutions in Z2 (see [8, 9]).
Consider six directions ei (i = 1, . . . , 6), and let ϕ be the box spline defined through
convolution along these directions. The box spline ϕ serves as the basic limit function of
the subdivision scheme with mask:

a(z) := 2−4
6∏

i=1

(1 + zei) (2)

In the following, we note by S(ϕ) the space generated by the integer translates of ϕ.

Proposition 3.1. The box spline ϕ verified the following properties:

(1) ϕ ∈ S34

(
∆

(6)
MN

)
.
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(2) The family
{
ϕ(· − α), α ∈ Z2

}
is linearly dependent.

(3) P4 ⊂ S(ϕ).

Proof. 1. Let X6 = {e1, e2, e3, e4, e5, e6} denote the set of directions and let d (resp. r ) be
the degree (resp. the class ) of the box spline ϕ generated by X6. According to de Boor
and Hölling [7] we have:

d = #X6 − 2 = 6− 2 = 4

and

r = min
{
#Y : Y ⊂ X6, ⟨X6\Y ⟩ ̸= R2

}
− 2 = 5− 2 = 3.

2. To show the linear dependence of the family
{
ϕ(· − α), α ∈ Z2

}
we will proceed in the

same way as de Boor and Hölling in [7]. It is enough to find a set Y2 ⊂ X6 such that
|detY2| ̸= 1 and ⟨Y2⟩ = R2.
In our case, we can take Y2 = {e1, e6} which generates R2 and |detY2| = 2.

3. The fact that ϕ ∈ S34

(
∆

(6)
MN

)
gives P4 ⊂ S(ϕ) (see [2]). □

Remark 3.1. There exists (M + 5)(N + 5) translated integers of ϕ whose intersection

with ΩMN is non-empty, this number is less than Dim
(
S34

(
∆

(6)
MN

))
for M > 1 and N >

1. We deduce that
{
ϕ(· − α), α ∈ Z2

}
is not a generating family of S34

(
∆(6)

)
.

The mask a(z) given by equation (2) can be written explicitly as follows:

a(z) =
1

4
z(0,0) +

1

8
z(−2,0) +

1

4
z(−1,0) +

1

4
z(1,0) +

1

8
z(2,0)+

1

16
z(−2,−3) +

1

16
z(−1,−3) +

1

8
z(0,−2) +

1

16
z(−3,−2)+

1

8
z(−2,−2) +

1

8
z(−1,−2) +

1

16
z(1,−2) +

1

4
z(0,−1)+

1

16
z(−3,−1) +

1

8
z(−2,−1) +

1

4
z(−1,−1) +

1

8
z(1,−1)+

1

16
z(2,−1) +

1

4
z(0,1) +

1

16
z(−2,1) +

1

8
z(−1,1) +

1

4
z(1,1)+

1

8
z(2,1) +

1

16
z(3,1) +

1

8
z(0,2) +

1

16
z(−1,2) +

1

8
z(1,2)+

1

8
z(2,2) +

1

16
z(3,2) +

1

16
z(1,3) +

1

16
z(2,3).

It is clear that the only symmetries of this mask are with respect to the lines (D1) :
x − y = 0 and (D2) : x + y = 0 (see Fig. 2). We can thus calculate ϕ on part{
(x, y) ∈ R2, x− y ≥ 0, x+ y ≥ 0

}
and deduce the remaining parts by symmetry. This

support cutting poses some difficulties when we want to schematize the B-coefficients of
the box spline ϕ in a single figure.

The support of the box spline ϕ is the convex hull of the mask. To draw the graph of
ϕ, we can use the cascade algorithm, which operates as follows:
1. We choose an initial function with compact support ψ0.

2. We calculate ψk+1 at step k + 1 by ψk+1 =
∑
α∈Z2

aαψk.

Let us denote by fkα the value attached to the point 2−kα, α ∈ Z2. The refinement
relation at step k is given by:

fk+1
α =

∑
β∈Z2

aα−2βf
k
β , α ∈ Z2. (3)
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1 1

1 2 2 2 1

1 2 4 4 2 1

2 4 4 4 2

1 2 4 4 2 1

1 2 2 2 1

1 1

Figure 2. Support for the box spline, all coefficients are multiplied by 16.

(a) Step k = 0 (b) Step k = 1

(c) Step k = 2 (d) Step k = 3

(e) Step k = 4 (f) Step k = 5

Figure 3. Graph of ϕ using the cascade algorithm.
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Specifically, for the box spline ϕ the equation (3) at step k becomes:

fk+1
2α =

1

4
fkα +

1

8
fkα−(0,1) +

1

8
fkα+(0,1) +

1

8
fkα−(1,1)+

1

8
fkα+(1,1) +

1

8
fkα+(1,0) +

1

8
fkα−(1,0),

fk+1
2α+(0,1) =

1

4
fkα +

1

4
fkα+(0,1) +

1

16
fkα+(1,−1) +

1

8
fkα+(1,1)+

1

16
fkα+(1,2) +

1

16
fkα−(1,1) +

1

8
fkα−(1,0) +

1

16
fkα+(−1,1),

fk+1
2α+(1,0) =

1

16
fkα−(1,1) +

1

4
fkα +

1

8
fkα−(0,1) +

1

16
fkα+(0,1)+

1

16
fkα+(1,0) +

1

4
fkα+(1,0) +

1

8
fkα+(1,1) +

1

16
fkα+(2,1),

fk+1
2α+(1,1) =

1

16
fkα+(−1,0) +

1

4
fkα +

1

4
fkα+(1,1) +

1

8
fkα+(0,1)+

1

16
fkα+(0,−1) +

1

8
fkα+(1,0) +

1

16
fkα+(1,2) +

1

16
fkα+(2,1).

Equation (3) can also be effectively described using subdivision masks as follows.

Figure 4. All coefficients in the subdivision masks are multiplied by 16.

While the B-coefficients of a box spline are naturally obtained through convolution,
they can alternatively be computed using refinement relations.

We present an algorithm for calculating the B-coefficients of the box spline ϕ via the
cascade algorithm. Since ϕ is a degree-4 polynomial on each triangular patch, we determine
it through interpolation by selecting 15 points satisfying the geometric characterization
(GC) condition. This geometric characterization enables a simplified expression for the
Lagrange interpolant, as detailed in [4].

For the interpolation problem, we use the principal lattice (regular grid) as the under-
lying structure.

Given that the box spline B-coefficients are rational numbers (see Lemma 2 of [13]) and
that the cascade algorithm converges, we can be confident that our algorithm will also
converge to rational numbers. Therefore, on each triangle T of supp(ϕ), if we take fNα
satisfying condition (GC), the coefficients of the resulting Lagrange polynomial - when
expressed in the Bernstein basis - are approximations of rational numbers. With sufficient
approximation precision, we could use numerical techniques to recover the exact fractions.

The support of the box spline ϕ is very large; even with two available symmetries, we
cannot represent it in a single figure. Therefore, we divide it into nine pieces that can each
be considered as separate splines (see Fig. 5).

Let us denote these splines as ϕ11(x, y), ϕ12(x, y), ϕ13(x, y), ϕ21(x, y), ϕ22(x, y), ϕ23(x, y),
ϕ31(x, y), ϕ32(x, y), and ϕ33(x, y). Examining the B-coefficients of these subsplines reveals
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symmetry about the center (0, 0). More precisely, we have the following relationships:

ϕ33(x, y) = ϕ11(−x,−y)
ϕ32(x, y) = ϕ12(−x,−y)
ϕ31(x, y) = ϕ13(−x,−y)
ϕ23(x, y) = ϕ21(−x,−y).

Φ11

Φ12

Φ13

Φ21

Φ22

Φ23

Φ31

Φ32

Φ33

Figure 5. Pieces of support of spline ϕ support.

Given these symmetry properties, we provide the B-controls of the five sub-splines ϕ11,
ϕ12, ϕ13, ϕ21, and ϕ22. The others can be easily deduced by symmetry.

By combining the nine sub-splines, we construct the box spline ϕ (see Fig. 6f).

Algorithm 1 Cascade Algorithm

Require: Input:

• The support of supp(ϕ).
• An integer N for the refinement step.

Ensure: Output:

• The B-coefficients for box spline ϕ.

1: Step 1: Initialization
2: For k = 0, set f0(0,0) = 1 and f0α = 0 for α ̸= (0, 0).

3: Step 2: Refinement
4: Extend the refinement up to step N .
5: Step 3: Interpolation
6: For each triangle T of supp(ϕ):

• Select 20 values fNα satisfying the (GC) condition.
• Compute the Lagrange interpolation polynomial p on T .

7: Step 4: Conversion to Bernstein Basis
8: Express the polynomial p in the Bernstein basis relative to the triangle T .
9: Deduce the B-coefficients.

10: Step 5: Coefficient Approximation
11: Approximate each B-coefficient by a fraction with the smallest possible numerator and

denominator.
12: Return the B-coefficients.
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(a) B-coefficients of ϕ11.
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(c) B-coefficients of ϕ13.
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(d) B-coefficients of ϕ21.

1280

1200

1112

1020

928

928

896

832

752

912

1072

1200

1112

1020

984

1280

1200

1072

912

752

832

896

928

928

1020

1112

1200

1112

984

1020 1280

1320

1348

1362

136212361080912752

912

1072

1200

1224

12361080

1280

1440

1568

1632

16321632158414881362

1362

1348

1320

1472

15841488

1280

1320

1348

1362

1362

1488

1584

1632

1632

1632

1568

1440

1472

1488

1584

1280

1200

1072

912

752

912

1080

1236

1362

1362

1348

1320

1224

1080

1236

1280

1320

1348

1362

1362

1236

1080

912

752

912

1072

1200

1224

1236

1080

1280

1440

1568

1632

1632

1632

1584

1488

1362

1362

1348

1320

1472

1584

1488

1280

1320

1348

1362

1362

1488

1584

1632

1632

1632

1568

1440

1472

1488

1584

1280

1200

1072

912

752

912

1080

1236

1362

1362

1348

1320

1224

1080

12361280

1200

1112

1020

928 928 896 832 752

912

1072

1200

1112

1020 984

1280

1200

1072

912

752 832 896 928 928

1020

1112

1200

1112

984 1020

574

533

488

440

392

480

576

672

752

752

720

656

600

540

648

574

411

272

176

112

160

224

304

392

440

488

533

376

248

340 574

533

488

440

392304224160112

176

272

411

376

340248

574

656

720

752

752672576480392

440

488

533

600

648540

574

656

744

836

928

928

896

832

752

752

720

656

744

836

808

574

656

720

752

752

832

896

928

928

836

744

656

744

808

836

1280

1200

1112

1020

928

928

896

832

752

912

1072

1200

1112

1020

984

1280

1200

1072

912

752

832

896

928

928

1020

1112

1200

1112

984

1020

1280

1320

1348

1362

1362

1236

1080

912

752

912

1072

1200

1224

1236

1080

1280

1440

1568

1632

1632

1632

1584

1488

1362

1362

1348

1320

1472

1584

14881280

1320

1348

1362

1362 1488 1584 1632 1632

1632

1568

1440

1472

1488 1584

1280

1200

1072

912

752 912 1080 1236 1362

1362

1348

1320

1224

1080 1236

1280

1320

1348

1362

1362

1236

1080

912

752

912

1072

1200

1224

1236

1080

1280

1440

1568

1632

1632

1632

1584

1488

1362

1362

1348

1320

1472

1584

1488 1280

1320

1348

1362

13621488158416321632

1632

1568

1440

1472

14881584

1280

1200

1072

912

752912108012361362

1362

1348

1320

1224

10801236

1280

1200

1112

1020

928

928

896

832

752

912

1072

1200

1112

1020

984

1280

1200

1072

912

752

832

896

928

928

1020

1112

1200

1112

984

1020

574

656

744

836

928

928

896

832

752

752

720

656

744

836

808

574

656

720

752

752

832

896

928

928

836

744

656

744

808

836

574

533

488

440

392

480

576

672

752

752

720

656

600

540

648

574

411

272

176

112

160

224

304

392

440

488

533

376

248

340574

533

488

440

392 304 224 160 112

176

272

411

376

340 248

574

656

720

752

752 672 576 480 392

440

488

533

600

648 540

1280

1320

1348

1362

1362

1488

1584

1632

1632

1632

1568

1440

1472

1488

1584

1280

1200

1072

912

752

912

1080

1236

1362

1362

1348

1320

1224

1080

1236 1280

1200

1112

1020

928928896832752

912

1072

1200

1112

1020984

1280

1200

1072

912

752832896928928

1020

1112

1200

1112

9841020

1280

1320

1348

1362

1362

1236

1080

912

752

912

1072

1200

1224

1236

1080

1280

1440

1568

1632

1632

1632

1584

1488

1362

1362

1348

1320

1472

1584

1488

1280

1320

1348

1362

1362

1488

1584

1632

1632

1632

1568

1440

1472

1488

1584

1280

1200

1072

912

752

912

1080

1236

1362

1362

1348

1320

1224

1080

1236

1280

1200

1112

1020

928

928

896

832

752

912

1072

1200

1112

1020

984

1280

1200

1072

912

752

832

896

928

928

1020

1112

1200

1112

984

10201280

1320

1348

1362

1362 1236 1080 912 752

912

1072

1200

1224

1236 1080

1280

1440

1568

1632

1632 1632 1584 1488 1362

1362

1348

1320

1472

1584 1488

(e) B-coefficients of ϕ22. (f) Graph of ϕ plotted along
the triangulation lines.

Figure 6. Graphs showing the B-coefficients divided by by 6912. of vari-
ous ϕ functions and the triangulation lines.



2718 TWMS J. APP. ENG. MATH. V.15, N.12, 2025

4. Quasi-interpolation in S(ϕ) space

4.1. Reproduction of polynomials. The concept of polynomial reproduction (also
called polynomial space preservation) plays a fundamental role in approximation theory,
particularly in the study of distances between functions and function spaces.

For a spline space S(ϕ) generated by the integer translates of a compactly supported
spline function ϕ, establishing theMarsden identity represents a crucial step. This identity
provides an expansion of the monomials mα(x) := xα (for x ∈ R2, α ∈ N2) in terms of
the integer translates of ϕ. To construct such an expansion, we utilize Appell sequences
{Pα}α∈N2 , defined recursively through:

g0 = m0.

gα = mα −
∑
j∈Z2

ϕ(j)
∑
β ̸=α
β≤α

(−j)α−β

(α− β)!
gβ,

Each monomial mα is written:

mα(x) =
∑
k∈Z2

gα(k)ϕ(x− k).

In the following, by dividing the B-coefficients by 28.32, we will normalize the box spline
ϕ, i.e., the sum of its integer translates is equal to 1.
The values of ϕ at integer points are given by:

ϕ(0, 0) =
102

432
, ϕ(−2,−2) = ϕ(−2, 0) = ϕ(0,−2) =

1

432
,

ϕ(0, 2) = ϕ(2, 2) = ϕ(2, 0) =
1

432
,

ϕ(−2,−1) = ϕ(−1,−2) = ϕ(−1, 1) =
7

432
,

ϕ(1,−1) = ϕ(1, 2) = ϕ(2, 1) =
7

432
,

ϕ(−1,−1) = ϕ(−1, 0) = ϕ(0,−1) =
47

432
,

ϕ(0, 1) = ϕ(1, 0) = ϕ(1, 1) =
47

432
.

Therefore, we derive the expressions for the monomials of P4 in terms of the integer
translates of ϕ for k = (k1, k2) ∈ Z2 as follows:

1 =
∑
k∈Z2

ϕ(x− k), x1 =
∑
k∈Z2

k1ϕ(x− k),

x2 =
∑
k∈Z2

k2ϕ(x− k), x1x2 =
∑
k∈Z2

(
−1

3
+ k1k2

)
ϕ(x− k),

x21 =
∑
k∈Z2

(
−2

3
+ k21

)
ϕ(x− k), x22 =

∑
k∈Z2

(
−2

3
+ k22

)
ϕ(x− k),

x31 =
∑
k∈Z2

(
−2k1 + k31

)
ϕ(x− k),

x21x2 =
∑
k∈Z2

(
−2

3
(k1 + k2) + k21k2

)
ϕ(x− k),
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x1x
2
2 =

∑
k∈Z2

(
−2

3
(k1 + k2) + k1k

2
2

)
ϕ(x− k),

x32 =
∑
k∈Z2

(
−2k2 + k32

)
ϕ(x− k),

x41 =
∑
k∈Z2

(
3

2
− 4k21 + k41

)
ϕ(x− k),

x31x2 =
∑
k∈Z2

(
3

4
− k21 − 2k1k2 + k31k2

)
ϕ(x− k),

x21x
2
2 =

∑
k∈Z2

(
3

4
− 2

3

(
k21 + k22

)
− 4

3
k1k2 + k21k

2
2

)
ϕ(x− k),

x1x
3
2 =

∑
k∈Z2

(
3

4
− k22 − 2k1k2 + k1k

3
2

)
ϕ(x− k),

x42 =
∑
k∈Z2

(
3

2
− 4k22 + k42

)
ϕ(x− k).

4.2. Construction of quasi-interpolants in the space S(ϕ). Now consider the fol-
lowing differential quasi-interpolant:

Q∗f(x) =
∑
k∈Z2

D∗f(k)ϕ(x− k),

where D∗ is the differential operator defined by:

D∗ = I − 1

3

(
∂21 + ∂1∂2 + ∂22

)
+

1

8

(
∂31∂2 + ∂1∂

3
2

)
+

1

16

(
∂41 + ∂42

)
+

3

16
∂21∂

2
2 ,

where ∂i1∂
j
2 = ∂i+j

∂xi∂yj
.

From the results of the previous section, it is easy to deduce the following result:

Proposition 4.1. The differential quasi-interpolant Q∗ is exact on the space of quartic
polynomials P4.

Proof. It is easy to just check the exactness of Q∗ on the monomials of the space P4. □

Now, using the D∗ operator, we can easily derive the Marsden identity. For any poly-
nomial p ∈ P4, we have

p(x) =
∑
k∈Z2

D∗p(k)ϕ(x− k). (4)

Following the approach of Sbibih et al. in [15], we apply the operator D∗ rather than
polar forms in local approximations to construct discrete and differential quasi-interpolants
(QIs). In general, we establish the following proposition:

Proposition 4.2. Let Ik, k ∈ Z2 be a polynomial approximant which approximates f in a
neighborhood of k and which is exact on P4, then the following quasi-interpolant is exact
on P4

Qf(x) =
∑
k∈Z2

D∗ (Ikf) (k)ϕ(x− k),
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Proof. Let p be a polynomial of P4, from the exactness of the approximation operators
Ik, k ∈ Z2 obtaining us Ik(p) = p, hence

Qp(x) =
∑
k∈Z2

D∗ (Ikp) (k)ϕ(x− k) =
∑
k∈Z2

D∗p(k)ϕ(x− k).

By applying the Marsden identity given by formula (4), we obtain the result. □

To construct differential QIs, we can take as operator Ik the Hermite interpolant in
the neighborhood of k of the function f . Now let f be enough regular function, and
Ikf, k ∈ Z2 be the Taylor polynomial of degree 4 at the point k = (k1, k2).
We have

Ikf (x1, x2) :=
∑

0≤i1+i2≤4

1

i1!i2!
f (i1,i2)(k) (x1 − k1)

i1 (x2 − k2)
i2 ,

where f (i1,i2)(k) = ∂i1+i2

∂x
i1
1 ∂x

i2
2

f(k).

By applying Proposition (4.2), we find the differential QI Q∗. This quasi-interpolant is
given explicitly by:

Q∗f(x) =
∑
k∈Z2

D∗ (Ik)ϕ(x− k) =
∑
k∈Z2

µk(f)ϕ(x− k),

where

µk(f) =f(k)−
1

3

(
f (2,0)(k) + f (1,1)(k) + f (0,2)(k)

)
+

1

8

(
f (3,1)(k) + f (1,3)(k)

)
+

1

16

(
f (4,0)(k) + f (0,4)(k)

)
+

1

16
f (2,2)(k).

We can construct discrete quasi-interpolants of the form

Qf(x) =
∑
k∈Z2

µk(f)ϕ(x− k), (5)

by taking Ik, the Lagrange operator. To simplify things, we give two discrete QIs, which
are based on values satisfying the geometric characterization (CG) (see Fig. 7).

The first discrete quasi-interpolant, denoted Q(1), of the form (5) that we propose is based
on the Lagrange polynomial evaluated at the following points:

(−2,−2) + (k1, k2) , (−1,−1) + (k1, k2) , (k1, k2) , (1, 1) + (k1, k2) , (2, 2) + (k1, k2) ,

(−2,−1) + (k1, k2) , (−2, 0) + (k1, k2) , (−2, 1) + (k1, k2) , (−2, 2) + (k1, k2) , (1, 2) + (k1, k2) ,

(0, 2) + (k1, k2) , (−1, 2) + (k1, k2) , (0, 1) + (k1, k2) , (−1, 0) + (k1, k2) , (−1, 1) + (k1, k2) .

In this case, we have the following result:

µ1
k(f) =

13

144
f (k1 − 2, k2 − 2)− 1

72
f (k1 − 2, k2 − 1)− 19

48
f (k1 − 2, k2) +

4

3
f (k1 − 1, k2)

− 2f (k1 − 1, k2 + 1) +
47

72
f (k1 − 1, k2 + 2) +

61

48
f (k1, k2) +

4

3
f (k1, k2 + 1)

− 19

48
f (k1, k2 + 2)− 49

72
f (k1 + 1, k2 + 1)− 1

72
f (k1 + 1, k2) +

13

144
f (k1 + 2, k2 + 2)

− 49

72
f (k1 − 1, k2 − 1) +

47

72
f (k1 − 2, k2 + 1)− 35

144
f (k1 − 2, k2 + 2) .

The second discrete quasi-interpolant, denoted Q(2), of the form (5) that we propose is
based on the Lagrange polynomial evaluated at the following points:

(−2,−2) + (k1, k2) , (−1,−1) + (k1, k2) , (k1, k2) , (1, 1) + (k1, k2) , (2, 2) + (k1, k2) ,

(−1,−2) + (k1, k2) , (0,−2) + (k1, k2) , (1,−2) + (k1, k2) , (2,−2) + (k1, k2) , (2, 1) + (k1, k2) ,

(2, 0) + (k1, k2) , (2,−1) + (k1, k2) , (1, 0) + (k1, k2) , (0,−1) + (k1, k2) , (1,−1) + (k1, k2) .
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For this QI, the functionals are given by:

µ2
k(f) =

13

144
f (k1 − 2, k2 − 2)− 1

72
f (k1 − 1, k2 − 2)− 49

72
f (k1 − 1, k2 − 1)− 19

48
f (k1, k2 − 2)

+
4

3
f (k1, k2 − 1) +

61

48
f (k1, k2) +

47

72
f (k1 + 1, k2 − 2)− 2f (k1 + 1, k2 − 1)

+
4

3
f (k1 + 1, k2)−

49

72
f (k1 + 1, k2 + 1)− 35

144
f (k1 + 2, k2 − 2) +

47

72
f (k1 + 2, k2 − 1)

− 19

48
f (k1 + 2, k2)−

1

72
f (k1 + 2, k2 + 1) +

13

144
f (k1 + 2, k2 + 2) .

We can also obtain discrete QIs using finite differences to discretize the differential operator
Q∗. The two discrete QIs that we have just constructed use the same coefficients; we can
deduce one from the other by symmetry with respect to the axis (D1) : x−y = 0, which is
the axis of symmetry of ϕ. However, they differ because the function we are approximating
is not necessarily symmetric about this axis.

Figure 7. Quasi-interpolation points for discrete QIs.

A construction similar to this technique is described in [10].

4.3. Numerical examples. We note that our numerical calculations are performed using
Matlab on data sampled from two test functions. In example 1, we will use the Franke
function [11]:

f1(x, y) =
3
4 exp

(
− (9x−2)2+(9y−2)2

4

)
+ 3

4 exp
(
− (9x+1)2

49 − (9y+1)
10

)
1
2 exp

(
− (9x−7)2+(9y−3)2

4

)
− 1

5 exp
(
−(9x− 4)2 − (9y − 7)2

)
On the domain Ω = [0, 1]×[0, 1], we consider the sequence of triangulations ∆n, associated
with the vertices (ih, jh), i, j = 0, . . . , n. with h := 1/n and refined by a uniform Powell-
Sabin refinement.

On the triangulations ∆n, n = 4, 8, 16, 32, we applied our QIs to the function f1 and
calculated the following errors: e = max

r,s=1,...,64
|f1 (xr, ys)−Qf1 (xr, ys)| ,

where xr, ys are points equidistant from [0, 1]. The numerical test results are presented in
Table 1.
In example 2, we will use the function test : f2(x, y) =

tanh(9y−9x)+1
9 , (x, y) ∈ [0, 1]2.

On the same triangulations ∆n, n = 4, 8, 16, 32, we applied our QIs to the function f2 and
calculated the errors as in example 1. The results of the numerical tests of this example
are detailed in Table 2.
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h 1
4

1
8

1
16

1
32

Q(1) 2.77e− 001 4.84e− 002 8.44e− 003 6.36e− 004

Q(2) 2.66e− 001 5.05e− 002 1.14e− 002 6.37e− 004

Table 1. Errors of different quasi-interpolants of function f1 for ∆n, n =
4, 8, 16, 32.

h 1
4

1
8

1
16

1
32

Q(1) 2.54e− 001 4.50e− 002 7.44e− 003 5.65e− 004

Q(2) 2.42e− 001 4.70e− 002 1.07e− 002 1.06e− 004

Table 2. Errors of different quasi-interpolants of function f2 for ∆n, n =
4, 8, 16, 32.

5. Conclusion

Our objective in this study was to construct degree 4 approximations with maximum
connectivity. To achieve this, we utilized a box spline with a slightly broader support. The
techniques we employed apply to various mesh types. In future work, we plan to utilize
these results in image-processing applications.
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