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FUZZY AUTOMATA F*-FIRST CATEGORY SUBSYSTEMS

V. MADHURI', M. ROWTHRI?**, J. MAHALAKSHMI?, §

ABSTRACT. In this paper, the ideas of fuzzy automata normed linear F*-structure spaces
and fuzzy automata §*-first category spaces are presented and reasonable examples are
given. Additionally a few significant properties related with fuzzy automata ¢-Baire
spaces are stated. It is shown that fuzzy automata F*-first category space is certainly
not a fuzzy automata ¢-Baire space. Further in fuzzy automata ¢-Baire space, there is no
fuzzy automata F*-first category subsystem. At last, as an application of fuzzy automata
normed linear §*-structure spaces in fuzzy T; (i = 0, 1) spaces are identified.

Keywords: Fuzzy automata ¥F*-subsystem, MF*-dense subsystem, ¢-Baire space, §*-
residual subsystem.
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1. INTRODUCTION

Zadeh [25] innovated the concept of a fuzzy set in 1965 and Chang [3] gave a
note to the fuzzy topological space which provided a natural framework. The notion of an
automaton was first fuzzified by Wee [24]. In [5], [16], [17], [19], [20], [21], [22] it is shown
that certain topological and fuzzy topological concepts can be used in fuzzy automata
theory to throw light on the structure of such fuzzy automata [1], particularly, to obtain
certain results pertaining to their connectivity and separation properties. Z. H. Li, P.
Li and Y. M. Li, [12] discussed the relationships among several types of fuzzy automata.
Ignjatovic, Ciric and Simovic [8] studied the concepts of subsystems, reverse subsystems
and double subsystems of a fuzzy automaton in terms of fuzzy relation inequalities and
equations. Katsaras [10] introduced the idea of fuzzy norm on a linear space. In 1992,
Felbin [6] introduced an idea of a fuzzy norm on a linear space by assigning a fuzzy
real number to each element of the linear space so that the corresponding fuzzy metric
associated to this fuzzy norm is of Kaleva and Seikkala type [9]. In 1994, Cheng and
Mordeson [4] introduced another idea of a fuzzy norm on a linear space in such a manner
that the corresponding fuzzy metric is of Kramosil and Michalek type [11]. In motivation
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of the paper Cheng and Mordeson, we have introduced a new definition of a fuzzy norm
which is associated fuzzy automata. The novelty of this definition is the validity of this
type of fuzzy norm into a family of non-empty states in fuzzy automata. The concepts of
Baire spaces have been studied extensively in classical topology in [7], [15]. The concept
of Baire spaces in fuzzy setting was introduced and studied by the authors in [18].

Motivated by the work done by some fuzzy topologist on general fuzzy automata, along
with fuzzy automata normed linear structure space introduced by Madhuri and Amud-
hambigai in [13], this paper discusses several characterizations of fuzzy first category with
fuzzy automata normed linear structure spaces. In this paper, the notions of fuzzy au-
tomata normed linear §*-structure spaces and fuzzy automata §*-first category spaces are
introduced and suitable examples are provided. Also some important properties related
with fuzzy automata ¢-Baire spaces are discussed. It is shown that fuzzy automata §*-first
category space is not a fuzzy automata ¢-Baire space. Further in fuzzy automata ¢-Baire
space, there is no fuzzy automata §*-first category subsystem.

2. PRELIMINARIES
This section contains some basic concepts of fuzzy sets and fuzzy automaton. In addi-
tion, some related results and propositions are collected from various books and research
articles. Also, this section includes almost all possible ground notions which are essential
to make this paper self-contained.

Definition 2.1. [13] Let M = (Q, X, J) be a fuzzy automaton. A fuzzy automata normed

linear space is a 3-tuple (@, N, T) where @) is non-empty set of states of M and also it is a

linear space over the field F, T" is a t-norm and N is a fuzzy set on @ x (0,00), such that

for all p,q € @ and all s,t > 0, the following conditions holds:

(i) N(p,t) >0,

(ii) N(p, )—1forallt>01fandonly1fp 0,

(iii Ifa;«éO then N(ap,t) = N(p, |Oé|),Vt,a€IF,

(iv) T(N(p,t),N(q,s)) < N(p+q,t+s), Vt,s € F,

(v) N(p,-) is a non-decreasing function of F and lim;_,ooN(p,t) = 1.

(vi Assume that for all p # 0, N(p,-) is a continuous functlon on F and strictly in-
creasing on the subset { t: 0 < N(p,t) <1 } of F.

)
)
)
)
)
)

Example 2.1. Let M = (Q, X, ) be a fuzzy automaton where Q = R? is a vector space
over the field R. Let p = (p1,p2) € R? and N : R? x (0,00) — [0, 1] be defined by

t2
CF ) G+ fort>0

N(p,t) =
0, fort <0

and also the t-norm is defined as T'(a,b) = ab. Then (R?,N,T) is a fuzzy automata
normed linear space.

Definition 2.2. [13] Let (Q, N,T) be a fuzzy automata normed linear space and let p €
Q, a € (0,1) and € > 0. The fuzzy set uq(p, €) where py : @ X (0,00) — I, be defined over
Q by
l1—a, N(p—gq,€) >«
ta(p,€)(q) = ( ) )
0, otherwise

is said to be a fuzzy automata a-open sphere in @) if

c(1g — pa(ps€) = (1@ — pa(p,€)).
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Definition 2.3. [13] Any fuzzy subsystem p € [ Q is called a fuzzy automata open subsys-
tem if for p(p) > 0 and ¢(1g — p) = (1g — i), there exists an € > 0 such that p(p, €) < p,
for some « € [0,1] and Vp € Q.

Example 2.2. Let M = (Q, X, ) be a fuzzy automaton where @ is a trivial vector space
over R. Let N : @ x (0,00) — [0, 1] be defined by

H%ﬂ\’ fort>0,pe Q,

N(p,t) =
0, fort<0,pe Q,

and also the t-norm is defined as T'(a, b) = ab. Then (Q, N, T) is a fuzzy automata normed
linear space. Let 4 : R x (0,00) — [0,1] be defined as
€
L e
ta(p,€)(q) =

0, otherwise.

Let u € I9 be defined as p(0) = 0.6 > 0. Thus for a = 0.5 and € > 0, pqo(p,€) < p. Thus
1 is a fuzzy automata open subsystem.

Proposition 2.1. [13] Let M = (Q, X, 0) be a fuzzy automaton and let @) be a non-empty
set of states of M. Let (Q,N,T) be a fuzzy automata normed linear space. Then the
family

7,={pel Q .y is fuzzy automata open subsystem }

is a fuzzy automata normed linear structure on ). The members of 7, are called the
fuzzy automata .4 "-open subsystems and the complement of a fuzzy automata .4 -open
subsystem is called a fuzzy automata .4 '-closed subsystem.

Example 2.3. In Example 2.2, let (Q, N,T) be a fuzzy automata normed linear space.
Let p1, po, puz € I9 be formulated as follows : 111 (0) = 0.6, 12(0) = 0.7 and u3(0) = 0.65.
For o € [0,1] and for € > 0, pa(p,€) < pa, pa(p,€) < p2 and pa(p,€) < pz. Thus
09, 1@, 1, f12, p3 are fuzzy automata open subsystems. Therefore 7, = { 0g, 1g, pu1, f2, 3 }
is a fuzzy automata normed linear structure over Q). Then the ordered pair (Q,7 ) is a
fuzzy automata normed linear structure space.

Definition 2.4. [14] Let (X, 7) be a fuzzy topological space. A fuzzy set p € I is called
fuzzy irreducible if p # Ox and for all fuzzy closed sets v,0 € IX with u < (yV 6), it
follows that either p <~y or p <4.

Definition 2.5. [2] A fuzzy set \ in a fuzzy topological space (X, T) is called fuzzy first
category if A = V2, (\;) where \;’s are fuzzy o-nowhere dense sets in (X,7"). Any other
fuzzy set in (X, T) is said to be fuzzy second category.

Definition 2.6. [23] A fuzzy set p4 is quasi-coincident with the fuzzy set pp iff 3 z € X
such that pa(z) +pup(z) > 1 (ie.,) pa q up.

3. Fuzzy AUTOMATA §*-FIRST CATEGORY SUBSYSTEMS

In this section, the concepts of fuzzy automata irreducible, fuzzy automata
A -closed subsystems, fuzzy automata DN1§*-dense subsystem, fuzzy automata §*-first cat-
egory, fuzzy automata §*-second category and fuzzy automata §*-residual subsystems are
introduced. Some properties related with above concepts are discussed in fuzzy automata
normed linear §*-structure spaces.
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Definition 3.1. Let (Q, 7, ) be any fuzzy automata normed linear structure space. Any
fuzzy subsystem p € I is called fuzzy automata irreducible if p # O¢g and for all fuzzy
automata .4 -closed subsystems 7,6 € I9 with p < (7 V d), it follows that either p < v or
p<o.

Definition 3.2. Let (Q, 7, ) be any fuzzy automata normed linear structure space. Any
A\ € I9 is said to be fuzzy automata irreducible .4 -closed iff it is both fuzzy automata
irreducible and fuzzy automata .4 -closed.

Definition 3.3. Let (Q, 7 ,) be any fuzzy automata normed linear structure space and
let X € 7, be any fuzzy automata .4 -open subsystem in (@, 7 , ). Then the collection
F={(g—0)€I?:)\qoand o is a fuzzy automata irreducible .4 -closed subsystem in
(Q, 7, ) } which is finer than the fuzzy automata normed linear topology 7 ,, on @ is said to
be a fuzzy automata normed linear §-structure on Q). A fuzzy automata normed linear §-
structure on () together with 1¢ is said to be a fuzzy automata normed linear §*-structure
on @ and it is denoted by J . A nonempty set @) with a fuzzy automata normed linear
§*-structure J , denoted by (Q,J s ), is said to be a fuzzy automata normed linear §*-
structure space. Each member of J 4 is said to be a fuzzy automata .4 F*-open subsystem
and the complement of each fuzzy automata .4 F*-open subsystem is said to be a fuzzy
automata A F*-closed subsystem.

Example 3.1. In Example 2.3, let (Q, 7 , ) be any fuzzy automata normed linear structure
space. Clearly, 1g, (1g — p1), (1g — p2) and (1g — p3) are fuzzy automata irreducible .4-
closed subsystems in (Q, 7, ). For ps € 7, p2 q 1g, p2 q (1o — 1), pe q (1g — p3).
Thus J 4 = { 0g,1q, 1,13 } is a fuzzy automata normed linear F*-structure over Q.
Then the ordered pair (Q,J 4 ) is a fuzzy automata normed linear §F*-structure space.

Definition 3.4. Let (Q,J 4 ) be a fuzzy automata normed linear §*-structure space.
Let A € I9 be any fuzzy subsystem. Then the fuzzy automata .4 §*-interior and fuzzy
automata 4 F*-closure of A are denoted by FAInt yz+(\) and FACI y5+(A\) and defined
as

FAInt y3-(\) =V { B€I9: 8 <\ and B is fuzzy automata 4 F*-open },
FACLyz<(N\) = N\ { B €I?: X< 3 and 3 is fuzzy automata 4 F*-closed }.

Definition 3.5. A fuzzy subsystem A € I? in a fuzzy automata normed linear §*-structure
space (Q,J 4 ) is called a fuzzy automata NF*-dense subsystem if A = V52, ()\;) where
(g — \i) € I for i € J, where J is an indexed set such that FAInt 4z () = 0q.

Definition 3.6. A fuzzy subsystem \ € I9 in a fuzzy automata normed linear F*-structure
space (@Q,J ) is a called fuzzy automata §*-first category if A = Vg2, (\;), (¢ € J) where
J is an indexed set and all \; € I9 are fuzzy automata MF*-dense subsystems in (Q, T x).
Any other fuzzy subsystem which is not fuzzy automata F*-first category is said to be a
fuzzy automata §*-second category.

Definition 3.7. Let (Q,J 4) be a fuzzy automata normed linear §F*-structure space and
let A € I9 be a fuzzy automata F*-first category subsystem. Then 1o — A is called a fuzzy
automata §*-residual subsystem in (Q, 7 4 ).

Definition 3.8. A fuzzy subsystem A € I9 in a fuzzy automata normed linear §*-structure
space (Q,T_y) is called fuzzy automata §*-dense if there exists no fuzzy automata A §F*-
closed subsystem g € I% in (Q,J.4) such that A < u < 1. That is, FACLy3(\) = 1¢g
in (Q,3.r).



2782 TWMS J. APP. ENG. MATH. V.15, N.12, 2025

Definition 3.9. A fuzzy subsystem \ € I9 in a fuzzy automata normed linear F*-structure
space (Q,J_y) is called fuzzy automata 4F*-subsystem in (Q, T ») if A = A2, (\;) where
Ai € J 4 for i € J, where J is an indexed set.

Definition 3.10. A fuzzy subsystem A € I9 in a fuzzy automata normed linear §*-
structure space (Q,J_y) is called fuzzy automata .Z §*-subsystem in (Q,J ) if

A= ViZi(Ai)
where (19 — \;) € J 4 fori e J.

Proposition 3.1. If X € I? is a fuzzy automata §*-dense subsystem and fuzzy automata
¢ *-subsystem in a fuzzy automata normed linear F*-structure space (Q),J 4 ), then (1g—
\) € I9 is a fuzzy automata §*-first category subsystem in (Q,J_4).

Proof. Let A € I9 be a fuzzy automata ¢F*-subsystem in (Q,J ). Then X\ = A2, (\;)
where \; € J 4. Since A is a fuzzy automata §*-dense subsystem in (Q,J ),

FACLy5 (V) = 1o.
Then ]:.ACZJVS* (/\?il()\z)) = 1g.

But

1Q = fACl/Vg*( Sil()‘l)) < /\izlf.AClJyg* (Az)
Hence 1o < AR FACI y5+(Ni). Since A2 FACL y3+(Ni) £ 1g, the only possibility is
N2 FACL y5+(Ni) = 1g. Then FACl y5-(N;) = 1g for each \; € J 4. Since each
Xi € Ty, N\ = FAInt y5+(N\;) and hence FACI 45« (FAInt y3+(N;)) = 1o which implies
that

lQ - f.AClJVg* (.F.Afnt,/yg* ()\z)) = OQ, (1)
fAInti/;/g* (fACl,/Vg*(lQ — )\z)) = OQ. (2)

Since \; € Ty, (1g—A;) is a fuzzy automata A §F*-closed subsystem. Thus FACI 43+ (1g—
Ai) = 1g — Ai. Therefore from Equation (3.2), FAInt 43 (1g — Ai) = 0g.

Now 1o — A =19 — A2, (N) = V2 (1o — Ai). Therefore 19 — A = V2, (1o — A\;) where
(1g — Ai)’s are fuzzy MF*-dense subsystem in (Q, T 4). Hence 1o — A is a fuzzy automata
§*-first category subsystem. O

Proposition 3.2. In a fuzzy automata normed linear §*-structure space (Q,J_y), a fuzzy
subsystem A € I€ is a fuzzy automata MF*-dense subsystem if and only if (lg—XMN el Q
is a fuzzy automata §*-dense and fuzzy automata ¥F*-subsystem in (Q,T_4).

Proof. Let X be a fuzzy automata F*-dense subsystem in (Q,J ). Then A = V52, (\;)
where 19 — A\; € J 4, for i € J where J is an indexed set and FAInt y3+(\) = 0g.
Then 1g — FAInt yz- (}\) = 1g — 0g = 1 implies that FACZW&*(IQ —A) = 1g. Also
lg—A=1g— \/;')il()\z) = /\fil(lQ — Ai) where lg — X € Ty, for i € J. Hence (lQ - )
is a fuzzy automata F*-dense and fuzzy automata ¥F*-subsystem in (Q, 7T s ).
Conversely, let A € I9 be a fuzzy automata F*-dense and fuzzy ¥F*-subsystem in
(Q,J x). Then A = A2, (N;) where \; € T 4, fori € J. Now 1g — A =19 — A2, (\) =
VX (1g — A;). Hence 1g — A is a fuzzy F§*-subsystem in (Q,J 4 ) and FAInt y3-(1g —
A) =19 —FACl y3-(N) = 1g — 1o = 0g, since A is a fuzzy automata §*-dense. Therefore
1o — A is a fuzzy automata NF*-dense subsystem in (Q, T 4 ). O

Definition 3.11. Let (Q,J ) be a fuzzy automata normed linear §F*-structure space.
Then (Q,J ) is called fuzzy automata ¢-Baire space if FAInt y3(V2, (X)) = 0g where
all \; € I are fuzzy automata MF*-dense subsystems in (Q, T 4 ).
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Proposition 3.3. Let (Q,J 4 ) be a fuzzy automata normed linear §*-structure space.
Then the following statements are equivalent :

(i) (Q,T.4) is a fuzzy automata ¢-Baire space.
(ii) FAInt y5-(\) = 0 for every fuzzy automata F*-first category subsystem \ € 19
in (Q7 jJV)
(iii) FACI y3+(u) = 1g for every fuzzy automata F*-residual subsystem p € I9 in
(@ 3.r).

Proof. (i)=-(ii)
Let A € I? be a fuzzy automata §*-first category subsystem in (Q,J 4). Then \ =
V2, (A;i) where \;’s are fuzzy automata JF*-dense subsystems in (@, 7 4). Then

Since (@,J ) is a fuzzy automata ¢-Baire space, FAInt y5(Vi2,(Ai)) = 0g. Hence
FAInt y3+(\) = 0g for any fuzzy automata F*-first category subsystem A € I¥ in
(Qu ji/V)

(il)=(iii)

Let 1 € I be a fuzzy automata §*-residual subsystem in (Q, 73 4). Then (1o — u) is a
fuzzy automata F*-first category subsystem in (Q,J 4 ). By hypothesis,

FAIntA/g*(lQ - M) = OQ
lg — FACL yz (1) = 0g
FAC y5+ (1) = 1g.

For any fuzzy automata §*-residual subsystem p € I9 in (Q,J3.4), FACL 3+ (1) = 1g.

(iii)=-(i)

Let A € I? be a fuzzy automata §*-first category subsystem in (Q,J ). Then \ =
V2, (Ai) where A;’s are fuzzy automata 91F*-dense subsystems in (Q,J ). Since A is
a fuzzy automata F*-first category subsystem, (1o — A) is a fuzzy automata F*-residual
subsystem in (Q,J 4 ). By hypothesis,

FACl y5+(1g — ) =19

1o FAInt yz«(N) = 1g
./_".AInt/Vg*(A) = OQ
.FAIntJyg*(V ()\Z)) = OQ

where \;’s are fuzzy automata 91§F*-dense subsystems in (Q,J ). Hence (Q,J ) is a
fuzzy automata ¢-Baire space. g

Proposition 3.4. If a fuzzy automata normed linear §F*-structure space (Q,J_y) is a fuzzy
automata ¢-Baire space, then FACI 43+ (A\;2;(Ni)) = 1@, where the fuzzy subsystems
(Ai)’s with (i = 1 to 0o0) are fuzzy automata §*-dense and fuzzy automata 4§ *-subsystems

in (Qa jJV)

Proof. Let (A;)’s where (i = 1 to co) be fuzzy automata §*-dense and fuzzy automata
¢ F*-subsystems in (Q,J ). By Proposition 3.2, (1o — A;)’s are fuzzy automata IF*-
dense subsystems in (Q,J ). Thus for A € 19, v, (1g — A\;) = A. Hence X is a fuzzy
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automata §*-first category subsystem in (Q,J 4 ). Now
FAInt gz« (N) = FAInt 45+ (V21 (1g — \i))
= FAInt yz-(1g — (AZ1(Ni)))
= 1o = FACLy5-(NZ1 (X))
Since (Q,J_y) is a fuzzy automata ¢-Baire space, by Proposition 3.3,
FAInt 45+ () = 0q.
Then 1o — FACL 5+ (AZ1(Ni)) = 0g
which implies FAC 45+ (A2, (Ni)) = 1g.
]

Proposition 3.5. If a fuzzy automata normed linear §*-structure space (Q,J. 4 ) is a
fuzzy automata ¢-Baire space, then FAInt y5-(Vi2,(1g — Ai)) = 0@, where the fuzzy
subsystems (1g — \;)’s with (i = 1 to co) are fuzzy automata §*-first category subsystems
formed from the fuzzy automata §F*-dense and fuzzy automata ¥F*-subsystems \; € 19

in (Q7 j/V)

Proof. Let the fuzzy automata normed linear §*-structure space (Q,J 4 ) be a fuzzy au-
tomata ¢-Baire space and all the fuzzy subsystems \; € I? (i = 1 to 0o) be fuzzy automata
§*-dense and fuzzy automata ¥F*-subsystems in (Q,J_4 ). By Proposition 3.4,

FACLyz-(NZ1(N)) = 1
lg = FACLy5(NZ1(Ni)) = 0g
fAInt/g*( z?il(lQ — /\Z)) = OQ.

Since all \; € I9 are fuzzy automata F*-dense and fuzzy automata 4F*-subsystems, by
Proposition 3.1, (1g—A\;)’s (i = 1 to 0o) are fuzzy automata §*-first category subsystems in
(Q,3.x). Hence FAInt yz- (Vo (g — N\i)) = 0g, where the fuzzy subsystems (1o — A;)’s
(1 = 1 to oo) are fuzzy automata §F*-first category subsystems formed from the fuzzy
automata §*-dense and fuzzy automata ¥F*-subsystems \; in (Q, 7T 4 ). U

Definition 3.12. A fuzzy automata normed linear §*-structure space (Q,J 4 ) is called
fuzzy automata §*-first category if the fuzzy subsystem 1g is a fuzzy automata §*-first
category subsystem in (Q,J.4) (i.e.) 1g = V22, (\;), where all \; € I? are fuzzy automata
MF*-dense subsystems in (Q,T 4 ). Otherwise, (Q,T ) will be called as fuzzy automata
§*-second category space.

Proposition 3.6. If the fuzzy automata normed linear §*-structure space (Q,J 4) is a
fuzzy automata F*-first category space, then (Q,J 4 ) is not a fuzzy automata ¢-Baire
space.

Proof. Let fuzzy automata normed linear §*-structure space (Q,J s ) be a fuzzy automata
§*-first category space. Then 1g = V52, (\;) where (\;)’s are fuzzy automata F*-dense
subsystems in (Q,J_4). Now

f.AITLtJ;/g* (Vg (N)) = .F.AITLt&/Vg* (1Q) =1g # 0g.
Therefore by Definition 3.11, (Q,J_4) is not a fuzzy automata ¢-Baire space. O
Proposition 3.7. Let (Q,J 4 ) be a fuzzy automata normed linear F*-structure space. If
A2, (A;) # 0, where all the fuzzy subsystems \; € I9 (i = 1 to 0o) are fuzzy automata F*-

dense and fuzzy automata ¥F*-subsystems in (Q,J s ), then (Q,T ) is a fuzzy automata
§*-second category space.
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Proof. Let (\;)’s where (i = 1 to o0) be fuzzy automata §*-dense and fuzzy automata
¢ *-subsystems in (Q,J ). By Proposition 3.2, (1g — A;) where (i = 1 to o) are fuzzy
automata MNF*-dense subsystems in (Q,J 4 ). Thus

NZ1(N) # Og
lo — NZi(M) # 1g
ViZi(lg — X) # 1

Hence (Q,7_4) is not a fuzzy automata §*-first category space and therefore (Q,J 4 ) is a
fuzzy automata §*-second category space. O

Proposition 3.8. Let (Q,J_4) be a fuzzy automata normed linear §*-structure space. If
A € I9 is a fuzzy automata F*-first category subsystem in (Q,J_y), then there is a fuzzy
automata .Z F*-subsystem ¢ € I9 in (Q,J_y) such that A < 4.

Proof. Let X € I9 be a fuzzy automata F*-first category subsystem. Then \ = V2L ()
where all \; € I¢ with (i = 1 to oo) are fuzzy automata NF*-dense subsystems in (Q, T 4 ).
Now (1g — FAC! y3+(\;)) with (i = 1 to o) are fuzzy automata .4 §F*-open subsystems in
(Q,J ). Then p= A2, (1g — FACL y5-(N\;)) is a fuzzy automata ¢ F*-subsystem. Thus
1o — 1= 1g — (A4 (1g — FACLyg () = Vi, (FACLyg-(3)).
Hence
A= \/;.21()\1‘) < v;.il(quCl/Vg*()\z)) = 1Q — W

That is, A < 1o — p and 1g — p is fuzzy automata .#§*-subsystem. Let § = 1g — p.
Hence, if A is a fuzzy automata §*-first category subsystem in (Q,J_ s ), then there is a
fuzzy automata .ZF*-subsystem 6 € I9 in (Q,J 4 ) such that A < 4. O

Proposition 3.9. Let (Q,7 4 ) be a fuzzy automata normed linear §*-structure space.
If § € I? is a fuzzy automata F*-residual subsystem in (Q,J ) such that n < §, where
n € I9 is a fuzzy automata F*-dense and fuzzy automata 4F*-subsystem in (Q,J_4 ), then
(Q,7J.y) is a fuzzy automata ¢-Baire space.

Proof. Let § € I be a fuzzy automata §*-residual subsystem in a fuzzy automata normed
linear §*-structure space (Q,J ). Then (19—¢) € I9 is a fuzzy automata §*-first category
subsystem in (Q,J_y). Now by Proposition 3.8, there is a fuzzy automata .7 §*-subsystem
p € 19 in (Q,J.4) such that (1o — &) < u which implies that (1g — pu) < 5. Let
n = 1g —p. Then 7 is a fuzzy automata 4 F*-subsystem in (@Q,J_y) and n < § implies that
FAC y5+(n) < FACL y5+(6). If FACI y5+(n) = 1g, then FACI y3+(0) = 1g. Then by
Proposition 3.3, (Q,J_y) is a fuzzy automata ¢-Baire space. ]

Proposition 3.10. If the fuzzy automata normed linear §*-structure space (Q,J y) is a
fuzzy automata ¢-Baire space and if for \; € 19, V¥, (\;) = 1, then there exists atleast
one fuzzy automata .ZF*-subsystem \; € I9 such that FAInt 43 (\;) # 0g.

Proof. Suppose that FAInt y5(\;) = 0g, for (i = 1 to o0), where all \; € I? with (i = 1
to oo) are fuzzy automata MNF*-dense subsystems in (Q,J ). Then V2, ()\;) = 1o which
implies

FAInt g5+ (Vg1 (M) = ,/_"Afnt,/yg*(lQ) =1g # 0g,

a contradiction to (Q,J s ) being a fuzzy automata ¢-Baire space. Hence FAInt yz+(\;) #
0g, for atleast one fuzzy automata .#F*-subsystem \; € I in (Q, 73 y). O

Proposition 3.11. If the fuzzy automata normed linear §*-structure space (Q,J y) is a
fuzzy automata ¢-Baire space, then no fuzzy automata .4 F*-open subsystem A € I with
A # 0g, is a fuzzy automata §*-first category subsystem in (Q,J s ).
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Proof. Let A € I9 with \ # Og be a fuzzy automata .4 §F*-open subsystem in a fuzzy
automata ¢-Baire space (Q,J_s). Suppose that A = V2, (\;) where \;’s are fuzzy automata
MF*-dense subsystems in (Q,T ). Then

FAInt yz+(N) = FAInt 5+ (Vi1 (M\i)).
Since (Q,7J_y) is a fuzzy automata ¢-Baire space,
FAInt y5+(Vi21(Ni)) = 0g
FAInt yz+(X) = 0g

which is a contradiction, since A € J 4 implies that FAInt y5-(A\) = XA # 0g. Hence
no fuzzy automata .4 §F*-open subsystem A # Og is a fuzzy automata §*-first category
subsystem (Q,J_y). O

4. APPLICATION OF Fuzzy AUTOMATA NORMED LINEAR §*-STRUCTURE SPACES IN
Fuzzy T; (i =0,1) SPACES

In this section, the concepts of fuzzy automata A4 F*-open cover, fuzzy au-
tomata A F*-star, fuzzy automata A F*-Tj spaces and fuzzy automata 4 F*-T; spaces
are introduced and some of their properties are studied.

Definition 4.1. Let (Q,J ,) be a fuzzy automata normed linear §*-structure space and
ANeI® Let % = { p€I9:\q u}. Then fuzzy automata A F*-star of A with respect to
% is denoted by FAN F*St(\, % ) and it is defined as

FANVF SN U)=N{pe :Aqu}.

Example 4.1. In Example 3.1, (Q,J ) is a fuzzy automata normed linear §*-structure
space. Let A € 19 be A\(0) = 0.5. Then % = { A < 4 <1 }. Thus FANF S\, %) =
0.51.

Definition 4.2. Let (Q,J ,) be a fuzzy automata normed linear §F*-structure space. A
family { \; € I? : i € J, where J is an indexed set } of fuzzy automata .4 F*-structure
open subsystems in (Q,J ) is called a fuzzy automata .4 F*-open cover of (Q,J ) if
Vies i = 1q-

Note 4.1. Let (Q,J ) be a fuzzy automata normed linear §F*-structure space and let
A€ I9 Suppose Z = {pe€lI® : Aqpuand p €3, }isa fuzzy automata 4 F*-open
cover of (Q,J ), then FANFSt\, %) €T ,.

Example 4.2. In Example 3.1, (Q,7J ) is a fuzzy automata normed linear §*-structure
space. Let A € I¢ be A\(0) = 0.5. Then % = { 1g, 1,3 }. Thus FANF G\, %) =
p1 € Iy

Definition 4.3. Let (Q,J ,) be a fuzzy automata normed linear §*-structure space.
Then (Q,J , ) is said to be a fuzzy automata A F*-Ty space ( denoted by FANF*-Tj
space ) if for any two fuzzy subsystems A;, Ao € I9 with A\ ¢ Mo, there exists a
fuzzy automata .4 F*-open cover % of (Q,J ,) such that \y < FAANFSt(\, %), A2 o
FANFSt(\, %) or \g < FANFTSt(\o, %), M  FANF*St( Ao, U ).

Definition 4.4. Let (Q,J , ) be a fuzzy automata normed linear §*-structure space. Then
(Q,7 ) is said to be a fuzzy automata A §F*-T1-space ( denoted by FAANF*-T space )
if for any two fuzzy subsystems A1, Ao € I9 with A\; ¢ Ay, there exist fuzzy automata
N §*-open covers % and % of (Q,J ,) such that \y < FAANF S\, %), A2 o
FAJVS*Gt()\l, %2) and )\2 < FAJVS*Gt(Ag, @/1), /\1 (}(FAJVS*Gf()\Q, %1)
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Proposition 4.1. Every fuzzy automata 4 §*-Ty-space is a fuzzy Tp-space.

Proof. Let (Q,J ,) be a fuzzy automata .4 §*-Tp-space. Then for any two fuzzy sub-
systems A, Ao € IQ with A\ ¢ \o, there exists a fuzzy automata .4 F*-open cover
% of (Q,J3,) such that \y < FANF SN, %), Ao  FANFT S\, %) or Ay <
FANF St o, %), M  FANF*St( A2, ). Since % is fuzzy automata A4 F*-open cover
of (Q,7 ,) and by Note 4.1,

FANG SN, U), FANFGt\, %) €T, .
Thus for FAANF*St(\, %) = u1 (say), FANFSt(\o, %) = pa (say),

A1 < pr, Ao of paor Mg < gy At of paa.
Therefore (X, 7) is a fuzzy Ty-space. O

Proposition 4.2. Every fuzzy automata .4 §*-Ti-space is a fuzzy Ti-space.

Proof. Let (Q,7J ) be a fuzzy automata .4 §*-T1-space. Then for any two fuzzy subsys-
tems A1, Ao € I9 with \; d Ao, there exist fuzzy automata A4 §*-open covers %, %> of
(Q, jw) such that )\1 S FAJVS*Gf()\l, %2), )\2 qFAJVS*Gt(Al, %2) and

)\2 S FA:/V%’*Gt(A27%1)7

M o FAN T S\, 7). Since %, U are fuzzy automata .4 §*-open covers of (Q,T )
and by Note 4.1,

FANF G\, %) €T, and FANVF St( N2, 74) €T, .
Thus for FAANF*Gt(\, %) = p1 (say) and FAN FSt(Ae, %) = po (say),

A1 <, A2 of pn and Ag < g, Ay of pa.

Therefore (X, 7) is a fuzzy Ti-space. O
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6. CONCLUSION

The concept of fuzzy automata normed linear structure spaces can be extended by
introducing fuzzy automata normed linear §*-structure spaces within the framework of
fuzzy automata §*-first category spaces. This research enhances, equivalent statement
related to fuzzy automata Y-Baire spaces. It has been demonstrated that fuzzy automata
§*-first category spaces do not constitute fuzzy automata Y-Baire spaces. Furthermore,
the application of fuzzy automata normed linear §F*-structure spaces in fuzzy T; spaces
(for i = 0, 1) has been presented. This work can be further extended to the study of fuzzy
vector topologies using fuzzy norms, offering new directions for future research. Also, the
research on fuzzy T; spaces (for i = 0, 1) could be expanded to explore higher-index fuzzy
spaces or their potential generalizations. It would also be beneficial to study how these
spaces interact with various forms of fuzzy logic and fuzzy systems.
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