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FUZZY AUTOMATA F∗-FIRST CATEGORY SUBSYSTEMS

V. MADHURI1, M. ROWTHRI2,∗, J. MAHALAKSHMI3, §

Abstract. In this paper, the ideas of fuzzy automata normed linear F∗-structure spaces
and fuzzy automata F∗-first category spaces are presented and reasonable examples are
given. Additionally a few significant properties related with fuzzy automata ς-Baire
spaces are stated. It is shown that fuzzy automata F∗-first category space is certainly
not a fuzzy automata ς-Baire space. Further in fuzzy automata ς-Baire space, there is no
fuzzy automata F∗-first category subsystem. At last, as an application of fuzzy automata
normed linear F∗-structure spaces in fuzzy Ti (i = 0, 1) spaces are identified.

Keywords: Fuzzy automata GF∗-subsystem, NF∗-dense subsystem, ς-Baire space, F∗-
residual subsystem.
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1. Introduction

Zadeh [25] innovated the concept of a fuzzy set in 1965 and Chang [3] gave a
note to the fuzzy topological space which provided a natural framework. The notion of an
automaton was first fuzzified by Wee [24]. In [5], [16], [17], [19], [20], [21], [22] it is shown
that certain topological and fuzzy topological concepts can be used in fuzzy automata
theory to throw light on the structure of such fuzzy automata [1], particularly, to obtain
certain results pertaining to their connectivity and separation properties. Z. H. Li, P.
Li and Y. M. Li, [12] discussed the relationships among several types of fuzzy automata.
Ignjatovic, Ciric and Simovic [8] studied the concepts of subsystems, reverse subsystems
and double subsystems of a fuzzy automaton in terms of fuzzy relation inequalities and
equations. Katsaras [10] introduced the idea of fuzzy norm on a linear space. In 1992,
Felbin [6] introduced an idea of a fuzzy norm on a linear space by assigning a fuzzy
real number to each element of the linear space so that the corresponding fuzzy metric
associated to this fuzzy norm is of Kaleva and Seikkala type [9]. In 1994, Cheng and
Mordeson [4] introduced another idea of a fuzzy norm on a linear space in such a manner
that the corresponding fuzzy metric is of Kramosil and Michalek type [11]. In motivation

1 Department of Mathematics, Sona College of Technology, Salem, India 636005
e-mail: madhurivaradarajan@gmail.com; ORCID: https://orcid.org/0000-0003-1036-2892.

2 School of Mathematics, AVP College of Arts and Science, Tirupur, India 641625.
e-mail: rowth3.m@gmail.com; ORCID: https://orcid.org/0000-0003-2798-9667.

3 Department of Science and Humanities, Sri Sai Ram College of Engineering, Bengaluru.
e-mail: paapumaha13@gmail.com; ORCID: https://orcid.org/0009-0002-6272-5114.

∗ Corresponding author.
§ Manuscript received: December 07, 2024; accepted: March 31, 2025.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.12; © Işık University, Depart-
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of the paper Cheng and Mordeson, we have introduced a new definition of a fuzzy norm
which is associated fuzzy automata. The novelty of this definition is the validity of this
type of fuzzy norm into a family of non-empty states in fuzzy automata. The concepts of
Baire spaces have been studied extensively in classical topology in [7], [15]. The concept
of Baire spaces in fuzzy setting was introduced and studied by the authors in [18].

Motivated by the work done by some fuzzy topologist on general fuzzy automata, along
with fuzzy automata normed linear structure space introduced by Madhuri and Amud-
hambigai in [13], this paper discusses several characterizations of fuzzy first category with
fuzzy automata normed linear structure spaces. In this paper, the notions of fuzzy au-
tomata normed linear F∗-structure spaces and fuzzy automata F∗-first category spaces are
introduced and suitable examples are provided. Also some important properties related
with fuzzy automata ς-Baire spaces are discussed. It is shown that fuzzy automata F∗-first
category space is not a fuzzy automata ς-Baire space. Further in fuzzy automata ς-Baire
space, there is no fuzzy automata F∗-first category subsystem.

2. Preliminaries
This section contains some basic concepts of fuzzy sets and fuzzy automaton. In addi-

tion, some related results and propositions are collected from various books and research
articles. Also, this section includes almost all possible ground notions which are essential
to make this paper self-contained.

Definition 2.1. [13] Let M = (Q,X, δ) be a fuzzy automaton. A fuzzy automata normed
linear space is a 3-tuple (Q,N, T ) where Q is non-empty set of states of M and also it is a
linear space over the field F, T is a t-norm and N is a fuzzy set on Q× (0,∞), such that
for all p, q ∈ Q and all s, t > 0, the following conditions holds:

(i) N(p, t) > 0,
(ii) N(p, t) = 1, for all t > 0 if and only if p = 0,
(iii) If α ̸= 0, then N(αp, t) = N(p, t

|α|), ∀t, α ∈ F,
(iv) T (N(p, t), N(q, s)) ≤ N(p+ q, t+ s), ∀t, s ∈ F,
(v) N(p, ·) is a non-decreasing function of F and limt→∞N(p, t) = 1.
(vi) Assume that for all p ̸= 0, N(p, ·) is a continuous function on F and strictly in-

creasing on the subset { t : 0 < N(p, t) < 1 } of F.

Example 2.1. Let M = (Q,X, δ) be a fuzzy automaton where Q = R2 is a vector space
over the field R. Let p = (p1, p2) ∈ R2 and N : R2 × (0,∞) → [0, 1] be defined by

N(p, t) =


t2

(t + |p1|) (t + |p2|) , for t > 0

0, for t ≤ 0

and also the t-norm is defined as T (a, b) = ab. Then (R2, N, T ) is a fuzzy automata
normed linear space.

Definition 2.2. [13] Let (Q,N, T ) be a fuzzy automata normed linear space and let p ∈
Q, α ∈ (0, 1) and ϵ > 0. The fuzzy set µα(p, ϵ) where µα : Q× (0,∞) → I, be defined over
Q by

µα(p, ϵ)(q) =

{
1− α, N(p− q, ϵ) > α

0, otherwise

is said to be a fuzzy automata α-open sphere in Q if

c(1Q − µα(p, ϵ)) = (1Q − µα(p, ϵ)).
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Definition 2.3. [13] Any fuzzy subsystem µ ∈ IQ is called a fuzzy automata open subsys-
tem if for µ(p) ≥ 0 and c(1Q−µ) = (1Q−µ), there exists an ϵ > 0 such that µα(p, ϵ) ≤ µ,
for some α ∈ [0, 1] and ∀p ∈ Q.

Example 2.2. Let M = (Q,X, δ) be a fuzzy automaton where Q is a trivial vector space
over R. Let N : Q× (0,∞) → [0, 1] be defined by

N(p, t) =


t

∥p∥ , for t > 0, p ∈ Q,

0, for t ≤ 0, p ∈ Q,

and also the t-norm is defined as T (a, b) = ab. Then (Q,N, T ) is a fuzzy automata normed
linear space. Let µα : R× (0,∞) → [0, 1] be defined as

µα(p, ϵ)(q) =


1− α, ϵ

∥p−q∥ > α,

0, otherwise.

Let µ ∈ IQ be defined as µ(0) = 0.6 ≥ 0. Thus for α = 0.5 and ϵ > 0, µα(p, ϵ) ≤ µ. Thus
µ is a fuzzy automata open subsystem.

Proposition 2.1. [13] Let M = (Q,X, δ) be a fuzzy automaton and let Q be a non-empty
set of states of M . Let (Q,N, T ) be a fuzzy automata normed linear space. Then the
family

τN = { µ ∈ IQ : µ is fuzzy automata open subsystem }
is a fuzzy automata normed linear structure on Q. The members of τN are called the
fuzzy automata N -open subsystems and the complement of a fuzzy automata N -open
subsystem is called a fuzzy automata N -closed subsystem.

Example 2.3. In Example 2.2, let (Q,N, T ) be a fuzzy automata normed linear space.
Let µ1, µ2, µ3 ∈ IQ be formulated as follows : µ1(0) = 0.6, µ2(0) = 0.7 and µ3(0) = 0.65.
For α ∈ [0, 1] and for ϵ > 0, µα(p, ϵ) ≤ µ1, µα(p, ϵ) ≤ µ2 and µα(p, ϵ) ≤ µ3. Thus
0Q, 1Q, µ1, µ2, µ3 are fuzzy automata open subsystems. Therefore τN = { 0Q, 1Q, µ1, µ2, µ3 }
is a fuzzy automata normed linear structure over Q. Then the ordered pair (Q, τN ) is a
fuzzy automata normed linear structure space.

Definition 2.4. [14] Let (X, τ) be a fuzzy topological space. A fuzzy set µ ∈ IX is called
fuzzy irreducible if µ ̸= 0X and for all fuzzy closed sets γ, δ ∈ IX with µ ≤ (γ ∨ δ), it
follows that either µ ≤ γ or µ ≤ δ.

Definition 2.5. [2] A fuzzy set λ in a fuzzy topological space (X,T ) is called fuzzy first
category if λ = ∨∞

i=1(λi) where λi’s are fuzzy σ-nowhere dense sets in (X,T ). Any other
fuzzy set in (X,T ) is said to be fuzzy second category.

Definition 2.6. [23] A fuzzy set µA is quasi-coincident with the fuzzy set µB iff ∃ x ∈ X
such that µA(x) + µB(x) > 1 (i.e.,) µA q µB.

3. Fuzzy Automata F∗-First Category Subsystems

In this section, the concepts of fuzzy automata irreducible, fuzzy automata
N -closed subsystems, fuzzy automata NF∗-dense subsystem, fuzzy automata F∗-first cat-
egory, fuzzy automata F∗-second category and fuzzy automata F∗-residual subsystems are
introduced. Some properties related with above concepts are discussed in fuzzy automata
normed linear F∗-structure spaces.
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Definition 3.1. Let (Q, τN ) be any fuzzy automata normed linear structure space. Any
fuzzy subsystem µ ∈ IQ is called fuzzy automata irreducible if µ ̸= 0Q and for all fuzzy

automata N -closed subsystems γ, δ ∈ IQ with µ ≤ (γ ∨ δ), it follows that either µ ≤ γ or
µ ≤ δ.

Definition 3.2. Let (Q, τN ) be any fuzzy automata normed linear structure space. Any
λ ∈ IQ is said to be fuzzy automata irreducible N -closed iff it is both fuzzy automata
irreducible and fuzzy automata N -closed.

Definition 3.3. Let (Q, τN ) be any fuzzy automata normed linear structure space and
let λ ∈ τN be any fuzzy automata N -open subsystem in (Q, τN ). Then the collection
F = { (1Q−σ) ∈ IQ : λ q σ and σ is a fuzzy automata irreducible N -closed subsystem in
(Q, τN ) } which is finer than the fuzzy automata normed linear topology τN on Q is said to
be a fuzzy automata normed linear F-structure on Q. A fuzzy automata normed linear F-
structure on Q together with 1Q is said to be a fuzzy automata normed linear F∗-structure
on Q and it is denoted by IN . A nonempty set Q with a fuzzy automata normed linear
F∗-structure IN denoted by (Q, IN ), is said to be a fuzzy automata normed linear F∗-
structure space. Each member of IN is said to be a fuzzy automata N F∗-open subsystem
and the complement of each fuzzy automata N F∗-open subsystem is said to be a fuzzy
automata N F∗-closed subsystem.

Example 3.1. In Example 2.3, let (Q, τN ) be any fuzzy automata normed linear structure
space. Clearly, 1Q, (1Q − µ1), (1Q − µ2) and (1Q − µ3) are fuzzy automata irreducible N -
closed subsystems in (Q, τN ). For µ2 ∈ τN , µ2 q 1Q, µ2 q (1Q − µ1), µ2 q (1Q − µ3).
Thus IN = { 0Q, 1Q, µ1, µ3 } is a fuzzy automata normed linear F∗-structure over Q.
Then the ordered pair (Q, IN ) is a fuzzy automata normed linear F∗-structure space.

Definition 3.4. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space.
Let λ ∈ IQ be any fuzzy subsystem. Then the fuzzy automata N F∗-interior and fuzzy
automata N F∗-closure of λ are denoted by FAIntN F∗(λ) and FAClN F∗(λ) and defined
as

FAIntN F∗(λ) =
∨

{ β ∈ IQ : β ≤ λ and β is fuzzy automata N F∗-open },
FAClN F∗(λ) =

∧
{ β ∈ IQ : λ ≤ β and β is fuzzy automata N F∗-closed }.

Definition 3.5. A fuzzy subsystem λ ∈ IQ in a fuzzy automata normed linear F∗-structure
space (Q, IN ) is called a fuzzy automata NF∗-dense subsystem if λ = ∨∞

i=1(λi) where
(1Q − λi) ∈ IN for i ∈ J, where J is an indexed set such that FAIntN F∗(λ) = 0Q.

Definition 3.6. A fuzzy subsystem λ ∈ IQ in a fuzzy automata normed linear F∗-structure
space (Q, IN ) is a called fuzzy automata F∗-first category if λ = ∨∞

i=1(λi), (i ∈ J) where
J is an indexed set and all λi ∈ IQ are fuzzy automata NF∗-dense subsystems in (Q, IN ).
Any other fuzzy subsystem which is not fuzzy automata F∗-first category is said to be a
fuzzy automata F∗-second category.

Definition 3.7. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space and
let λ ∈ IQ be a fuzzy automata F∗-first category subsystem. Then 1Q−λ is called a fuzzy
automata F∗-residual subsystem in (Q, IN ).

Definition 3.8. A fuzzy subsystem λ ∈ IQ in a fuzzy automata normed linear F∗-structure
space (Q,IN ) is called fuzzy automata F∗-dense if there exists no fuzzy automata N F∗-
closed subsystem µ ∈ IQ in (Q,IN ) such that λ < µ < 1Q. That is, FAClN F∗(λ) = 1Q
in (Q, IN ).
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Definition 3.9. A fuzzy subsystem λ ∈ IQ in a fuzzy automata normed linear F∗-structure
space (Q, IN ) is called fuzzy automata GF∗-subsystem in (Q,IN ) if λ = ∧∞

i=1(λi) where
λi ∈ IN for i ∈ J , where J is an indexed set.

Definition 3.10. A fuzzy subsystem λ ∈ IQ in a fuzzy automata normed linear F∗-
structure space (Q,IN ) is called fuzzy automata FF∗-subsystem in (Q,IN ) if

λ = ∨∞
i=1(λi)

where (1Q − λi) ∈ IN for i ∈ J .

Proposition 3.1. If λ ∈ IQ is a fuzzy automata F∗-dense subsystem and fuzzy automata
GF∗-subsystem in a fuzzy automata normed linear F∗-structure space (Q, IN ), then (1Q−
λ) ∈ IQ is a fuzzy automata F∗-first category subsystem in (Q, IN ).

Proof. Let λ ∈ IQ be a fuzzy automata GF∗-subsystem in (Q, IN ). Then λ = ∧∞
i=1(λi)

where λi ∈ IN . Since λ is a fuzzy automata F∗-dense subsystem in (Q, IN ),

FAClN F∗(λ) = 1Q.

Then FAClN F∗(∧∞
i=1(λi)) = 1Q.

But
1Q = FAClN F∗(∧∞

i=1(λi)) ≤ ∧∞
i=1FAClN F∗(λi).

Hence 1Q ≤ ∧∞
i=1FAClN F∗(λi). Since ∧∞

i=1FAClN F∗(λi) ≮ 1Q, the only possibility is
∧∞
i=1FAClN F∗(λi) = 1Q. Then FAClN F∗(λi) = 1Q for each λi ∈ IN . Since each

λi ∈ IN , λi = FAIntN F∗(λi) and hence FAClN F∗(FAIntN F∗(λi)) = 1Q which implies
that

1Q −FAClN F∗(FAIntN F∗(λi)) = 0Q, (1)

FAIntN F∗(FAClN F∗(1Q − λi)) = 0Q. (2)

Since λi ∈ IN , (1Q−λi) is a fuzzy automata N F∗-closed subsystem. Thus FAClN F∗(1Q−
λi) = 1Q − λi. Therefore from Equation (3.2), FAIntN F∗(1Q − λi) = 0Q.

Now 1Q − λ = 1Q −∧∞
i=1(λi) = ∨∞

i=1(1Q − λi). Therefore 1Q − λ = ∨∞
i=1(1Q − λi) where

(1Q − λi)’s are fuzzy NF∗-dense subsystem in (Q,IN ). Hence 1Q − λ is a fuzzy automata
F∗-first category subsystem. □

Proposition 3.2. In a fuzzy automata normed linear F∗-structure space (Q,IN ), a fuzzy
subsystem λ ∈ IQ is a fuzzy automata NF∗-dense subsystem if and only if (1Q − λ) ∈ IQ

is a fuzzy automata F∗-dense and fuzzy automata GF∗-subsystem in (Q,IN ).

Proof. Let λ be a fuzzy automata NF∗-dense subsystem in (Q,IN ). Then λ = ∨∞
i=1(λi)

where 1Q − λi ∈ IN , for i ∈ J where J is an indexed set and FAIntN F∗(λ) = 0Q.
Then 1Q − FAIntN F∗(λ) = 1Q − 0Q = 1Q implies that FAClN F∗(1Q − λ) = 1Q. Also
1Q − λ = 1Q − ∨∞

i=1(λi) = ∧∞
i=1(1Q − λi) where 1Q − λi ∈ IN , for i ∈ J . Hence (1Q − λ)

is a fuzzy automata F∗-dense and fuzzy automata GF∗-subsystem in (Q,IN ).
Conversely, let λ ∈ IQ be a fuzzy automata F∗-dense and fuzzy GF∗-subsystem in

(Q, IN ). Then λ = ∧∞
i=1(λi) where λi ∈ IN , for i ∈ J . Now 1Q − λ = 1Q − ∧∞

i=1(λi) =
∨∞
i=1(1Q − λi). Hence 1Q − λ is a fuzzy FF∗-subsystem in (Q, IN ) and FAIntN F∗(1Q −

λ) = 1Q−FAClN F∗(λ) = 1Q−1Q = 0Q, since λ is a fuzzy automata F∗-dense. Therefore
1Q − λ is a fuzzy automata NF∗-dense subsystem in (Q, IN ). □

Definition 3.11. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space.
Then (Q,IN ) is called fuzzy automata ς-Baire space if FAIntN F∗(∨∞

i=1(λi)) = 0Q where

all λi ∈ IQ are fuzzy automata NF∗-dense subsystems in (Q, IN ).
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Proposition 3.3. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space.
Then the following statements are equivalent :

(i) (Q,IN ) is a fuzzy automata ς-Baire space.
(ii) FAIntN F∗(λ) = 0Q for every fuzzy automata F∗-first category subsystem λ ∈ IQ

in (Q, IN ).
(iii) FAClN F∗(µ) = 1Q for every fuzzy automata F∗-residual subsystem µ ∈ IQ in

(Q, IN ).

Proof. (i)⇒(ii)
Let λ ∈ IQ be a fuzzy automata F∗-first category subsystem in (Q,IN ). Then λ =

∨∞
i=1(λi) where λi’s are fuzzy automata NF∗-dense subsystems in (Q, IN ). Then

FAIntN F∗(λ) = FAIntN F∗(∨∞
i=1(λi)).

Since (Q,IN ) is a fuzzy automata ς-Baire space, FAIntN F∗(∨∞
i=1(λi)) = 0Q. Hence

FAIntN F∗(λ) = 0Q for any fuzzy automata F∗-first category subsystem λ ∈ IQ in
(Q, IN ).

(ii)⇒(iii)
Let µ ∈ IQ be a fuzzy automata F∗-residual subsystem in (Q, IN ). Then (1Q − µ) is a

fuzzy automata F∗-first category subsystem in (Q, IN ). By hypothesis,

FAIntN F∗(1Q − µ) = 0Q

1Q −FAClN F∗(µ) = 0Q

FAClN F∗(µ) = 1Q.

For any fuzzy automata F∗-residual subsystem µ ∈ IQ in (Q, IN ), FAClN F∗(µ) = 1Q.
(iii)⇒(i)
Let λ ∈ IQ be a fuzzy automata F∗-first category subsystem in (Q,IN ). Then λ =

∨∞
i=1(λi) where λi’s are fuzzy automata NF∗-dense subsystems in (Q,IN ). Since λ is

a fuzzy automata F∗-first category subsystem, (1Q − λ) is a fuzzy automata F∗-residual
subsystem in (Q,IN ). By hypothesis,

FAClN F∗(1Q − λ) = 1Q

1Q −FAIntN F∗(λ) = 1Q

FAIntN F∗(λ) = 0Q

FAIntN F∗(∨∞
i=1(λi)) = 0Q

where λi’s are fuzzy automata NF∗-dense subsystems in (Q,IN ). Hence (Q, IN ) is a
fuzzy automata ς-Baire space. □

Proposition 3.4. If a fuzzy automata normed linear F∗-structure space (Q, IN ) is a fuzzy
automata ς-Baire space, then FAClN F∗(

∧∞
i=1(λi)) = 1Q, where the fuzzy subsystems

(λi)’s with (i = 1 to ∞) are fuzzy automata F∗-dense and fuzzy automata GF∗-subsystems
in (Q, IN ).

Proof. Let (λi)’s where (i = 1 to ∞) be fuzzy automata F∗-dense and fuzzy automata
GF∗-subsystems in (Q, IN ). By Proposition 3.2, (1Q − λi)’s are fuzzy automata NF∗-

dense subsystems in (Q, IN ). Thus for λ ∈ IQ, ∨∞
i=1(1Q − λi) = λ. Hence λ is a fuzzy
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automata F∗-first category subsystem in (Q, IN ). Now

FAIntN F∗(λ) = FAIntN F∗(∨∞
i=1(1Q − λi))

= FAIntN F∗(1Q − (∧∞
i=1(λi)))

= 1Q −FAClN F∗(∧∞
i=1(λi))

Since (Q, IN ) is a fuzzy automata ς-Baire space, by Proposition 3.3,

FAIntN F∗(λ) = 0Q.

Then 1Q −FAClN F∗(∧∞
i=1(λi)) = 0Q

which implies FAClN F∗(∧∞
i=1(λi)) = 1Q.

□

Proposition 3.5. If a fuzzy automata normed linear F∗-structure space (Q,IN ) is a
fuzzy automata ς-Baire space, then FAIntN F∗(∨∞

i=1(1Q − λi)) = 0Q, where the fuzzy
subsystems (1Q−λi)’s with (i = 1 to ∞) are fuzzy automata F∗-first category subsystems

formed from the fuzzy automata F∗-dense and fuzzy automata GF∗-subsystems λi ∈ IQ

in (Q, IN ).

Proof. Let the fuzzy automata normed linear F∗-structure space (Q, IN ) be a fuzzy au-
tomata ς-Baire space and all the fuzzy subsystems λi ∈ IQ (i = 1 to ∞) be fuzzy automata
F∗-dense and fuzzy automata GF∗-subsystems in (Q,IN ). By Proposition 3.4,

FAClN F∗(∧∞
i=1(λi)) = 1Q

1Q −FAClN F∗(∧∞
i=1(λi)) = 0Q

FAIntN F∗(∨∞
i=1(1Q − λi)) = 0Q.

Since all λi ∈ IQ are fuzzy automata F∗-dense and fuzzy automata GF∗-subsystems, by
Proposition 3.1, (1Q−λi)’s (i = 1 to∞) are fuzzy automata F∗-first category subsystems in
(Q, IN ). Hence FAIntN F∗(

∨∞
i=1(1Q−λi)) = 0Q, where the fuzzy subsystems (1Q−λi)’s

(i = 1 to ∞) are fuzzy automata F∗-first category subsystems formed from the fuzzy
automata F∗-dense and fuzzy automata GF∗-subsystems λi in (Q, IN ). □

Definition 3.12. A fuzzy automata normed linear F∗-structure space (Q, IN ) is called
fuzzy automata F∗-first category if the fuzzy subsystem 1Q is a fuzzy automata F∗-first

category subsystem in (Q, IN ) (i.e.) 1Q = ∨∞
i=1(λi), where all λi ∈ IQ are fuzzy automata

NF∗-dense subsystems in (Q,IN ). Otherwise, (Q, IN ) will be called as fuzzy automata
F∗-second category space.

Proposition 3.6. If the fuzzy automata normed linear F∗-structure space (Q,IN ) is a
fuzzy automata F∗-first category space, then (Q, IN ) is not a fuzzy automata ς-Baire
space.

Proof. Let fuzzy automata normed linear F∗-structure space (Q, IN ) be a fuzzy automata
F∗-first category space. Then 1Q = ∨∞

i=1(λi) where (λi)’s are fuzzy automata NF∗-dense
subsystems in (Q,IN ). Now

FAIntN F∗(∨∞
i=1(λi)) = FAIntN F∗(1Q) = 1Q ̸= 0Q.

Therefore by Definition 3.11, (Q, IN ) is not a fuzzy automata ς-Baire space. □

Proposition 3.7. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space. If
∧∞
i=1(λi) ̸= 0Q, where all the fuzzy subsystems λi ∈ IQ (i = 1 to∞) are fuzzy automata F∗-

dense and fuzzy automata GF∗-subsystems in (Q,IN ), then (Q,IN ) is a fuzzy automata
F∗-second category space.
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Proof. Let (λi)’s where (i = 1 to ∞) be fuzzy automata F∗-dense and fuzzy automata
GF∗-subsystems in (Q,IN ). By Proposition 3.2, (1Q − λi) where (i = 1 to ∞) are fuzzy
automata NF∗-dense subsystems in (Q, IN ). Thus

∧∞
i=1(λi) ̸= 0Q

1Q − ∧∞
i=1(λi) ̸= 1Q

∨∞
i=1(1Q − λi) ̸= 1Q.

Hence (Q, IN ) is not a fuzzy automata F∗-first category space and therefore (Q,IN ) is a
fuzzy automata F∗-second category space. □

Proposition 3.8. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space. If
λ ∈ IQ is a fuzzy automata F∗-first category subsystem in (Q, IN ), then there is a fuzzy
automata FF∗-subsystem δ ∈ IQ in (Q, IN ) such that λ ≤ δ.

Proof. Let λ ∈ IQ be a fuzzy automata F∗-first category subsystem. Then λ = ∨∞
i=1(λi)

where all λi ∈ IQ with (i = 1 to ∞) are fuzzy automata NF∗-dense subsystems in (Q, IN ).
Now (1Q−FAClN F∗(λi)) with (i = 1 to ∞) are fuzzy automata N F∗-open subsystems in
(Q, IN ). Then µ = ∧∞

i=1(1Q −FAClN F∗(λi)) is a fuzzy automata GF∗-subsystem. Thus

1Q − µ = 1Q − (∧∞
i=1(1Q −FAClN F∗(λi))) = ∨∞

i=1(FAClN F∗(λi)).

Hence
λ = ∨∞

i=1(λi) ≤ ∨∞
i=1(FAClN F∗(λi)) = 1Q − µ.

That is, λ ≤ 1Q − µ and 1Q − µ is fuzzy automata FF∗-subsystem. Let δ = 1Q − µ.
Hence, if λ is a fuzzy automata F∗-first category subsystem in (Q, IN ), then there is a
fuzzy automata FF∗-subsystem δ ∈ IQ in (Q, IN ) such that λ ≤ δ. □

Proposition 3.9. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space.
If δ ∈ IQ is a fuzzy automata F∗-residual subsystem in (Q,IN ) such that η ≤ δ, where
η ∈ IQ is a fuzzy automata F∗-dense and fuzzy automata GF∗-subsystem in (Q, IN ), then
(Q, IN ) is a fuzzy automata ς-Baire space.

Proof. Let δ ∈ IQ be a fuzzy automata F∗-residual subsystem in a fuzzy automata normed
linear F∗-structure space (Q, IN ). Then (1Q−δ) ∈ IQ is a fuzzy automata F∗-first category
subsystem in (Q, IN ). Now by Proposition 3.8, there is a fuzzy automata FF∗-subsystem
µ ∈ IQ in (Q,IN ) such that (1Q − δ) ≤ µ which implies that (1Q − µ) ≤ δ. Let
η = 1Q−µ. Then η is a fuzzy automata GF∗-subsystem in (Q, IN ) and η ≤ δ implies that
FAClN F∗(η) ≤ FAClN F∗(δ). If FAClN F∗(η) = 1Q, then FAClN F∗(δ) = 1Q. Then by
Proposition 3.3, (Q, IN ) is a fuzzy automata ς-Baire space. □

Proposition 3.10. If the fuzzy automata normed linear F∗-structure space (Q, IN ) is a
fuzzy automata ς-Baire space and if for λi ∈ IQ, ∨∞

i=1(λi) = 1Q, then there exists atleast

one fuzzy automata FF∗-subsystem λi ∈ IQ such that FAIntN F∗(λi) ̸= 0Q.

Proof. Suppose that FAIntN F∗(λi) = 0Q, for (i = 1 to ∞), where all λi ∈ IQ with (i = 1
to ∞) are fuzzy automata NF∗-dense subsystems in (Q, IN ). Then ∨∞

i=1(λi) = 1Q which
implies

FAIntN F∗(∨∞
i=1(λi)) = FAIntN F∗(1Q) = 1Q ̸= 0Q,

a contradiction to (Q, IN ) being a fuzzy automata ς-Baire space. Hence FAIntN F∗(λi) ̸=
0Q, for atleast one fuzzy automata FF∗-subsystem λi ∈ IQ in (Q, IN ). □

Proposition 3.11. If the fuzzy automata normed linear F∗-structure space (Q, IN ) is a
fuzzy automata ς-Baire space, then no fuzzy automata N F∗-open subsystem λ ∈ IQ with
λ ̸= 0Q, is a fuzzy automata F∗-first category subsystem in (Q, IN ).
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Proof. Let λ ∈ IQ with λ ̸= 0Q be a fuzzy automata N F∗-open subsystem in a fuzzy
automata ς-Baire space (Q, IN ). Suppose that λ = ∨∞

i=1(λi) where λi’s are fuzzy automata
NF∗-dense subsystems in (Q, IN ). Then

FAIntN F∗(λ) = FAIntN F∗(∨∞
i=1(λi)).

Since (Q, IN ) is a fuzzy automata ς-Baire space,

FAIntN F∗(∨∞
i=1(λi)) = 0Q

FAIntN F∗(λ) = 0Q

λ = 0Q

which is a contradiction, since λ ∈ IN implies that FAIntN F∗(λ) = λ ̸= 0Q. Hence
no fuzzy automata N F∗-open subsystem λ ̸= 0Q is a fuzzy automata F∗-first category
subsystem (Q, IN ). □

4. Application of Fuzzy Automata Normed Linear F∗-Structure Spaces in
Fuzzy Ti (i = 0, 1) Spaces

In this section, the concepts of fuzzy automata N F∗-open cover, fuzzy au-
tomata N F∗-star, fuzzy automata N F∗-T0 spaces and fuzzy automata N F∗-T1 spaces
are introduced and some of their properties are studied.

Definition 4.1. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space and
λ ∈ IQ. Let U = { µ ∈ IQ : λ q µ}. Then fuzzy automata N F∗-star of λ with respect to
U is denoted by FAN F∗St(λ,U ) and it is defined as

FAN F∗St(λ,U ) =
∧
{ µ ∈ U : λ q µ }.

Example 4.1. In Example 3.1, (Q, IN ) is a fuzzy automata normed linear F∗-structure
space. Let λ ∈ IQ be λ(0) = 0.5. Then U = { λ < µ ≤ 1 }. Thus FAN F∗St(λ,U ) =
0.51.

Definition 4.2. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space. A
family { λi ∈ IQ : i ∈ J , where J is an indexed set } of fuzzy automata N F∗-structure
open subsystems in (Q, IN ) is called a fuzzy automata N F∗-open cover of (Q,IN ) if∨

i∈J λi = 1Q.

Note 4.1. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space and let
λ ∈ IQ. Suppose U = { µ ∈ IQ : λ q µ and µ ∈ IN } is a fuzzy automata N F∗-open
cover of (Q, IN ), then FAN F∗St(λ,U ) ∈ IN .

Example 4.2. In Example 3.1, (Q, IN ) is a fuzzy automata normed linear F∗-structure
space. Let λ ∈ IQ be λ(0) = 0.5. Then U = { 1Q, µ1, µ3 }. Thus FAN F∗St(λ,U ) =
µ1 ∈ IN .

Definition 4.3. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space.
Then (Q, IN ) is said to be a fuzzy automata N F∗-T0 space ( denoted by FAN F∗-T0

space ) if for any two fuzzy subsystems λ1, λ2 ∈ IQ with λ1 ̸q λ2, there exists a
fuzzy automata N F∗-open cover U of (Q, IN ) such that λ1 ≤ FAN F∗St(λ1,U ), λ2 ̸q
FAN F∗St(λ1,U ) or λ2 ≤ FAN F∗St(λ2,U ), λ1 ̸q FAN F∗St(λ2,U ).

Definition 4.4. Let (Q, IN ) be a fuzzy automata normed linear F∗-structure space. Then
(Q, IN ) is said to be a fuzzy automata N F∗-T1-space ( denoted by FAN F∗-T1 space )
if for any two fuzzy subsystems λ1, λ2 ∈ IQ with λ1 ̸q λ2, there exist fuzzy automata
N F∗-open covers U1 and U2 of (Q, IN ) such that λ1 ≤ FAN F∗St(λ1,U2), λ2 ̸q
FAN F∗St(λ1,U2) and λ2 ≤ FAN F∗St(λ2,U1), λ1 ̸q FAN F∗St(λ2,U1).
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Proposition 4.1. Every fuzzy automata N F∗-T0-space is a fuzzy T0-space.

Proof. Let (Q, IN ) be a fuzzy automata N F∗-T0-space. Then for any two fuzzy sub-
systems λ1, λ2 ∈ IQ with λ1 ̸q λ2, there exists a fuzzy automata N F∗-open cover
U of (Q,IN ) such that λ1 ≤ FAN F∗St(λ1,U ), λ2 ̸q FAN F∗St(λ1,U ) or λ2 ≤
FAN F∗St(λ2,U ), λ1 ̸q FAN F∗St(λ2,U ). Since U is fuzzy automata N F∗-open cover
of (Q, IN ) and by Note 4.1,

FAN F∗St(λ1,U ), FAN F∗St(λ2,U ) ∈ IN .

Thus for FAN F∗St(λ1,U ) = µ1 (say), FAN F∗St(λ2,U ) = µ2 (say),

λ1 ≤ µ1, λ2 ̸q µ1 or λ2 ≤ µ2, λ1 ̸q µ2.

Therefore (X, τ) is a fuzzy T0-space. □

Proposition 4.2. Every fuzzy automata N F∗-T1-space is a fuzzy T1-space.

Proof. Let (Q, IN ) be a fuzzy automata N F∗-T1-space. Then for any two fuzzy subsys-
tems λ1, λ2 ∈ IQ with λ1 ̸q λ2, there exist fuzzy automata N F∗-open covers U1,U2 of
(Q, IN ) such that λ1 ≤ FAN F∗St(λ1,U2), λ2 ̸q FAN F∗St(λ1,U2) and

λ2 ≤ FAN F∗St(λ2,U1),

λ1 ̸q FAN F∗St(λ2,U1). Since U1,U2 are fuzzy automata N F∗-open covers of (Q, IN )
and by Note 4.1,

FAN F∗St(λ1,U2) ∈ IN and FAN F∗St(λ2,U1) ∈ IN .

Thus for FAN F∗St(λ1,U2) = µ1 (say) and FAN F∗St(λ2,U1) = µ2 (say),

λ1 ≤ µ1, λ2 ̸q µ1 and λ2 ≤ µ2, λ1 ̸q µ2.

Therefore (X, τ) is a fuzzy T1-space. □
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6. Conclusion
The concept of fuzzy automata normed linear structure spaces can be extended by

introducing fuzzy automata normed linear F∗-structure spaces within the framework of
fuzzy automata F∗-first category spaces. This research enhances, equivalent statement
related to fuzzy automata Σ-Baire spaces. It has been demonstrated that fuzzy automata
F∗-first category spaces do not constitute fuzzy automata Σ-Baire spaces. Furthermore,
the application of fuzzy automata normed linear F∗-structure spaces in fuzzy Ti spaces
(for i = 0, 1) has been presented. This work can be further extended to the study of fuzzy
vector topologies using fuzzy norms, offering new directions for future research. Also, the
research on fuzzy Ti spaces (for i = 0, 1) could be expanded to explore higher-index fuzzy
spaces or their potential generalizations. It would also be beneficial to study how these
spaces interact with various forms of fuzzy logic and fuzzy systems.
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