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CONVERGENCE ANALYSIS OF INTUITIONISTIC FUZZY MATRICES

WITH NEARLY MONOTONE INCREASING PROPERTY

R. A. PADDER1∗, Y. A. RATHER1, §

Abstract. Intuitionistic fuzzy matrix convergence of powers has been studied in the
literature. The essential role of the main diagonal elements in the convergence of the
power sequence of an intuitionistic fuzzy matrix A is exported at the level of A itself
by introducing a new classification. The established theorems cover intuitionistic fuzzy
matrices that increase monotonically. For matrices of this type, the convergence index
is always smaller than or equal to n. The results are more essential because they lay the
foundation for the convergence and oscillation of the power sequence of any intuitionistic
fuzzy matrix. On the one hand, the results may be seen as a generalization of the results
obtained by certain authors. Furthermore, as a typical case to consider, the necessary and
sufficient conditions for an increasing intuitionistic fuzzy matrix A to have the property
An−1 < An = An+I were established.
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1. Introduction

Uncertainty forms play a very important role in our daily life. During the time, we han-
dle real-life problems involving uncertainty such as medical fields, engineering, industry,
economics, and so on. Conventional techniques may not be enough and easy, so Zadeh
[1] introduced fuzzy set theory, and this turned out to be a gift for the study of some
uncertainty types wherever old techniques did not work. Fuzzy theory and the generaliza-
tions regarding it contributed to some remarkable mathematical applications in so many
different problems in real life that involve uncertainties of certain types. For the purpose
of handling different types of uncertainties, several generalizations and modifications re-
garding fuzzy set theory such as vague sets, rough sets, theory of intuitionistic fuzzy sets,
soft sets, and other generalizations have also been developed.

A Fuzzy Matrix (FM) is a matrix with elements having values in a closed interval [0,1].
Kim and Roush [3] introduced the concept of FM. FM plays a vital role in various areas
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of science and engineering and solves problems involving various types of uncertainties
[4]. Meenakshi [7] studied the minus ordering, space ordering, and schur complement of
FM and block FM. Buckley [35] Ran and Liu [30] and Gregory et al. [34] after apply-
ing the max-min operation on FM found only two results, either the FM convergence
to idempotent matrices or oscillates to finite period. Hashimoto [33] studied the con-
vergence of the power of a fuzzy transitive matrix. Xin [8] introduced the notation of
controllable FMs. He addition, [9] studied the convergence of powers of controllable FMs
and developed some results on nilpotent FMs. Lur et al; [32] studied the convergence
powers of FM. A detailed study on the power sequence of commonly used matrices [31].
Later, many researchers have done a lot of work on FMs [37, 38, 39]. FMs deal only with
membership value, while intuitionistic fuzzy matrices (IFMs) deal with both membership
and non-membership value. Khan et al., [5] introduced the concept of IFMs and several
interesting properties on IFMs have been obtained in [6]. Bhowmik and Pal [11] studied
the convergence of the max-min powers of an IFM. Pradhan and Pal [19] studied the
mean convergence powers of IFMs. The convergence of powers and the canonical form
of the s-transitive intuitionistic fuzzy matrix have been studied [26]. Several auother’s
[12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 27] worked on IFMs and obtained various
interesting results, which are very useful in handling uncertainty problems in our daily
life.

The aim of this paper is to find the essential role of the principal diagonal elements in
the convergence of the power sequence of an intuitionistic fuzzy matrix. The focus of this
paper will be on the intuitionistic fuzzy matrix of diagonal elements. Theorem 3.5 is the
main result of this paper. The established theorems cover those of monotone or nearly
monotone increasing intuitionistic fuzzy matrices.
Furthermore, we tried to give a summary of the framework for fuzzy logics of the theorems
in the conclusion section. We believe that the claims could have some bearing on some
aspects of fuzzy logic.

1.1. Research Gap. The Convergence is an interesting problem in the theory of IFM.
Most of the existing research focuses on specific types of IFM. We have studied Conver-
gence of power’s of IFM using max-min operations [26, 28], In this article we look at about
the Convergence of the power sequence of a nearly monotone increasing intuitionistic fuzzy
matrix. We also provide some illustrations, so that the theoretical content of this paper
can be understood easily.

2. BASIC DEFINITIONS

Definition 2.1. [2] An Intuitionistic Fuzzy Set (IFS) A in X (universal set) is defined
as an object of the following form A = {⟨x, µA(x), νA(x)⟩/x ∈ X}, where the functions:
µA : X → [0, 1] and νA : X → [0, 1] define the membership function and non-membership
function of the element x ∈ X respectively and for every x ∈ X : 0 ≤ µA(x) + νA(x) ≤ 1.

In short, we write ⟨x, x′⟩ as an intuitionistic fuzzy element with x + x′ ≤ 1. For
⟨x, x′⟩, ⟨y, y′⟩ ∈ IFS, Atanassov introduced operations,
⟨x, x′⟩ ∨ ⟨y, y′⟩ = ⟨max{x, y},min{x′, y′}⟩, ⟨x, x′⟩ ∧ ⟨y, y′⟩ = ⟨min{x, y},max{x′, y′}⟩. If
⟨x, x′⟩ ≤ ⟨y, y′⟩ means x ≤ y, x′ ≥ y′ and ⟨x, x′⟩ < ⟨y, y′⟩ if x < y and x′ > y′ in this case,
we say that ⟨x, x′⟩, ⟨y, y′⟩ are comparable. For any two comparable elements ⟨x, x′⟩, ⟨y, y′⟩
∈ IFS, the operation ⟨x, x′⟩ ↽ ⟨y, y′⟩ is defined by〈

x, x′
〉
↽

〈
y, y′

〉
=

{
⟨x, x′⟩ if ⟨x, x′⟩ > ⟨y, y′⟩,
⟨0, 1⟩ if ⟨x, x′⟩ ≤ ⟨y, y′⟩.
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Definition 2.2. [5] Let X = {x1, x2, ...xm} be a set of alternatives and Y = {y1, y2, ...yn}
be the set attribute of each element of X. An IFM is defined by
A = (⟨(xi, yj), µA(xi, yj), νA(xi, yj)⟩) for i = 1, 2...m and j = 1, 2, ...n, where µA : X×Y →
[0, 1] and νA : X × Y → [0, 1] satisfy the condition 0 ≤ µA(xi, yj) + νA(xi, yj) ≤ 1. For

simplicity we denote an IFM is a matrix of pairs A = (
〈
aij , a

′
ij

〉
) of non negative real

numbers satisfying aij + a′ij ≤ 1 for all i, j. We denote the set of all IFM of order m× n
by Fmn and Fn denotes the set of IFM of order n× n.

Some of the definitions and results that we apply in this paper are given below.

Let Q = [
〈
qij , q

′
ij

〉
] and S = [

〈
sij , s

′
ij

〉
] be n× n IFMs with elements in [0, 1]× [0, 1],

Q ∨ S = (
〈
qij ∨ sij , q

′
ij ∧ s′ij

〉
), where ⟨x, x′⟩ ∨ ⟨y, y′⟩ = max(⟨x, x′⟩ , ⟨y, y′⟩),

Q ∧ S = [(
〈
qij ∧ sij , q

′
ij ∨ s′ij

〉
)] where ⟨x, x′⟩ ∧ ⟨y, y′⟩ = min(⟨x, x′⟩ , ⟨y, y′⟩),

Q
c
↽ S = (

〈
qij , q

′
ij

〉
c
↽

〈
sij , s

′
ij

〉
),

Q× S = [(
〈
qi1 ∧ s1j , q

′
i1 ∨ s′1j

〉
) ∨ (

〈
qi2 ∧ s2j , q

′
i2 ∨ s′2j

〉
) ∨ . . . ∨ (

〈
qin ∧ snj , q

′
in ∨ s′nj

〉
)],

Qk+1 = Qk ×Q, k = 1, 2, 3...,

Denote Qk = [
〈
qkij , q

′k
ij

〉
], k = 2, 3, ...

(
〈
qkij , q

′k
ij

〉
) =〈

n∨
j1=1

n∨
j2=1

...
n∨

jk−1=1
(qij1 ∧ qj1j2 ∧ ... ∧ qjk−1j),

n∧
j1=1

n∧
j2=1

...
n∧

jk−1=1
(q′ij1 ∨ q′j1j2 ∨ ... ∨ q′jk−1j

)

〉
,

QT = [
〈
qji, q

′
ji

〉
] (the transpose),

Q ≤ S iff (
〈
qij , q

′
ij

〉
≤

〈
sij , s

′
ij

〉
for all i, j ∈ 1, 2, ..., n).

3. Some properties of power sequence of intuitionistic fuzzy matrices

Definition 3.1. An intuitionistic fuzzy matrix A is said to be diagonally dominated

if for each
〈
aij , a

′
ij

〉
,
〈
aij , a

′
ij

〉
≤ ⟨aii, a′ii⟩

∨〈
ajj , a

′
jj

〉
for all i, j.

Definition 3.2. Let A be a square intuitionistic fuzzy matrix A is said to satisfy the max-
imum principle if and only if for each t, 1 ≤ t ≤ n either ⟨att, a′tt⟩ = max1≤k≤n(⟨akt, a′kt⟩)
or ⟨att, a′tt⟩ = max1≤k≤n(⟨atk, a′tk⟩).

Lemma 3.3. Let A be a square intuitionistic fuzzy matrix.
Then, ⟨aii, a′ii⟩ ≤ ⟨aii, a′ii⟩

s ≤ max1≤k≤n {⟨aik, a′ik⟩}
∧
max1≤k≤n {⟨aik, a′ik⟩} for all s ≥ 1

Proof. The proof of the first part follows from:
⟨aii, a′ii⟩ =

∨
1≤l1,...,ls−1≤n(⟨aii, a′ii⟩

∧
⟨aii, a′ii⟩

∧
...
∧
⟨aii, a′ii⟩)

≤
∨

1≤l1,...,ls−1≤n(
〈
ail1 , a

′
il1

〉∧〈
al1l2 , a

′
l1l2

〉∧
...
∧〈

als−1i, a
′
ls−1i

〉
)

= ⟨aii, a′ii⟩
s ≤

∨
1≤l1,...,ls−1≤n(

〈
ail1 , a

′
il1

〉∧〈
als−1i, a

′
ls−1i

〉
)

≤ max1≤k≤n {⟨aik, a′ik⟩}
∧
max1≤k≤n {⟨aik, a′ik⟩} □

Theorem 3.4. Let A be a square intuitionistic fuzzy matrix with A satisfying the domi-
nating principle. Then A increases monotonically.

Proof. Suppose that max{⟨aii, a′ii⟩
∧〈

aij , a
′
ij

〉
,
〈
aij , a

′
ij

〉∧〈
ajj , a

′
jj

〉
} =

〈
aij , a

′
ij

〉
for each pair i, j we have
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aij , a

′
ij

〉2
= max1≤k≤n(⟨aik, a′ik⟩

∧〈
akj , a

′
kj

〉
) ≥

max1≤k≤n{⟨aii, a′ii⟩
∧〈

aij , a
′
ij

〉
,
〈
aij , a

′
ij

〉∧〈
ajj , a

′
jj

〉
} =

〈
aij , a

′
ij

〉
So A increasing monotonically. □

Theorem 3.5. If A satisfies the maximum principle, then
1. A2 ≤ A3 ≤ ... ≤ An−1 ≤ ...
2. ⟨aii, a′ii⟩ = ⟨aii, a′ii⟩

2 = ⟨aii, a′ii⟩
3 = ... = ⟨aii, a′ii⟩

n

3.An−1 = An

4. A ≤ A2 not holds necessarily.

Proof. (1) In order to prove the first part of theorem we have to show A2 ≤ A3.
For each given ordered pair (i, j) there is t such that,〈
aij , a

′
ij

〉2
= ⟨ait, a′it⟩

∧〈
atj , a

′
tj

〉
if ⟨att, a′tt⟩ = max1≤k≤n{⟨akt, a′kt⟩} then〈
aij , a

′
ij

〉2
= ⟨ait, a′it⟩

∧〈
atj , a

′
tj

〉
= (⟨ait, a′it⟩

∧
⟨att, a′tt⟩)

∧〈
atj , a

′
tj

〉
≤

〈
aij , a

′
ij

〉3

if ⟨att, a′tt⟩ = max1≤k≤n{⟨atk, a′tk⟩} then〈
aij , a

′
ij

〉2
= ⟨ait, a′it⟩

∧〈
atj , a

′
tj

〉
= ⟨ait, a′it⟩

∧
(⟨att, a′tt⟩

∧〈
atj , a

′
tj

〉
) ≤

〈
aij , a

′
ij

〉3

Hence A2 ≤ A3 implies A2 ≤ A2 ≤ A3 ≤ ... ≤ An−1 ≤ ...
2. Let t be any positive integer then,
⟨aii, a′ii⟩

t+1 = max1≤l1...lt≤n

{
〈
ail1 , a

′
il1

〉∧
...
∧〈

alti, a
′
lti

〉
} ≤ max1≤l1≤n{

〈
ail1 , a

′
il1

〉
}
∧
max1≤lt≤n{

〈
alti, a

′
lti

〉
}.

Combing with the lemma 3.3 second part of theorem is proved.

3. To prove the third part we just need to show
〈
aij , a

′
ij

〉n−1
≥ ⟨aij , a′ii⟩

n

for all 1 ≤ i ̸= j ≤ n for each ordered pair for i ̸= j there is a sequence of
l1 = i, l2, ...ln, ln+1 = j, such that,

〈
aij , a

′
ij

〉n
=

〈
al1l2 , a

′
l1l2

〉∧〈
al2l3 , a

′
l2l3

〉∧
...
∧〈

alnln+1 , a
′
lnln+1

〉
. (1)

Among these l
′s
t there has to exist indices having the same value,

say ls = lt with s < t. Since l1 ̸= ln+1 we have 1 ≤ t− s ≤ n− 1.
There are only two possible cases:
(a). t− s < n− 1, then 2 ≤ n− t+ s ≤ n− 1 .

In equation (1) deleting
〈
alsls+1 , a

′
lsln+1

〉
we get〈

aij , a
′
ij

〉n
≤

〈
aij , a

′
ij

〉n−t+s
≤

〈
aij , a

′
ij

〉n−1

(b). If t− s < n− 1, then we consider two cases
(i) s = 1, t = 1 then〈
aij , a

′
ij

〉n
≤

⟨aii, a′ii⟩
n−1∧〈

aij , a
′
ij

〉
= ⟨aii, a′ii⟩

∧〈
aij , a

′
ij

〉
≤

〈
aij , a

′
ij

〉2
≤

〈
aij , a

′
ij

〉n−1

(ii) s = 2, t = n+ 1 then〈
aij , a

′
ij

〉n
≤〈

aij , a
′
ij

〉∧〈
aij , a

′
ij

〉n−1
=

〈
aij , a

′
ij

〉∧〈
ajj , a

′
jj

〉
≤

〈
aij , a

′
ij

〉2
≤

〈
aij , a

′
ij

〉n−1
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4. Let A =

⟨0.5, 0.5⟩ ⟨1, 0⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨0.5, 0.5⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨0, 1⟩ ⟨0.5, 0.5⟩

 ,

Let A2 =

⟨0.5, 0.5⟩ ⟨0.5, 0.5⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨0.5, 0.5⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨0, 1⟩ ⟨0.5, 0.5⟩

 = A3.

This proves fourth part. □

Corollary 3.6. Let A be a square fuzzy matrix with A satisfying the strong row or column
maximum principle, that is
⟨aii, a′ii⟩ = max1≤k≤n ⟨aik, a′ik⟩ for all 1 ≤ i ≤ n
or

⟨aii, a′ii⟩ = max1≤k≤n ⟨aki, a′ki⟩ for all 1 ≤ i ≤ n. Then,
1. A increases monotonically.
2. The principal elements are stable, that is

⟨aii, a′ii⟩ = ⟨aii, a′ii⟩
k for all 1 ≤ i ≤ n, k = 1, 2...

3. There is a s ≤ n− 1 such that As = As+1.

Proof. The first part follows from Theorem 3.4 and the second and third part follows from
Theorem 3.5. □

4. The conditions for An−1 < A monotone increasing intuitionistic fuzzy
matrices

In section 3, we have proved that if A is monotone increasing matrix, generally, A con-
verges to As, s ≤ n. Also we have established the condition that A converges to An with
s ≤ n−1. In this section, we will discuss under the conditions that a monotonic increasing
matrix A converges to An exactly.
We begin with a square fuzzy matrix, denoted as

A(k) = A+A2 + ...+Ak = (
〈
aij , a

′
ij

〉k
) for all k ≥ 1.

Lemma 4.1. A(n) > A(n−1) iff there is at least one i0 such that〈
ai0i0 , a

′
i0i0

〉n
> max1≤k≤n−1

〈
ai0i0 , a

′
i0i0

〉n
.

Proof. From Lemma 3.3 we see that〈
aij , a

′
ij

〉n
≤

〈
aij , a

′
ij

〉(n−1)
for all 1 ≤ i ̸= j ≤ n.

So the lemma holds if〈
ai0i0 , a

′
i0i0

〉n
> max1≤k≤n−1

〈
ai0i0 , a

′
i0i0

〉k
. □

Lemma 4.2. Let P be an nth order permutation intuitionistic fuzzy matrix and B =

P ′AP = (
〈
bij , b

′
ij

〉
). Then

(P ′AP )k = P ′AkP for all k ≥ 1 .

Proof. Let P ′P = I we get the lemma directly. □

Theorem 4.3. Let A be an arbitrary square intuitionistic fuzzy matrix. Then A(n) >
A(n−1) iff there exists a permutation matrix P such that B = P ′AP,
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Let

Bλ =


⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ... ⟨0, 1⟩
⟨0, 1⟩ C22 ⟨1, 0⟩ ... ⟨0, 1⟩
⟨0, 1⟩ C32 C33 ... ⟨0, 1⟩
... ... ... ...

⟨0, 1⟩ Cn−12 Cn−13 ... ⟨1, 0⟩
⟨1, 0⟩ Cn2 Cn3 ...cnn

 , (2)

where, λ = ⟨b12, b′12⟩ ∧ ⟨b23, b′23⟩ ∧ ... ∧
〈
bn−1n, b

′
n−1n

〉
∧ ⟨bn1, b′n1⟩ and Bλ = (

〈
cij , c

′
ij

〉
),

〈
cij , c

′
ij

〉
=

⟨1, 0⟩ if
〈
bij , b

′
ij

〉
≥ λ,

⟨0, 1⟩ if
〈
bij , b

′
ij

〉
< λ.

for all 1 ≤ i, j ≤ n .

Proof. If An > An−1 According to lemma 4.2 there is an i0 such that

〈
ai0i0 , a

′
i0i0

〉n
> max

1≤k≤n−1

〈
ai0i0 , a

′
i0i0

〉k
. (3)

Then there are 1 ≤ l2, l3..., ln ≤ n such that〈
ai0i0 , a

′
i0i0

〉n
=

〈
al1l2 , a

′
l1l2

〉∧〈
al2l3 , a

′
l2l3

〉∧
...
∧〈

alnll , a
′
lnll

〉
(4)

where l1 = i0
Now we claim in equation (4) that ls ̸= lt for all s ̸= t. If it not the case, say there are s
and t such that 1 ≤ s < t ≤ n and ls = lt then equation (4) deleting〈
alsls+1 , a

′
lsls+1

〉∧
...
∧〈

alt−1lt , a
′
lt−1lt

〉∧
leads to〈

ai0i0 , a
′
i0i0

〉n ≤
〈
ai0i0 , a

′
i0i0

〉n−t+s
, 1 ≤ n− t+ s ≤ n− 1

but n− t+ s ≤ n− 1 and it contradicts inequality (3) Thus permutation matrix P can be
well defined as
P : lt → for all t = 1, 2, 3...n
Now we set
B = P ′AP , that is

〈
bij , b

′
ij

〉
=

〈
alilj , a

′
lilj

〉
and by lemma 6〈
bij , b

′
ij

〉k
=

〈
alilj , a

′
lilj

〉k
foe all 1 ≤ i, j ≤ n, k ≥ 1 also from equation (4)

⟨b11, b′11⟩
n =

〈
ai0i0 , a

′
i0i0

〉n
=

〈
al1l2 , a

′
l1l2

〉∧〈
al2l3 , a

′
l2l3

〉∧
...
∧〈

alnl1 , a
′
lnl1

〉
= ⟨b12, b′12⟩

∧
⟨b23, b′23⟩

∧
...
∧
⟨bn1, b′n1⟩

Setting λ = {⟨b11, b′11⟩}
n, we try to determine the elements in Bλ as much as we can from

equation (3).
Let ⟨c11, c′11⟩ = ⟨0, 1⟩. If not then, ⟨c11, c′11⟩ = ⟨1, 0⟩. implies ⟨b11, b′11⟩ = ⟨ai0i0 , a′i0i0⟩ ≥
⟨ai0i0 , a′i0i0⟩

n which contradicts to the equation (3).
If there exists 1 ≤ k ≤ n− 1, ⟨ck1, c′k1⟩ = ⟨1, 0⟩. Then
⟨ai0i0 , a′i0i0⟩

k = ⟨b11, b′11⟩
k ≥ ⟨b12, b′12⟩

∧
⟨b23, b′23⟩

∧
...
∧
⟨bk−11, b

′
k−11⟩

∧
⟨bk1, b′k1⟩ ≥ λ =

⟨b11, b′11⟩
n = ⟨ai0i0 , a′i0i0⟩

n Which is contradiction to the inequality (3). So the first column
in Bλ has to be of the form as in equation (2).
Examine the ⟨bst, b′st⟩ for 1 ≤ s ≤ n− 2 and t ≥ s+ 2. If there exists a ⟨Cst, a

′
st⟩ = ⟨1, 0⟩

then ⟨bst, b′st⟩ ≥ λ. It leads to
λ = ⟨b11, b′11⟩

n = ⟨b11, b′11⟩
n∧ ⟨bst, b′st⟩

= ⟨b12, b′12⟩
∧
...
∧〈

bs−1s, b
′
s−1s

〉∧〈
bss+1, b

′
ss+1

〉∧
...
∧〈

bt−1t, b
′
t−1t

〉∧〈
btt+1, b

′
tt+1

〉∧
...
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⟨bn1, b′n1⟩

∧
⟨bst, b′st⟩

⟨b12, b′12⟩
∧

...
∧〈

bs−1s, b
′
s−1s

〉∧
⟨bst, b′st⟩

∧〈
btt+1, b

′
tt+1

〉∧
...
∧
⟨bn1, b′n1⟩

⟨b11, b′11⟩
n−t+s+1, and n− t+ s+ 1 ≤ n− 1 is the contradiction to the equation (3).

From the definition of λ it is easy to see ⟨cn1, c′n1⟩ = ⟨1, 0⟩ and
〈
cii+1, c

′
ii+1

〉
= ⟨1, 0⟩ for

i = 1, 2, 3, ..., (n− 1). Thus, the necessary part of the theorem is proved.

Sufficient Condition: Next if Bλ is of the form given in equation (2),. we claim B(n) >

B(n−1) by claiming first that ⟨b11, b′11⟩
n > ⟨b11, b′11⟩

n−1. It is easy see that
⟨b11, b′11⟩

n ≥ ⟨b12, b′12⟩
∧
⟨b23, b′23⟩

∧
⟨bn1, b′n1⟩ = λ

Also it is not hard to figure out that ⟨b11, b′11⟩
n = λ if there is an integer k such that

⟨b11, b′11⟩
k ≥ λ then there are integers 1 ≤ m1,m2, ...mk ≤ n such that

⟨b11, b′11⟩
k =

〈
bm1m2 , b

′
m1m2

〉∧〈
bm2m3 , b

′
m2m3

〉∧〈
bmkm1 , b

′
mkm1

〉
≥ λ

where m1 = 1 then
〈
bmtmt+1 , b

′
mtmt+1

〉
λ. But the form of Bλ implies that

mt+1 ≤ mt + 1 for all 1 ≤ t ≤ k − 1 and mk = n.
They lead to
n = mk ≤ mk−1 + 1 ≤ mk−2 + 2... ≤ m1 + k − 1 = k,
that is k ≥ n consequently,

⟨b11, b′11⟩
n > max1≤k≤n−1 ⟨b11, b′11⟩

k, B(n) > B(n−1).

Note that A = PBP ′. Let P ′ permute 1 → i1;
〈
ai1i1 , a

′
i1i1

〉k
= ⟨b11, b′11⟩

k Also〈
ai1i1 , a

′
i1i1

〉n
> max1≤k≤n−1

〈
ai1i1 , a

′
i1i1

〉k
, An > A(n− 1);

Hence Proved. □

Theorem 4.4. Suppose that A is a monotone increasing intuitionistic fuzzy matrix. Then
the necessary and sufficient condition for An > An−1 is that there exists a permutation

matrix P such that B = P ′AP =
〈
bij , b

′
ij

〉
satisfies

⟨bk1, b′k1⟩ < λ, k = 1, 2, 3, ..., n− 1
⟨bkl, b′kl⟩ < λ , k = 1, 2, 3, ..., n+ 2 l = k + 2, k + 3, ..., n
where λ = ⟨b12, b′12⟩

∧
⟨b23, b′23⟩

∧
...
∧〈

bn−1n, b
′
n−1n

〉∧
⟨bn1, b′n1⟩.

Further more B also satisfies〈
bkk+1, b

′
kk+1

〉
≤ ⟨bkk, b′kk⟩

∨〈
bk+1k+1, b

′
k+1k+1

〉
for all 1 ≤ k ≤ n − 1, ⟨bn1, b′n1⟩ <

⟨bnn, b′nn⟩ .

Proof. Since A is monotone increasing with A(k) = Ak, then from theorem 5 there is a
permutation matrix P such that B = PA′P , Bλ is of the form in equation (2) and λ is
defined to be
λ = λ = ⟨b12, b′12⟩

∧
⟨b23, b′23⟩

∧
...
∧〈

bn−1n, b
′
n−1n

〉∧
⟨bn1, b′n1⟩.

But the first part is a consequence of the form of Bλ.
We need to show the second part only. That A is monotone increasing implies that so is
B. Hence,〈
bkk+1, b

′
kk+1

〉2
= max1≤i≤n

{
⟨bki, b′ki⟩

∧〈
bik+1, b

′
ik+1

〉}
≥

〈
bkk+1, b

′
kk+1

〉
≥ λ for all 1 ≤

k ≤ n− 1.
From the first part we have
max1≤i≤k−1

{
⟨bki, b′ki⟩

∧〈
bik+1, b

′
ik+1

〉}
≤ max1≤i≤k−1

{〈
bik+1, b

′
ik+1

〉}
< λ and

maxk+2≤i≤n

{
⟨bki, b′ki⟩

∧〈
bik+1, b

′
ik+1

〉}
≤ maxk+2≤i≤n {⟨bki, b′ki⟩} < λ.

These two equations force〈
bkk+1, b

′
kk+1

〉2
= maxi=k,k+1

{
⟨bki, b′ki⟩

∧〈
bik+1, b

′
ik+1

〉}
= (⟨bkk, b′kk⟩

∧〈
bkk+1, b

′
kk+1

〉
)
∨
(
〈
bkk+1, b

′
kk+1

〉∧〈
bk+1k+1, b

′
k+1k+1

〉
)

=
〈
bkk+1, b

′
kk+1

〉∧
(⟨bkk, b′kk⟩

∧〈
bk+1k+1, b

′
k+1k+1

〉
).
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Combing with
〈
bkk+1, b

′
kk+1

〉2 ≥ 〈
bkk+1, b

′
kk+1

〉
we get〈

bkk+1, b
′
kk+1

〉2
=

〈
bkk+1, b

′
kk+1

〉
,
〈
bkk+1, b

′
kk+1

〉
≤ ⟨bkk, b′kk⟩

∨〈
bk+1k+1, b

′
k+1k+1

〉
.

□

Corollary 4.5. For each symmetric monotone increasing fuzzy matrix A we have An−1 =
An.

Corollary 4.6. For each symmetric fuzzy matrix A we have A2n−2 = A2n.

Theorem 4.7. Let Mn be the set of all Boolean matrices of order n,

S =
{
A ∈ Mn|A ≤ A2, ⟨a11, a′11⟩

n−1
}

< ⟨a11, a′11⟩
n and ∥S∥ be the coordinate number S.

Then

∥S∥ ≥ 2(n−1)
(n−2)

2 .

Proof. To establish the conclusion we examine matrices of the form of

A =



⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 1⟩ ... ⟨0, 1⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨1, 0⟩ ⟨1, 0⟩ ⟨0, 1⟩ ... ⟨0, 1⟩ ⟨0, 1⟩
⟨0, 1⟩ ∗ ⟨1, 0⟩ ⟨1, 0⟩ ... ⟨0, 1⟩ ⟨0, 1⟩
⟨0, 1⟩ ∗ ∗ ⟨1, 0⟩ ... ⟨0, 1⟩ ⟨0, 1⟩
... ... ... ... ... ... ...

⟨0, 1⟩ ∗ ∗ ∗ ... ⟨1, 0⟩ ⟨1, 0⟩
⟨1, 0⟩ ∗ ∗ ∗ ... ∗ ⟨0, 1⟩


,

where * represents a number ⟨0, 1⟩ and ⟨1, 0⟩. Since
〈
ajj , a

′
jj

〉
= ⟨1, 0⟩ for all 1 ≤ i ̸= j ≤ n

then the dominating principle holds and A is monotone increasing. Also using Theorem
4 ⟨a11, a′11⟩

n = ⟨1, 0⟩, ⟨a11, a′11⟩
n−1 = ⟨0, 1⟩ So all of the A′s of these form belong to S and

it is easy to see that ∥S∥ ≥ 2(n−1)
(n−2)

2 Especially, when n = 3 there are two and only two
elements as

A1 =

⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨1, 0⟩ ⟨1, 0⟩
⟨1, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩

,

A2 =

⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨1, 0⟩ ⟨1, 0⟩
⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩

. □

5. Conclusion and Discussion

An interpretation of power sequence of intuitionistic fuzzy matrix in fuzzy logics: In the
multivalent logics underlying intuitionistic fuzzy set theories, we always denote the truth
value of a proposition P by v(P ), where v(P ) ∈ [0, 1]. Also the valuation of the negation is
v(¬P ) = 1− v(P ). Therefore v(¬¬P ) = v(P ). The connective implication (→) is defined
as v(P → Q) = v(¬P ∨ Q). In the logic associated with (P (x),∪,∩,−), the disjunction
and the conjunction underlying ∪ and ∩ are defined as v(¬P ∨ Q) = max(v(P ), v(Q)),
V (P ∧ Q) = min(v(P ), v(Q)) respectively. This multivalent logic is usually called the
K-standard sequence (K-SEQ ) logic. With this logic, we consider the following problem.
Let P1.....Pn be propositions, v(Pi → Pj) = ⟨aij , aij⟩ and A = (⟨aij , aij⟩). Then A can
be regarded to be an intuitionistic fuzzy matrix with the operations defined in Section 3.

Also, ⟨aij , aij⟩k can be written as

⟨aij , aij⟩k = max1≤l1...lk−1≤n

{
min(⟨ail1 , ail1⟩ , ⟨al1l2 , al1l2⟩ , ...,

〈
alk−1j , alk−1j

〉
)
}

⟨aij , aij⟩k = max1≤l1...lk−1≤n

{
v((Pi → Pl1) ∧ (Pl1 → Pl2) ∧ ... ∧ (Plk−1

→ Pj))
}

⟨aij , aij⟩k = v(∧1≤l1...lk−1≤n

{
((Pi → Pl1) ∧ (Pl1 → Pl2) ∧ ... ∧ (Plk−1

→ Pj)))
}
.
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So Ak can be clearly interpreted in the K-SEQ logic. Now we claim that A satisfies the
dominating principle. For each pair (i, j), for all 1 ≤ i, j ≤ n, we have
⟨aij , aij⟩ = v(Pi → Pj) = v(¬Pi → Pj) = max {1− v(Pi), v(Pj)}
≤ max {1− v(Pi), v(Pj), 1− v(Pj), v(Pj)}
= max {max(1− v(Pi), v(Pj)),max(1− v(Pj), v(Pj))} = max {v(Pi → Pi), v(Pj → Pj)}
= max {⟨aii, aii⟩ , ⟨ajj , ajj⟩}
Hence, A satisfies the dominating principle, and A is monotone increasing. So, the power
sequence of A converges. Let s be the convergence index of A that is As−1 < As = As+1.
Define
⟨bij , bij⟩ = supk≥1

{
v(∨1≤l1≤,...,lk−1n((Pi → Pl1) ∧ (Pl1 → Pl2) ∧ ... ∧ (Plk−1

→ Pj))
}

Then for each pair (i,j), there exist l1, l2, ..., ls−1

v((Pi → Pl1) ∧ (Pl1 → Pl2∧) ∧ ... ∧ (Pls−1 → Pj)) = ⟨bij , bij⟩
Furthermore, for each t < s there exists at least one pair (i0, j0), such that
v((Pi0 → Pl1) ∧ (Pl1 → Pl2∧) ∧ ... ∧ (Plt−1 → Pj0)) < ⟨bi0j0 , bi0j0⟩ whatever l1, l2, ..., lt−1

are.
There exists some relation between the convergence index s and the finite step proof in
fuzzy logic associated with (P (x),∪,∩,−).
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