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SIMILARITY MEASURE ON CUBIC INTUITIONISTIC FUZZY SETS

AND ITS RELATIONSHIP WITH ENTROPY MEASURE

M. PRIYADHARSHINI1,∗, D. JAYANTHI1, P. GAJALAXMI1, §

Abstract. The objective of the study is to introduce the axioms defining similarity
measures on cubic intuitionistic fuzzy sets. The proposed similarity measure integrates
the principles of similarity measures on interval-valued intuitionistic fuzzy sets and intu-
itionistic fuzzy sets. Additionally, a novel approach is presented to construct similarity
measures using entropy measures specific to cubic intuitionistic fuzzy sets. The trans-
formation of entropy measures into similarity measures is formalized through several
key theorems that adhere to the established axioms. Illustrative example is provided to
demonstrate and validate the proposed definitions.
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1. Introduction

For the first time, Zadeh introduced the concept of fuzzy sets (FSs) in 1965 [37]. Situ-
ations that are vague or imprecise have been described using FS theory, where fuzziness
can be measured by entropy. The term “entropy” is chosen due to its intrinsic similarity
to equations in Shannon entropy [27]. In 1968, Zadeh [38] introduced fuzzy entropy for
the first time, and in 1972, De Luca and Termini [5] developed the axiomatic framework
for fuzzy entropy and referred to Shannon’s probability entropy and interpreting it as a
measure of the amount of information. A similarity measure is defined to compare the
information carried by various things. In 1994, Hyung et al. [13] presented two similarity
measures for both FSs and elements.
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The generalization of FSs known as intuitionistic fuzzy sets (IFSs), which includes de-
grees of membership and non-membership, is first described by Atanassov [2] in 1986.
Interval-valued intuitionistic fuzzy sets (IVIFSs) are first described by Atanassov and
Gargov [3] in 1989. A non-probabilistic type of entropy measure with a geometric inter-
pretation for IFSs are proposed by Szmidt and Kacprzyk [29] in 2001. In 2007, Park et al.
[24] introduced the concept of entropy and similarity measures for IVIFSs and discussed
the relationship between similarity and entropy measures.

In 2009, Zhang et al. [41] axiomatically defined entropy for interval-valued fuzzy sets
(IVFSs) and explored the relationship between entropy and similarity measures. In the
same year, Xu and Yager [36] studied preference relations and defined similarity measures
in IVF and IVIF environment. In 2011, Wei et al. [35] derived a generalized measure of
entropy for IVIFSs. Sun and Liu [30], along with Hu and Li [11] proposed entropy and
similarity measures, explored their interrelationship for IVIFSs.

In 2012, Jun, Kim, and Yang [16] introduced cubic sets (CSs), which combine IVFSs
and FSs. CSs do not include non-membership degrees. In the same year, Zhang et al.
[43] discussed the close relationship among entropy, similarity measures, and inclusion
measures for IFSs. In 2013, Jing [14] developed a new class of similarity measure for
IVIFSs based on the proposed entropy measure. In 2015, Meng and Chen [20] introduced
the entropy measure of Atannasov’s IVIFSs. Tiwari and Gupta [32] extended the entropy
for IVIFSs based on distance, by considering the hesitancy degree in 2018.

The cubic intuitionistic fuzzy set (CIFS) is a combination of IVIFS and IFS, is developed
in 2018 by Kaur and Garg [18]. They discussed the concepts of P-order and R-order
in CIFSs, as well as the operations P(R)-union, P(R)-intersection, P(R)-addition, and
P(R)-product. Additionally, they classified CIFSs as internal and external CIFSs. CIFSs
capture both membership and non-membership degrees, provide a more comprehensive
representation of uncertainty, motivating further research in the CIF framework.

In the same year, Garg and Kaur [7] proposed a series of distance measures based on
Hamming, Euclidean, and Hausdorff measures for CIFSs and derived various relationships
among them. Subsequently, in 2019 Garg and Kaur [8] presented a novel multi-criteria
group decision-making method under the CIF environment, integrating it with the ex-
tended technique for order preference by similarity to an ideal solution (TOPSIS) method.
They developed various concepts for CIFSs, including a series of aggregation operators,
score functions, accuracy functions, correlation coefficients, and different types of dis-
tance measures. These concepts have been applied to various decision-making methods.
However, a significant research gap remains: while CIFSs have been primarily applied
to decision-making problems, their potential applications in image processing remain un-
derexplored. The problem statement is to identify various measures for CIFSs to assess
the quality of original and enhanced images, thereby determining their significance in the
context of image processing applications.

In 2019, Song et al. [28] proposed similarity measure based on the direct operation on
the membership function, non-membership function, hesitation function and the upper
bound of membership function of two IFSs. They demonstrated its application in pattern
recognition, medical diagnosis, and cluster analysis through numerical examples. In 2020,
Verma and Merigo [34] proposed cosine similarity measure for IVIFSs and applied it to a
contractor selection problem, demonstrating its effectiveness in real-life scenarios. In the
same year, Jeevaraj [15] introduced a similarity measure for IVIF numbers based on the
non-hesitance score function and applied it to pattern recognition problems.
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In 2022, Chen and Liu [4] introduced a new class of similarity measures, called IF value
similarity measures, with two components: a similarity measure and a non-similarity mea-
sure for two IFSs. These measures are demonstrated through applications in pattern recog-
nition. In the same year, Gohain et al. [9] introduced similarity measures for IFSs that
incorporate cross-evaluation factors and hesitancy differences, applying them to pattern
recognition, face-mask selection, and clustering problems. In 2023, Talukdar and Dutta
[31] proposed similarity measures for IFSs and defined entropy measures based on these
similarities. They applied the proposed entropy measure in multi-criteria decision-making
problems.

In 2024, Alolyian et al. [1] presented a new similarity measure for IVIFSs, demonstrating
its superiority over existing measures and developing an algorithm for its application in
multi-criteria decision-making problems. In the same year, Huang et al. [12] proposed a
knowledge-based similarity measure for IFSs with applications in pattern recognition.

In 2024, Palanisamy and Periyasamy [23] explored cosine similarity measures for IVIFSs
as a technique for assessing associations between objects in real-world scenarios. In 2024,
Patel et al. [25] proposed a novel similarity measure for intuitionistic fuzzy sets and applied
it in face recognition and software quality evaluation. Also in 2024, Vishnukumar et al.
[33] introduced distance and similarity measures based on accuracy functions and applied
them to solve multi-criteria decision-making problems using the TOPSIS technique.

Various authors [10, 17 & 21] have used different fuzzy extensions such as bipolar fuzzy,
IVIFSs in various fields in recent years. Many studies focus on the similarity and the
entropy measure on IFSs [19 & 39] and IVIFSs [40 & 42]. Most of the literatures indicate
that the entropy measure has a strong relationship with the similarity measures for both
IFSs and IVIFSs. Moreover, previous studies proved that entropy and similarity measures
on IFSs and IVIFSs can be transformed by each other. However, none of the work is done
using CIFS. The core objective of this research endeavour is to extend the similarity of
IFSs and IVIFSs to CIFSs.

The rest of the paper is organized as follows: In Section 2, some necessary definitions
related to CIFSs are reviewed. In Section 3, a definition of the similarity measure on
CIFS is introduced and in Section 4, the relationship between the similarity measure and
the entropy measure on CIFSs is investigated. In Section 5, novel CIF decision-making
problems based on the TOPSIS method are proposed.

2. Preliminaries

In this section, some fundamental concepts and notations are provided.

Definition 2.1. [6] A CIFS A defined over the universal set X is an ordered pair which
is defined as follows:

A = {⟨x,A(x), λ(x)⟩ | x ∈ X}
where A = {⟨x, [µ−(x), µ+(x)], [ν−(x), ν+(x)]⟩ | x ∈ X} represents the IVIFS defined on
X while λ = {x, ⟨µ(x), ν(x)⟩ | x ∈ X} represents an IFS such that 0 ≤ µ−(x) ≤ µ+(x) ≤
1, 0 ≤ ν−(x) ≤ ν+(x) ≤ 1 and 0 ≤ µ+(x) + ν+(x) ≤ 1. Also, 0 ≤ µ(x), ν(x) ≤ 1 and
µ(x)+ν(x) ≤ 1. For the sake of simplicity, we denote these pairs as A = ⟨A, λ⟩, where A =
⟨[µ−, µ+], [ν−, ν+]⟩ and λ = ⟨µ, ν⟩ and call them the cubic intuitionistic fuzzy number(CIFN).

Definition 2.2. [26] A real-valued function ε : CIFS(X ) → [0, 1] is called an entropy
measure on a CIFS A if it satisfies the following axioms:

(E1) ε(A) = 0, ifA is a crisp set;
(E2) ε(A) = 1 if and only if [µ−

A(xi), µ
+
A(xi)] = [ν−A(xi), ν

+
A(xi)] and µA(xi) = νA(xi)

for all xi ∈ X ;
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(E3) ε(A) = ε(Ac), where Ac is the complement of A;
(E4) ε(A) ≤ ε(B),

if A ⊆P B with [µ−
B (xi), µ

+
B (xi)] ≤ [ν−B (xi), ν

+
B (xi)], µB(xi) ≤ νB(xi) ∀xi ∈ X ;

or

if B ⊆P A with [µ−
B (xi), µ

+
B (xi)] ≥ [ν−B (xi), ν

+
B (xi)], µB(xi) ≥ νB(xi) ∀xi ∈ X .

Definition 2.3. [26] A real-valued function ϵ̌ : CIFS(X ) → [0, 1] is said to be an entropy
measure using distance on CIFS A on the universe X , if ϵ̌ satisfies the following properties:

(E1) ε̌(A) = 0, if A is a crisp set
(E2) ε̌(A) = 1 if and only if [µ−

A(xi), µ
+
A(xi)] = [ν−A(xi), ν

+
A(xi)] =

[
1
2 ,

1
2

]
and

µA(xi) = νA(xi) =
1
2 for all xi ∈ X ; i.e.,⇔ A = (⟨[12 ,

1
2 ], [

1
2 ,

1
2 ]⟩, ⟨

1
2 ,

1
2⟩)

(E3) If d(A, (⟨[12 ,
1
2 ], [

1
2 ,

1
2 ]⟩⟨

1
2 ,

1
2⟩)) ≥ d(B, (⟨[12 ,

1
2 ], [

1
2 ,

1
2 ]⟩⟨

1
2 ,

1
2⟩)), then ε̌(A) ≤ ε̌(B)

∀A,B ∈ CIFS(X ) where d is a distance measure on the CIFSs.
(E4) ε̌(A) = ε̌(Ac) where Ac is the complement of A.

3. Similarity measure on cubic intuitionistic fuzzy sets

In this part of the article, an effective similarity measure on CIFSs is introduced.
Let X = {xi|i = 1, 2, . . . , n} be a universe of discourse. The family of all CIFSs in X is

denoted by CIFS(X ).

Definition 3.1. A mapping S : CIFS(X ) × CIFS(X ) → [0, 1] is called a similarity
measure on the CIFSs A,B, and C if it satisfies the following properties:

(S1) S(A,Ac) = 0, if A is a crisp set;
(S2) S(A,B) = 1 ⇔ A = B;
(S3) S(A,B) = S(B,A);
(S4) If A ⊆P B ⊆P C then S(A, C) ≤ S(A,B) and S(A, C) ≤ S(B, C).

Hereafter µ−
A(xi), µ

+
A(xi), ν

−
A (xi), ν

+
A (xi), µA(xi) and νA(xi) will be denoted as µ−

A, µ
+
A, ν

−
A ,

ν+A , µA and νA.

Proposition 3.1. Assume S is a similarity measure of CIFS, let A ∈ CIFS(X ), then
S(A,Ac) is an entropy of CIFS A.

Proof. Let S be a similarity measure of a CIFSA, whereA = {⟨[µ−
A, µ

+
A], [ν

−
A , ν

+
A ]⟩, ⟨µA, νA⟩}

and Ac is the complement of A.
To prove S(A,Ac) is an entropy measure, it should satisfy the conditions of Definition 2.2.

(E1) If A is a crisp set, then S(A,Ac) = 0, by Definition 3.1 (S1).
(E2) Let [µ−

A, µ
+
A] = [ν−A , ν

+
A ] and µA = νA.Then this is possible if and only if A = Ac.

∴ From the Definition 3.1 (S2), we have, S(A,Ac) = 1.

(E3) From the Definition 3.1 (S3), we have, S(A,Ac) = S(Ac,A).
(E4) Let A ⊆P B with µ−

A ≤ µ−
B ≤ ν−B ≤ ν−A , µ

+
A ≤ µ+

B ≤ ν+B ≤ ν+A and µA ≤ µB ≤ νB ≤
νA, then

A ⊆P B ⊆P Bc ⊆P Ac.

∴ By the Definition 3.1 (S4), we have, S(A,Ac) ≤ S(B,Ac) ≤ S(B,Bc).
This implies,

S(A,Ac) ≤ S(B,Bc).

Let B ⊆P A with ν−A ≤ ν−B ≤ µ−
B ≤ µ−

A, ν
+
A ≤ ν+B ≤ µ+

B ≤ µ+
A and νA ≤ νB ≤ µB ≤

µA, then

Ac ⊆P Bc ⊆P B ⊆P A.
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∴ By the Definition 3.1 (S4), we have, S(A,Ac) ≤ S(B,Ac) ≤ S(B,Bc).
This implies,

S(A,Ac) ≤ S(B,Bc).

Since S(A,Ac) satisfies all the conditions of Definition 2.2, it is an entropy measure for
A. □

4. Relationship between entropy measure and similarity measure on cubic
intuitionistic fuzzy sets

In this section, we have discussed the relationship between entropy and the similarity
measures of CIFSs based on the proposed definition.

Definition 4.1. Let A and B be any two distinct CIFSs. We define a new CIFS denoted
by M(A,B) as follows:

M(A,B) = {⟨[µ−
M(A,B), µ

+
M(A,B)], [ν

−
M(A,B), ν

+
M(A,B)]⟩, ⟨µM(A,B), νM(A,B)⟩}

where, µ−
M(A,B) = min{MAB1,MAB2}, µ+

M(A,B) = max{MAB1,MAB2}

ν−M(A,B) = min{MAB3,MAB4}, ν+M(A,B) = max{MAB3,MAB4}
µM(A,B) = MAB5 and νM(A,B) = MAB6, and

MAB1 =
1 + 2min{|µ−

A − µ−
B )|, |ν

−
A − ν−B )|}

3
, MAB2 =

1 + 2min{|µ+
A − µ+

B |, |ν
+
A − ν+B |}

3

MAB3 =
1−max{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

3
, MAB4 =

1−max{|µ+
A − µ+

B |, |ν
+
A − ν+B |}

3

MAB5 =
1 + 2min{|µA − µB|, |νA − νB|}

3
, MAB6 =

1−max{|µA − µB|, |νA − νB|}
3

Theorem 4.1. Let ε be an entropy measure of the CIFS M(A,B), then it is a similarity
measure.

Proof. To prove ε(M(A,B)) satisfy the conditions of Definition 3.1.

(S1) Let A be a crisp set, i.e., A = (⟨[1, 1], [0, 0]⟩, ⟨1, 0⟩) or A = (⟨[0, 0], [1, 1]⟩, ⟨0, 1⟩).
Then Ac = (⟨[0, 0], [1, 1]⟩, ⟨0, 1⟩) or Ac = (⟨[1, 1], [0, 0]⟩, ⟨1, 0⟩)
Now, as MAAc1 = 1,MAAc2 = 1,MAAc3 = 0,MAAc4 = 0,MAAc5 = 1 and
MAAc6 = 0, we have,
µ−
M(A,Ac) = 1, µ+

M(A,Ac) = 1, ν−M(A,Ac) = 0, ν+M(A,Ac) = 0, µM(A,Ac) = 1, and

νM(A,Ac) = 0.

Thus, M(A,Ac) = (⟨[1, 1], [0, 0]⟩, ⟨1, 0⟩) is a crisp set in X , and

from the Definition 2.2 (E1) we have, ε(M(A,Ac)) = 0
(S2) From the Definition 2.2 (E2) we have, ε(M(A,B)) = 1

⇔ µ−
M(A,B) = ν−M(A,B), µ

+
M(A,B) = ν+M(A,B) and µM(A,B) = νM(A,B)

⇔ |µ−
A − µ−

B | = 0, |ν−A − ν−B | = 0, |µ+
A − µ+

B | = 0, |ν+A − ν+B | = 0, |µA − µB| = 0
and |νA − νB| = 0.

⇔ A = B.
(S3) By the definition of M(A,B), it is obvious that M(A,B) = M(A,B)c. This

implies,

ε(M(A,B)) =ε(M(A,B)c)
and hence, ε(M(A,B)) =ε(M(B,A)).
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(S4) If A ⊆P B ⊆P C, then we have,
µ−
A ≤ µ−

B ≤ µ−
C , µ

+
A ≤ µ+

B ≤ µ+
C , ν

−
A ≥ ν−B ≥ ν−C , ν

+
A ≥ ν+B ≥ ν+C , µA ≤ µB ≤

µC and νA ≥ νB ≥ νC .
Hence,

|µ−
A − µ−

C | ≥|µ−
A − µ−

B |, |µ
+
A − µ+

C | ≥ |µ+
A − µ+

B |, |ν
−
A − ν−C | ≥ |ν−A − ν−B |,

|ν+A − ν+C | ≥|ν+A − ν+B |, |µA − µC | ≥ |µA − µB| and |νA − νC | ≥ |νA − νB|.
It follows that,

min
(
|µ−

A − µ−
C |, |ν

−
A − ν−C |

)
≥ min

(
|µ−

A − µ−
B |, |ν

−
A − ν−B |

)
min

(
|µ+

A − µ+
C |, |ν

+
A − ν+C |

)
≥ min

(
|µ+

A − µ+
B |, |ν

+
A − ν+B |

)
max

(
|µ−

A − µ−
C |, |ν

−
A − ν−C |

)
≥ max

(
|µ−

A − µ−
B |, |ν

−
A − ν−B |

)
max

(
|µ+

A − µ+
C |, |ν

+
A − ν+C |

)
≥ max

(
|µ+

A − µ+
B |, |ν

+
A − ν+B |

)
min

(
|µA − µC |, |νA − νC |

)
≥ min

(
|µA − µB|, |νA − νB|

)
max

(
|µA − µC |, |νA − νC |

)
≥ max

(
|µA − µB|, |νA − νB|

)
and we have,
MAC1 ≥ MAB1,MAC2 ≥ MAB2,MAC3 ≤ MAB3,MAC4 ≤ MAB4,
MAC5 ≥ MAB5,MAC6 ≤ MAB6.

Thus, M(A, C) ⊆P M(A,B).

From the Definition 2.2 (E4), we have

ε(M(A, C)) ≤ ε(M(A,B)).

Similarly, we can prove, ε(M(A, C)) ≤ ε(M(B, C)).

∴ ε(M(A, C)) ≤ ε(M(A,B)) and ε(M(A, C)) ≤ ε(M(B, C)) if A ⊆P B ⊆P C.

Since all the conditions for a similarity measure on CIFS are satisfied by ε(M(A,B)), it
is a similarity measure. □

Corollary 4.1. Let ε be an entropy measure for M(A,B) ∈ CIFS(X ), then ε(M(A,B)c)
is also a similarity measure.

Proof. Straightforward. □

Theorem 4.2. For each A,B ∈ CIFS(X ), the entropy measure ε(M(A,B)) define by

ε(M(A,B)) = 1

n

n∑
i=1


min(µ−

M(A,B), ν
−
M(A,B)) + min(µ+

M(A,B), ν
+
M(A,B))+

min(µM(A,B), νM(A,B)) + π−
M(A,B) + π+

M(A,B) + πM(A,B)

max(µ−
M(A,B), ν

−
M(A,B)) + max(µ+

M(A,B), ν
+
M(A,B))+

max(µM(A,B), νM(A,B)) + π−
M(A,B) + π+

M(A,B) + πM(A,B)

 (1)

where, π−
M(A,B) = 1− µ+

M(A,B) − ν+M(A,B), π
+
M(A,B) = 1− µ−

M(A,B) − ν−M(A,B) and

πM(A,B) = 1− µM(A,B) − νM(A,B)
is equal to the similarity measure

S(A,B) = 1

n

n∑
i=1

6− 2min(µ−
AB, ν

−
AB)− 2min(µ+

AB, ν
+
AB)− 2min(µAB, νAB)

6 + max(µ−
AB, ν

−
AB) + max(µ+

AB, ν
+
AB) + max(µAB, νAB)
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where, µ−
AB = |µ−

A − µ−
B |, µ

+
AB = |µ+

A − µ+
B |, ν

−
AB = |ν−A − ν−B |, ν

+
AB = |ν+A − ν+B |, µAB =

|µA − µB| and νAB = |νA − νB|.

Proof. By the definition of M(A,B), we have µ−
M(A,B) ≥ ν−M(A,B), µ

+
M(A,B) ≥ ν+M(A,B) and

µM(A,B) ≥ νM(A,B). Then (1) becomes,

ε(M(A,B))

=
1

n

n∑
i=1

[
ν−M(A,B) + ν+M(A,B) + νM(A,B) + π−

M(A,B) + π+
M(A,B) + πM(A,B)

µ−
M(A,B) + µ+

M(A,B) + µM(A,B) + π−
M(A,B) + π+

M(A,B) + πM(A,B)

]

=
1

n

n∑
i=1

[
MAB3 +MAB4 +MAB6 + π−

M(A,B) + π+
M(A,B) + πM(A,B)

MAB1 +MAB2 +MAB5 + π−
M(A,B) + π+

M(A,B) + πM(A,B)

]
(2)

In (2), consider MAB3 +MAB4 +MAB6

=
1−max{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

3
+

1−max{|µ+
A − µ+

B |, |ν
+
A − ν+B |}

3

+
1−max{|µA − µB|, |νA − νB|}

3

=


3−max{|µ−

A − µ−
B |, |ν

−
A − ν−B |} −max{|µ+

A − µ+
B |, |ν

+
A − ν+B |}

−max{|µA − µB|, |νA − νB|}
3

 (3)

and MAB1 +MAB2 +MAB5

=
1 + 2min{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

3
+

1 + 2min{|µ+
A − µ+

B |, |ν
+
A − ν+B |}

3

+
1 + 2min{|µA − µB|, |νA − νB|}

3

=


3 + 2min{|µ−

A − µ−
B |, |ν

−
A − ν−B |}+ 2min{|µ+

A − µ+
B |, |ν

+
A − ν+B |}

+ 2min{|µA − µB|, |νA − νB|}
3

 (4)

Sub (3) & (4) in (2), we get ε(M(A,B))

=
1

n

n∑
i=1


3[π−

M(A,B) + π+
M(A,B) + πM(A,B)] + 3−max{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

−max{|µ+
A − µ+

B |, |ν
+
A − ν+B |} −max{|µA − µB|, |νA − νB|}

3[π−
M(A,B) + π+

M(A,B) + πM(A,B)] + 3 + 2min{|µ−
A − µ−

B |, |ν
−
A − ν−B |}

+ 2min{|µ+
A − µ+

B |, |ν
+
A − ν+B |}+ 2min{|µA − µB|, |νA − νB|}



=
1

n

n∑
i=1


3[π−

M(A,B) + π+
M(A,B) + πM(A,B)] + 3−max(µ−

AB, ν
−
AB)

−max(µ+
AB, ν

+
AB)−max(µAB, νAB)

3[π−
M(A,B) + π+

M(A,B) + πM(A,B)] + 3 + 2min(µ−
AB, ν

−
AB)

+ 2min(µ+
AB, ν

+
AB) + 2min(µAB, νAB)

 (5)
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Since π−
M(A,B) = 1− µ+

M(A,B) − ν+M(A,B), π
+
M(A,B) = 1− µ−

M(A,B) − ν−M(A,B)
and πM(A,B) = 1− µM(A,B) − νM(A,B), we have,

3[π−
M(A,B) + π+

M(A,B) + πM(A,B)]

=9− 3µ+
M(A,B) − 3ν+M(A,B) − 3µ−

M(A,B) − 3ν−M(A,B) − 3µM(A,B) − 3νM(A,B)

=9− 3(max(MAB1,MAB2))− 3(max(MAB3,MAB4))− 3(min(MAB1,MAB2))

− 3(min(MAB3,MAB4))− 3MAB5 − 3MAB6

=9− 3MAB2 − 3MAB3 − 3MAB1 − 3MAB4 − 3MAB5 − 3MAB6

=9− 3

(
1 + 2min{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

3

)
− 3

(
1−max{|µ−

A − µ−
B |, |ν

−
A − ν−B |}

3

)
− 3

(
1 + 2min{|µ+

A − µ+
B |, |ν

+
A − ν+B |}

3

)
− 3

(
1−max{|µ+

A − µ+
B |, |ν

+
A − ν+B |}

3

)
− 3

(
1 + 2min{|µA − µB|, |νA − νB|}

3

)
− 3

(
1−max{|µA − µB|, |νA − νB|}

3

)
=9− 6 + max{|µ−

A − µ−
B |, |ν

−
A − ν−B |}+max{|µ+

A − µ+
B |, |ν

+
A − ν+B |}+max{|µA − µB|,

|νA − νB|} − 2min{|µ−
A − µ−

B |, |ν
−
A − ν−B |} − 2min{|µ+

A − µ+
B |, |ν

+
A − ν+B |}

− 2min{|µA − µB|, |νA − νB|}
=3 +max{µ−

AB, ν
−
AB}+max{µ+

AB, ν
+
AB}+max{µAB, νAB} − 2min{µ−

AB, ν
−
AB}

− 2min{µ+
AB, ν

+
AB} − 2min{µAB, νAB}

(6)
Sub (6) in (5), we get

ε(M(A,B)) =1

n

n∑
i=1



6−max{µ−
AB, ν

−
AB} −max{µ+

AB, ν
+
AB} −max{µAB, νAB}

+max{µ−
AB, ν

−
AB}+max{µ+

AB, ν
+
AB}+max{µAB, νAB }

−2min{µ−
AB, ν

−
AB} − 2min{µ+

AB, ν
+
AB} − 2min{µAB, νAB}

6 + 2min{µ−
AB, ν

−
AB}+ 2min{µ+

AB, ν
+
AB}+ 2min{µAB, νAB}

+max{µ−
AB, ν

−
AB}+max{µ+

AB, ν
+
AB}+max{µAB, νAB}

−2min{µ−
AB, ν

−
AB} − 2min{µ+

AB, ν
+
AB} − 2min{µAB, νAB}


=
1

n

n∑
i=1

(
6− 2min{µ−

AB, ν
−
AB} − 2min{µ+

AB, ν
+
AB} − 2min{µAB, νAB}

6 + max{µ−
AB, ν

−
AB}+max{µ+

AB, ν
+
AB}+max{µAB, νAB}

)
=S(A,B)

□

Definition 4.2. Let A and B be two CIFSs in universe X , then a CIFS denoted by
N (A,B) is defined as follows:

N (A,B) = {⟨[NAB1,NAB2], [NAB3,NAB4]⟩, ⟨NAB5,NAB6⟩}

where, NAB1 =NAB2 =
1 +min{|µ−

A − µ−
B | ∨ |µ+

A − µ+
B |, |ν

−
A − ν−B | ∨ |ν+A − ν+B |}

2

NAB3 =NAB4 =
1−max{|µ−

A − µ−
B | ∨ |µ+

A − µ+
B |, |ν

−
A − ν−B | ∨ |ν+A − ν+B |}

2

NAB5 =
1 +min{|µA − µB|, |νA − νB|}

2
and NAB6 =

1−max{|µA − µB|, |νA − νB|}
2
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Theorem 4.3. Let ε be an entropy measure for the CIFS N (A,B), then it is a similarity
measure for N (A,B).

Proof. Straightforward. □

Corollary 4.2. An entropy measure ε for the CIFS N (A,B)c, is a similarity measure for
N (A,B)c.

Proof. Straightforward. □

Definition 4.3. Let A and B be two CIFSs in universe X . For any positive integer n,
we define another new CIFS denoted by O(A,B) as follows:

O(A,B) ={⟨[OAB1,OAB2], [OAB3,OAB4]⟩, ⟨OAB5,OAB6⟩}
where,

OAB1 =OAB2 =
1 +min{(|µ−

A − µ−
B | ∨ |µ+

A − µ+
B |)n, (|ν

−
A − ν−B | ∨ |ν+A − ν+B |)n}

2

OAB3 =OAB4 =
1−max{(|µ−

A − µ−
B )| ∨ |µ+

A − µ+
B |)n, (|ν

−
A − ν−B | ∨ |ν+A − ν+B |)n}

2

OAB5 =
1 +min{|µA − µB|n, |νA − νB|n}

2
and OAB6 =

1−max{|µA − µB|n, |νA − νB|n}
2

Theorem 4.4. Let ε be an entropy measure for the CIFS O(A,B), then it is a similarity
measure for O(A,B).

Proof. Straightforward. □

Corollary 4.3. An entropy measure ε for the CIFS O(A,B)c, is a similarity measure for
O(A,B)c.

Proof. Straightforward. □

Definition 4.4. Let A be a CIFS in universe X . For any positive integer n, we define
new CIFSs f(A) and g(A) as follows:

f(A) ={⟨[fA1,fA2], [fA3,fA4]⟩, ⟨fA5,fA6⟩} and

g(A) ={⟨[gA1,gA2], [gA3,gA4]⟩, ⟨gA5,gA6⟩}
where,

fA1 =fA2 =
1 + (|µ−

A − ν−A | ∨ |µ+
A − ν+A |)n

2
,fA3 = fA4 =

1− (|µ−
A − ν−A | ∨ |µ+

A − ν+A |)
2

,

fA5 =
1 + (|µA − νA|)n

2
and fA6 =

1− (|µA − νA|)
2

,

gA1 =gA2 =
1− (|µ−

A − ν−A | ∨ |µ+
A − ν+A |)

2
,gA3 = gA4 =

1 + (|µ−
A − ν−A | ∨ |µ+

A − ν+A |)n

2
,

gA5 =
1− (|µA − νA|)

2
and gA6 =

1 + (|µA − νA|)n

2
.

Theorem 4.5. A similarity measure S of the CIFSs f(A) and g(A), is an entropy
measure of f(A) and g(A).

Proof. Straightforward. □

Corollary 4.4. A similarity measure S of the CIFSs f(A)c and g(A)c, is an entropy
measure of f(A)c and g(A)c.
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Proof. Straightforward. □

Theorem 4.6. Assume Si, i = 1, 2, . . . , n is the similarity measure of a CIFS generated
by the distance di, then for any A ∈ CIFS(X ),

εi(A) = 2
{
Si

(
A,

(〈[
1
2 ,

1
2

]
,
[
1
2 ,

1
2

]〉
,
〈
1
2 ,

1
2

〉))}
− 1, i = 1, 2, . . . , n

is an entropy measure for CIFSs based on the corresponding similarity measures Si, i =
1, 2, . . . , n.

Proof. (E1) Let A be a crisp set,

i.e., A = (⟨[1, 1], [0, 0]⟩, ⟨1, 0⟩) or A = (⟨[0, 0], [1, 1]⟩, ⟨0, 1⟩) and

Si and di, the similarity measures and distance measures of A. Then we have,

Si

(
A,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))
=1−

{
di

(
A,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
=1− 1

2
=

1

2

Hence, εi(A) = 2

(
1

2

)
− 1 =0

(E2) εi
(
A
)
= 2

{
Si

(
A,

(
⟨
[
1
2 ,

1
2

]
,
[
1
2 ,

1
2

]〉
,
〈
1
2 ,

1
2

〉))}
− 1 = 1

⇔
{
Si

(
A,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
= 1

⇔A =

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉)
(E3) If{
di

(
A,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
≥

{
di

(
B,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
,

then,

εi(A) =2

{
Si

(
A,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
− 1

≤2

{
Si

(
B,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
− 1

=εi(B)

(E4) εi(A) = 2
{
Si

(
A,

(〈[
1
2 ,

1
2

]
,
[
1
2 ,

1
2

]〉
,
〈
1
2 ,

1
2

〉))}
− 1

=2

{
Si

(
Ac,

(〈[
1

2
,
1

2

]
,

[
1

2
,
1

2

]〉
,

〈
1

2
,
1

2

〉))}
− 1

=εi(Ac)

Since all the conditions for entropy measures in Definition 2.3 are satisfied εi(A) is an
entropy measure. □
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5. Cubic intuitionistic fuzzy multi-criteria decision-making problem based
on similarity measure

In this section, TOPSIS approach in the CIF environment is introduced to solve multi-
criteria decision-making problem, using the proposed similarity measure.

Let A = {A1,A2, . . . ,Am} be the set of m alternatives which are evaluated under a set
of n criteria, denoted by C = {C1, C2, . . . , Cn} and their preferences are given in the form
of the CIFNs,

Ai = {xj , ⟨[µ−
i,j(xj), µ

+
i,j(xj)], [ν

−
i,j(xj), ν

+
i,j(xj)]⟩, ⟨µi,j(xj), νi,j(xj)⟩|xj ∈ X}, where i =

1, 2, . . . ,m and j = 1, 2, . . . , n.
The TOPSIS method can be depicted as follows:

Step 1: Compute the CIF positive ideal sets and negative ideal sets corresponding to the
alternatives Ai, i = 1, 2, . . . ,m by applying the following conditions:

A+ ={⟨[µ−
A+(xi), µ

+
A+(xi)], [ν

−
A+(xi), ν

+
A+(xi)]⟩, ⟨µA+(xi), νA+(xi)⟩|xi ∈ X}

A− ={⟨[µ−
A−(xi), µ

+
A−(xi)], [ν

−
A−(xi), ν

+
A−(xi)]⟩, ⟨µA−(xi), νA−(xi)⟩|xi ∈ X}

where, [µ−
A+(xi), µ

+
A+(xi)] = [maxi µ

−
A(xi),maxi µ

+
A(xi)], [ν

−
A+(xi), ν

+
A+(xi)]

= [mini ν
−
A(xi),mini ν

+
A(xi)], µA+(xi) = maxi µA(xi), νA+(xi) = mini νA(xi),

[µ−
A−(xi), µ

+
A−(xi)] = [mini µ

−
A(xi),mini µ

+
A(xi)], [ν

−
A−(xi), ν

+
A−(xi)] = [maxi ν

−
A(xi),

maxi ν
+
A(xi)], µA−(xi) = mini µA(xi) and νA−(xi) = maxi νA(xi).

Step 2: Calculate the similarity measure between the positive ideal CIFS A+ and the
alternatives Ai, as well as the similarity measure between the negative ideal CIFS
A− and the alternatives Ai, respectively as follows:

S(A+,Ai) =
1
n

∑n
i=1

6−2min

{
µ−
A+Ai

,ν−
A+Ai

}
−2min

{
µ+

A+Ai
,ν+

A+Ai

}
−2min

{
µA+Ai

,νA+Ai

}
6+max

{
µ−
A+Ai

,ν−
A+Ai

}
+max

{
µ+

A+Ai
,ν+

A+Ai

}
+max

{
µA+Ai

,νA+Ai

}


where, µ−
A+Ai

= |µ−
A+ − µ−

Ai
|, µ+

A+Ai
= |µ+

A+ − µ+
Ai
|, ν−A+Ai

= |ν−A+ − ν−Ai
|,

ν+A+Ai
= |ν+A+ − ν+Ai

|, µA+Ai
= |µA+ − µAi | and νA+Ai

= |νA+ − νAi |, and

S(A−,Ai) =
1
n

∑n
i=1

6−2min

{
µ−
A−Ai

,ν−
A−Ai

}
−2min

{
µ+

A−Ai
,ν+

A−Ai

}
−2min

{
µA−Ai

,νA−Ai

}
6+max

{
µ−
A−Ai

,ν−
A−Ai

}
+max

{
µ+

A−Ai
,ν+

A−Ai

}
+max

{
µA−Ai

,νA−Ai

}


where µ−
A−Ai

= |µ−
A− − µ−

Ai
|, µ+

A−Ai
= |µ+

A− − µ+
Ai
|, ν−A−Ai

= |ν−A− − ν−Ai
|, ν+A−Ai

= |ν+A− −
ν+Ai

|, µA−Ai
= |µA− − µAi | and νA−Ai

= |νA− − νAi |.
Step 3: Determine the relative similarity measure corresponding to the alternatives Ai:

Si =
S(A+,Ai)

S(A+,Ai) + S(A−,Ai)
, i = 1, 2, . . . , n

Step 4: Ranking the alternatives by selecting the one with the largest value, say Sk, k =
1, 2, 3, 4, among the alternatives Si, i = 1, 2, . . . ,m. Consequently, the alternative
Sk, k = 1, 2, 3, 4 is determined to be the optimal choice.

Now consider the following example in which the newly introduced similarity measure
is applied.

Example 5.1. This example is adopted from Nayagam et al., 2011 [22] and Talukdar and
Dutta, 2023 [31].

Assume that there exists a panel with four possible alternatives for investment purpose.
A1 is a car company, A2 is a food company, A3 is a computer company and A4 is an arms
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company. This investment entity must make a decision according to the following criteria:
C1 (risk), C2 (growth) and C3 (environment impact).

The evaluation of these alternatives is made using the CIFN by the decision-maker
under the above three general characteristics. The CIF decision matrix is given in Table
1.

Table 1. The alternatives in terms of CIFNs

C1 C2 C3
A1 ⟨[0.4, 0.5], [0.3, 0.4]⟩, ⟨[0.4, 0.6], [0.2, 0.4]⟩, ⟨[0.1, 0.3], [0.5, 0.6]⟩,

⟨0.5, 0.4⟩ ⟨0.6, 0.4⟩ ⟨0.3, 0.6⟩
A2 ⟨[0.6, 0.7], [0.2, 0.3]⟩, ⟨[0.6, 0.7], [0.2, 0.3]⟩, ⟨[0.4, 0.8], [0.1, 0.2]⟩,

⟨0.7, 0.3⟩ ⟨0.7, 0.3⟩ ⟨0.8, 0.2⟩
A3 ⟨[0.3, 0.6], [0.3, 0.4]⟩, ⟨[0.5, 0.6], [0.3, 0.4]⟩, ⟨[0.4, 0.5], [0.1, 0.3]⟩,

⟨0.6, 0.4⟩ ⟨0.6, 0.4⟩ ⟨0.5, 0.3⟩
A4 ⟨[0.7, 0.8], [0.1, 0.2]⟩, ⟨[0.6, 0.7], [0.1, 0.3]⟩, ⟨[0.3, 0.4], [0.1, 0.2]⟩,

⟨0.8, 0.2⟩ ⟨0.7, 0.3⟩ ⟨0.4, 0.2⟩

Note: Table values taken from Nayagam et al., 2011 [22] and Talukdar and Dutta,
2023 [31].

The applicability of the existing similarity measures on IVIFSs is presented in Table 2.

Table 2. Similarity values for IVIFSs

Existing Approaches A1 A2 A3 A4 Ranking order

IVIFSs

Wei et al., 0.3886 0.5868 0.4748 0.5909 A4 > A2 > A3 > A1

2011 [35]
Sun and Liu, 0.4616 0.5283 0.4893 0.5296 A4 > A2 > A3 > A1

2012 [30]
Meng and Chen, 0.4422 0.5453 0.4884 0.5465 A4 > A2 > A3 > A1

2015 [20]

To apply the proposed similarity measures on CIFSs using TOPSIS method, the steps
to be followed are given below:

Step 1: Compute the positive ideal CIFS and the negative ideal CIFS for the alternatives
Ai (i = 1, 2, 3, 4), as outlined in the table below:

Table 3. Positive and negative ideal CIFSs

C1 C2 C3
A+ ⟨[0.7, 0.8], [0.1, 0.2]⟩, ⟨[0.6, 0.7], [0.1, 0.3]⟩, ⟨[0.4, 0.8], [0.1, 0.2]⟩,

⟨0.8, 0.2⟩ ⟨0.7, 0.3⟩ ⟨0.8, 0.2⟩
A− ⟨[0.3, 0.5], [0.3, 0.4]⟩, ⟨[0.4, 0.6], [0.3, 0.4]⟩, ⟨[0.1, 0.3], [0.5, 0.6]⟩,

⟨0.5, 0.4⟩ ⟨0.6, 0.4⟩ ⟨0.3, 0.6⟩

Step 2: The degree of similarity between the positive ideal CIFS A+ and alternatives Ai,
as well as between the negative ideal CIFS A− and alternatives Ai, are calculated
and they are presented in Table 4.

Step 3: The relative similarity measures Sk, k = 1, 2, 3, 4 with respect to A+ and A− are
calculated and are given in Table 5.
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Table 4. Degree of similarity measures

A1 A2 A3 A4

A1
+ A−

1 A+
2 A−

2 A+
3 A−

3 A+
4 A−

4

S 0.5132 0.7418 0.7102 0.5408 0.5995 0.6521 0.7174 0.5551

Table 5. Relative similarity measures

S1 S2 S3 S4 Ranking order
S 0.4089 0.5677 0.4790 0.5638 A2 > A4 > A3 > A1

5.1. Results and Discussion. These results indicate that, IVIFSs provide an incorrect
ranking order. In contrast, the similarity measures on CIFSs identifies A2 (food company)
as the better alternative with a stable ranking order, which coincides with Nayagam et
al., 2011 [22] and Talukdar and Dutta, 2023 [31].

6. Conclusion

Entropy and similarity measures have received significant attention over the last few
decades and are crucial tools in image processing, decision-making, pattern recognition,
medical diagnosis, neural networks, clustering problems, and data mining applications.
In this article, we introduced the concept of similarity measures on CIFSs. In certain
situations entropy measures cannot be directly applied, they have to be converted into
similarity measures and then applied. To address this, we have developed the relationship
between similarity and entropy measures in CIF environment. To validate the effective-
ness of the proposed similarity measure, it is applied to a multi-criteria decision-making
problem. Also, a comparative study is presented between IVIFSs, and CIFSs. This study
addressed the decision-making problem using only secondary data, which is a limitation
of the work.

In future studies, we aim to define additional similarity measures based on set-theoretic
approach, geometric distance models, and matching functions. Furthermore, we plan to
explore applications of similarity measures on CIFSs in image recognition.

Acknowledgement. The author will be extremely grateful to the learned reviewers for
their valuable comments and suggestions which help us a lot for improving the standard
of this paper.
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