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COMPLEX RAYS AND APPLICATIONS

ELMAN HASANOGLU∗, §

Abstract. Complex rays are a fascinating aspect of modern diffraction theory, typically
sought as complex solutions to the eikonal equation. Traditionally, these solutions are
obtained by analytically continuing real rays into the complex domain. However, this
approach demands the analyticity of initial data, significantly limiting its applicability
to many practical problems. Additionally, unlike real rays, complex rays cannot be vi-
sualized in space, presenting another drawback. In this paper, we present an alternative
interpretation of complex rays, as introduced in [1], and describe a novel approach to
two model diffraction problems and Gaussian beams.

Keywords: wave equation, eikonal equation, complex rays, Minkowski space, Gaussian
beams.
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1. Introduction

Following Schrödinger’s groundbreaking formulation of his seminal equation, numerous ef-
forts were made to precisely solve this equation. However, exact solutions remained elusive,
achievable only for the most elementary scenarios. With powerful numerical methods and
computational capabilities yet to emerge, researchers sought approximate solutions that
could closely mimic exact outcomes. In 1926, Wentzel, Kramers, and Brillouin indepen-
dently devised an asymptotic approach known as the Wentzel-Kramers-Brillouin (WKB)
method, offering a means to approximate solutions. This method proved invaluable not
only for tackling the Schrödinger equation but also for analyzing many other complex
wave behaviors at high frequencies. Over time, it has become an indispensable tool across
various realms of physics. The primary advantage of the WKB method lies in its ability
to simplify the study of wave phenomena, characterized by small parameter. For this the
field (electromagnetic, aucustic, seismic ets.) under question is assumed to be represented
in the asymptotic form

u (x, y, z; k) ∼ eikS
∞∑
n=0

An

(ik)n
, (1)

called ray anstaz, where k = ω/c is a wavenumber, S = S(x, y, z) is a phase function
and An = An (x, y, x) are amplitudes no more depending on k. It is well known that in
nonhomogenous and isotropic medium each component of electrical and magnetic vectors
in the classical Maxwell equations satifies the scalar Helmholtz equation (time factor e−iωt

suppressed)
∆u+ k2n2u = 0, (2)
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where ∆ is the Laplace operator, n = n (x, y, z) is the refractive index of media. To
find the ray solutions or high frequency asymptotic solutions of (2) subject to a rapidly
oscillating boundary condition

u (x, y, 0) = U0 (x, y) e
ikφ(x,y), (3)

where φ (x, y) = S (x, y, 0) is the initial phase, we substitute (1) into (2) and after equating
the corresponding degrees of k we get an equation

(∇S)2 =
(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2

= n2 (4)

for determining S = S (x, y, z) , called eikonal equation, and a sequence of equations

2∇A0 · ∇S +A0∆
2S = 0,

· · · · · · · · · · · · · · · · · · ·· (5)

2∇An · ∇S +An∆
2S = An−1

for determining amplitudes An (x, y, z), called transport equations. The zero approxima-
tion in (1),

u (x, y, z) = A0 (x, y, z) e
ikS(x,y,z), (6)

is essentially the primary equation of the geometrical optics approximation. Since the
eikonal equation (4) does not involve the amplitudes, it can be solved separately and
independently of the transport equations. In fact, (4) is no other than Hamilton-Jacobi
equation for the variational principle (Fermat’s Principle)

min

∫
L

n (x, y, z) ds (7)

of geometrical optics and is a nonlinear first-order partial differential equation. It is well
known that the extremals (light rays) of equation (7) satisfy the Euler-Lagrange system
of ordinary differential equations; see, for example, [2], [3] and other standard textbooks
on classical geometrical optics. Notably, in contrast to the general theory of Hamilton–
Jacobi equations, equation (4) may admit complex-valued solutions, known as complex
rays. These solutions describe the field in regions where the real solutions of (4) do not
exist, such as shadow regions. In what follows, we aim to describe the field in these
domains. For other applications of complex rays, see [7-11] and the extended bibliography
therein.

2. Mathematical Background

The fundamental property of equations of the type (4) is that finding their solutions
can be reduced to solving a system of ordinary differential equations, called characteristic
system. Here, we focus on solutions of (4) in the z-direction. Studying wave propagation
along a specified direction is more realistic than analyzing radiation from an ideal isotropic
source, as truly isotropic emitters do not exist in nature. This physical fact is typically
reflected in the mathematical formulation by imposing appropriate initial conditions on
the governing equations. In the considerations that follow, in our case of geometrical
optics this becomes crucial, since the resulting geometry differs substantially from the
usual Euclidean space; instead, it gives rise to a three-dimensional pseudo-Riemannian
geometry, analogous to the well-known four-dimensional pseudo-Riemannian structure
employed in the general theory of relativity. Remember that the three-dimensional affine
coordinate space R3 becomes a metric space with indefinite metric if we intruduce a scalar

product of two vektors ξ⃗ = (ξ1, ξ2, ξ3) and η⃗ = (η1, η2, η3) in R3 as〈
ξ⃗, η⃗
〉
= ξ3η3 − n2 (ξ1η1 + ξ2η2) , (8)
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where n = n (x, y, z) > 0 is a smooth function defined on R3. Then the length of a vector
with respect to the scalar product (8) is defined to be∣∣∣ξ⃗∣∣∣ =√ξ23 − n2

(
ξ21 + ξ22

)
. (9)

A manifold whose the tangent space TMx at each point x is furnished by the scalar product
(8), we shall indicate as M3

1,2. Now solving (4) with respect to ∂S
∂z , we get

r −
√
n2 − p2 − q2 = 0, r =

∂S

∂z
, p =

∂S

∂x
, q =

∂S

∂y
. (10)

Then the characteristic system for (4) reads as

dx

dz
=

p√
n2 − p2 − q2

,
dy

dz
=

q√
n2 − p2 − q2

, (11a)

dr

dz
=

nnz√
n2 − p2 − q2

,
dS

dz
=

n2 (x, y, z)√
n2 − p2 − q2

, (11b)

dp

dz
=

nnx√
n2 − p2 − q2

,
dq

dz
= − nny√

n2 − p2 − q2
(11c)

and should be solved subject to the initial conditions

(x0 (ξ, η) , y0 (ξ, η) , p0 (ξ, η) , q0 (ξ, η) , r0 (ξ, η) , S0 (ξ, η))

at z = 0, where z is the parameter along the rays as it is supposed to be and, (ξ, η) are
coordinates on the initial surface S (ξ, η, 0) = φ (ξ, η) . The solutions of the system (11a-c)
under these conditions provide solutions (at least, locally) of (4) in parametric form :

x = x (ξ, η; z) , y = y (ξ, η; z) , z = z, p = p (ξ, η; z) , q = q (ξ, η; z) , r = (ξ, η; z) , S = S (ξ, η; z)
(12)

called Lagrange manifold of ray configurations in space (to be exact, the first six equatios).
Now, to find the solution of (4) in explicit form S = S (x, y; z), one should solve the first
two equations of (12) with respect to x, y and substitute into the last equation of (12) to
get an explicit solution S = S (x, y, z) , or in the terms of classical Hamilton mechanics
(or symplectic geometry), project Lagrange manifold onto the configuration space of the
ray configuration. If the Jacobian of (12)

J (ξ, η; z) =
∂ (x, y; z)

∂ (ξ, η; z)
=

∣∣∣∣∣∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
(13)

doesn’t vanish at some point (x0, y0) (therefore, at some vicinity of (x0, y0)) then (13)
is reversiable and ξ and η can be expressed via the variables x and y in the form ξ =
(x, y; z) , η = (x, y; z). Incorporating this into the last equation of (12) we get the solution
in explicit form S = S (x, y; z) . A special case occurs at points for where J (ξ, η; z) = 0.
These points form caustics of wave fronts. On the plane z = z0 they represent intersection
curves of caustics with the z = z0 plane.

After solving equation (4) for S, one substitutes this solution into system (5) to deter-
mine the amplitudes An of the irradiation in a successive manner. A fundamental property
used in these considerations is that the rays remain orthogonal to the initial surface with
respect to the scalar product (8), and that the wavefronts constitute equidistant surfaces
from the initial surface in the metric specified by (9). This geometric structure is lost if
the rays are interpreted in the standard Euclidean space. From (11a-11c) we observe that
if p2 + q2 > n2 then the solutions become complex. Usually, for finding complex rays, the
analytical continuation with respect to coordinates is used which requires analiticity of all
functions involved. For example, in the extendent survey [10] on complex rays (about 100
pages), the definition of the complex rays in two dimensial case is given as follows:
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A complex ray is the set of complex points (x, y) corresponding to fixing a complex value
of s in the ray equation of 11a)-c) with boundary values (x0 (ξ, η) , y0 (ξ, η) , p0 (ξ, η) , q0 (ξ, η) ,
r0 (ξ, η) , S0 (ξ, η)) necessarily analytic functions and then allowing the distance parameter
z to range over all complex values with z = 0 coinciding with the initiation point on the
boundary.

Along with the hard conditions imposed on the boundary values, an analytical contin-
uation is rather harmful and geometrically unclear operation in its own way. In fact, if
instead of complexification of coordinates one admits complex distances, that is, if the
equations (11a-c) are interpreted in non Euclidean spaces, this difficulty can be avoided.

Geometrical Interppretation Of Eikonal Equation

Since we are going to use tensor notations, for conviniency we set x = x1, y = x2, z = x3.
Let R1

2 be the Riemann manifold endowed by a pseudo-riemann metric tensor

ds2 = gijdx
idxj = n2

(
x1, x2, x3

) (
dx3
)2 − (dx1)2 − (dx2)2 , (14)

that is, g11 = g22 = −1, g33 = n2
(
x1, x2, x3

)
, and gij = 0 if i ̸= j. The equation for

geodesics with respect to the metric (9) reads as

d2xk

ds2
= −Γk

ij

dxi

ds

dxj

ds
, (i, j, k = 1, 2, 3) , (15)

where Γk
ij (i, k = 1, 2, 3) are connection coefficients with respect to the metric (9). They

are defined via the metric tensor as

Γk
ij =

1

2
gkl (gjl,i + gil,j − gij,l) , (i, j, k, l = 1, 2, 3) , (16)

where gij,m =
∂gij
∂xm and gkl are the contravariant coordinates of the metric tensor. Notice

that in (14)-(16), the contraction rule is used: if the same symbol appears twice (one upper
and one lower) within a term, it means that over this pair a summation occures. Since
gij = 0 if i ̸= j and g33 = 1

n2 , g
11 = g22 = −1, Γk

ij = Γk
ji (i, j, k = 1, 2, 3) , then, among the

coefficients Γk
ij non zero are only those, which involve two 3 symboles. Straightforward

calculations show that

Γ1
33 = nnx, Γ2

33 = nny, Γ3
33 =

nz
n
, Γ3

13 = Γ3
31 =

nx
n
, Γ3

23 = Γ3
32 =

ny
n
.

Returning back to the cartesian coordinates, (15) becomes as

d2x

ds2
= −nnx

(
dz

ds

)2

,
d2y

ds2
= −nny

(
dz

ds

)2

,
d2z

ds2
= − 1

n

dn

ds

dz

ds
(17)

and ds =

√
n2 (dx3)2 − (dx1)2 − (dx2)2. In (17) we recognize the standart Euler-Lagrange

equations for the varitional problem (7) which are equivalent to 11a)-11c) in Hamilton’s
formalizm of geometrical optics ([2-3]). Thus we arrive at the following theorem.

Theorem 1. The rays given by the solutions of the system 11a)-c) are geodesics in
M3

1,2 with respect to the metric (14).

In M3
1,2 equidistance surfaces along the geodesics are perpendicular to the surfaces.

Hence, solving the initial value problem (1)-(2) is equivalent to drawing normals in M3
1,2

to the initial value function u (x, y, 0) = φ (x, y) at each point. Notice that in usual space,
rays are not perpendicular to the initial surface unless the initial surface it self is not a wave
front. At each point of space where the ray arrives, two rays are in fact present: one lies
inside the light cone and is a real ray with real length, while the other lies outside the light
cone and is a complex ray with complex length. Moreover, these rays are perpendicular
to each other in the sense of the metric (9).
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3. Diffraction in Linear Layer and Complex Rays

We illustrate this with a simple model problem, where the direction of propagation is
the z-axis, and the oncoming wave is a plane wave with unit amplitude in a medium with
a refractive index n = 1:

u (x, z) = x sin θ + z cos θ. (18)

It is assumed that the wave undergoes refraction at the z = 0 plane and progresses toward
positive z. Suppose that the refractive index of the region z > 0 is n2(z) = 1− z

z0
, where

z0 > 0. For simplicity, consider the two-dimensional i.e. cylindrical system:.

q −
√
n2 − p2 = 0, q =

∂S

∂z
, p =

∂S

∂x
.

Then the characteristic system for 11a)-c) reads as:

dx

dτ
= p,

dz

dτ
= q,

dp

dτ
= 0,

dq

dτ
= − 1

2z0
, (19)

dS

dτ
= n2 = 1− z0

z
, (20)

where τ is a parameter along the rays. Integrating under the initial conditions (ξ, 0, sin θ, ξ sin θ),
keeping in mind that ξ stands for x on the initial plane and serves as the initial point of
the ray, we get:

p(ξ, τ) = sin θ, q(ξ, τ) = cos θ − τ

2z0
(21)

and

a) x(ξ, τ) = ξ + τ sin θ, b) z(ξ, τ) = τ cos θ − τ2

4z0
, (22)

c) S(ξ, τ) = ξ sin θ + τ − cos θ

2z0
τ2 − 1

12z20
τ3. (23)

To find the ray trajectories in the (z, x) coordinates, eliminating τ from a) and b):

(x− ξ − z0 sin 2θ)
2 = 4z0 sin

2 θ
(
z0 cos

2 θ − z
)
. (24)

Now setting a = ξ + z0 sin 2θ, b = −4z0 sin
2 θ, c = z20 sin

2 2θ, we get:

(x− a)2 = −bz + c, (25)

which represents a family of parabolas whose vertices are located at z = z0 cos
2 θ, and the

axes are parallel to the z-axis. The equation z = z0 cos
2 θ defines a plane perpendicular

to the z-axis. Consequently, rays have turning points on this plane; after touching it,
they return and intersect the initial plane where q is negative in (7). Thus, the plane z =
z0 cos

2 θ serves as a caustic for the rays. After finding S from (23), it can be incorporated
into the system (5) to determine the amplitudes An of the irradiation successively. In fact,
the first equation in (5) is no other than the energy conservation law in a small ray tube.
For small ε > 0 and for 0 < z < z0 cos

2 θ − ε, it reads as:

A(z, θ) = A(0, θ)

∣∣∣∣x′z(z, ξ)x′z(0, ξ)

∣∣∣∣ 12 = A(0, θ)

∣∣∣∣ √
z0 cos θ√

z0 cos2 θ − z

∣∣∣∣ . (26)

If z → z0 cos
2 θ, the ray tube vanishes, and the field’s amplitude becomes infinite. Clearly,

this violates the energy conservation law and is physically meaningless. Below, by slightly
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modifying the Maslov method, we will eliminate this singularity and calculate the ampli-
tude on the caustic (see also [11]). Here, we are interested in the case z0 cos

2 θ − z < 0,
where the rays are complex.. Let us rewrite the system (22)-(23) in the following form:z (ξ, τ)x (ξ, τ)

S (ξ, τ)

 =

 0
ξ

ξ sin θ

+ τ

cos θsin θ
1

+ τ2

 −1/4z0
0

− cos θ/2z0

+

+τ3

 0
−0

−1/12z0

 , (27)

where τ is a parameter along the ray. To interpret (27), it is convient to introduce three
dimensional pseudo Riemann space (z, x, S) endowed with indefinite scaler product

< u,v >=S1S2 − n2 (x1x2 + z1z2) ,

and length of a vector endowed with ∥u∥2 = S2 − n2
(
x2 + z2

)
. The angle between two

vectors is defined to be

cos2 ψ =
< u,v >

∥u∥2 ∥v∥2
≥ 1.

Therefore, in this geometry cosψ < −1 or cosψ > 1. With each point (z0, x0, S0) in

space we associate a cony (S − S0)
2 − n2 (z)

[
(x− x0)

2 + (z − z0)
2
]

= 0, called light

cony. At every point this cony divides the space into two regions where (S − S0)
2 −

n2 (z)
[
(x− x0)

2 + (z − z0)
2
]
> 0 and (S − S0)

2 − n2 (z)
[
(x− x0)

2 + (z − z0)
2
]
< 0. The

vectors, whose initial points are at (z0, x0, S0) with positive length, that is they lay in the
light cony, are called timelike and they are called spacelike if lay outside of the cone and
have negative lengths. The vectors whose length are zero are called izotrop vectors. Thus
we have defined a cony field in space. Remember that, in this spase the unit normal vector
to a surface φ (x, z) is defined to be

n =

(
φx√
n2 − φ2

x

,
φy√
n2 − φ2

x

,
n2√

n2 − φ2
x

)
.

In our case φ (x) = S (0, x) = x sin θ, φx = sin θ, φz = 0, n2 (0) = 1. Since the tangent
vector to φ (x, z) at z = 0 is t =(0, 1, sin θ) and in the mentioned metric it is perpendicular

to the vector e = (cos θ, sin θ, 1) . Moreover, e is an izotropic vector: ∥e∥2 = 1 − cos2 θ −
sin2 θ = 0. (27) shows that in the mentioned space wave behavier depends on the second
power of τ.Since we are interested propogation in the z direction, let us express τ via z
variable. Solving (22b) for τ we obtain:

τ = 2z0

(
cos θ −

√
z0 cos2 θ − z

)
,

from which we observe that for the values z < z0 cos
2 θ parameter τ is real which means

that the ray is real

τ2 =
(
4z20 cos

2 θ − z0 cos θ + z
)
−
(
8z20
√
z0 cos2 θ − z

)
i

or for small z/z0 :

τ2 =
(
4z20 cos

2 θ − z0 cos θ + z
)
−
(
8z

5
2
0 cos θ − 4z

3
2
0 cos3 θ

)
zi.

Now ignoring cubic term in (27), for the phase function S (z, x) we get

S (z, x) = (x− sin θ) sin θ + (a+ bi)
cos θ

2z0
= x sinx− sin2 θ+
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+
a cos θ

2z0
+
b cos θ

2z0
i = c+ di,

where a = 4z20 cos
2 θ−z0 cos θ+z, b = −8z20

√
z0 cos2 θ − z, c = (x− sin θ) sin θ+a cos θ/2z0,

d = b cos θ/2z0. Substituting S (x, z) into (6) and keeping in mind that we consider two
dimensional case, for u (x, z) we get

u (x, z) = A (0, x)

∣∣∣∣ √
z0 cos θ√

z0 cos2 θ − z

∣∣∣∣ eiS(z,x)} =
= A (0, x)

∣∣∣∣ √
z0 cos θ√

z0 cos2 θ − z

∣∣∣∣ ei(c+di),

or

u (x, z) = A (0, x)

∣∣∣∣ √
z0 cos θ√

z0 cos2 θ − z

∣∣∣∣ e−deic = A1e
−deic, (28)

where

A1 (x, z) = A (0, x)

∣∣∣∣ √
z0 cos θ√

z0 cos2 θ − z

∣∣∣∣ eic
Thus, the field exponentially decreases behind the caustics, since after touching the caus-
tic d becomes is positive. From (28) we observe that at the caustic z = z0 cos

2 θ the
amplitude steel remains unbounded. Eleminating the appearing singularity is one of the
subtle problems of asymptotic approximation method and has a deep connection with the
catastrophe theory, symplectic geometry and differential topology ([12-13]). The problem
is that a geometric optical configuration mathematically can be described by means of six
dimensional symplectic geometry stemming from Hamiltonian mechanics. A symplectic
geomery is an even dimentional (in our case it is R6 or R4 ) smooth manifold furnished by
nondegenerate and closed skew symmetric bilineer form on its cotangent bundle. In this
geometry the length of every vector on every tangent space is zero (are isotrop) and an
angle between vectors is a meaningless. Since position of a ray is uniquely determined by
its initial point (x, y, z) and by direction (p, q, r) in space, then the point (x, y, z; p, q, r)
in six dimensional space R6 will completely describe the position of the ray (in our case
the corresponding simplectic manifold is R4). A submanifold of a symplectic manifold is
said to be an isotrop manifold if the scew symmetric form vanishes at it. The maximal
dimension of a isotrop subspace don’t exceed the half of the dimension of the manifold
and an isotrop submanifold of maximal dimension is called Lagrange manifold. It turns
out that solution of the eikonal equation (4),

x = x (ξ, τ, σ) , y = y (ξ, τ, σ) , z = z (ξ, τ, σ) ,

p = p (ξ, τ, σ) , q = y (ξ, τ, σ) , p = p (ξ, τ, σ) (29)

is a three dimensional Lagrange manifold of R6, that is the symplectic form vanishes at
this submanifold. To find the phase function S (x, y, z) we should express p, q, z via x, y, z
and substitute them into

S (x, y, z) = φ (x, y, z) +

∫
L

pdx+ qdy + rdz,

where L is a ray (a characteristic) joining an initial point with (x, y, z) . The main difficulty
in this process is that expressing p, q, z via x, y, z, in other words, projecting Lagrange
manifold over (x, y, z) space might fail at some points or curves, that is, the jacobian

J =
∂ (p, q, r)

∂ (ξ, τ, σ)

vanishs at these points. In our case these points excactly are caustics:

z =
√
z0 cos2 θ
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Now, let
z = z0 cos

2 θ − t2.

Substituting into (28), we get

S (x, t) = −2

3

1
√
z0
t3 + x sin θ +

2

3
z0 cos

3 θ, x (ξ, t) =

− (2
√
z0 sin θ) t+ z0 sin 2θ, z (t) = z0 cos

2 θ − t2,

or

A (ξ, t) = A (0)

∣∣∣∣x′t (ξ, t)x′t (0, t)

∣∣∣∣ 12 = A (0)

∣∣∣∣∣
(
2
√
z0 sin θ

)(
2
√
z0 sin θ

)∣∣∣∣∣
1
2

= A (0) .

therefore the singularity on the caustics disappears.

4. Gaussian Beams

Usually, the Gaussian beams expression is derived from the paraxial wave equation.
Complex rays allow a convenient framework for describing Gaussian beams. Below, we
present a simple geometric method for obtaining the Gaussian beam based on the con-
siderations outlined above. Let us consider again two dimensional case and let n (z, x) =

1, A0 = 1/R, φ (x) = S (0, x) = −
√
x2 −R2. Notise that in the (x, S) plane the curve

φ (x) = −
√
x2 −R2 describes the left branch of the unit circle S2−x2 = −R2 of imaginary

radius iR in two dimensional Minkowski plane. We have√
1− φ2

x (x) =
iR√

x2 −R2

Then (9) becomes as

z = τ
√
1− φ2

x (x) ξ = x+ τφx, S = φ (x) + τ,

and we get z (ξ, τ)x (ξ, τ)
S (ξ, τ)

 =

 0
ξ

−
√
ξ2 −R2

+ τ

√1− φ2
x

φx

1


or by projecting on the x− S plane and eliminating τ we have[

x
S

]
=

[
ξ

−
√
ξ2 −R2

]
+ z

− φx√
1−φ2

x
1√
1−φ2

x

 =

[
ξ

−
√
ξ2 −R2

]
+ z

[
− ξ

iR√
ξ2−R2

iR

]
. (30)

Since the vector

−→n =

[
− ξ

iR√
ξ2−R2

iR

]
is the unit normal to initial phase front φ (x) , (30) can be written in the form:[

x
S

]
=

[
ξ

−
√
ξ2 −R2

]
+ z−→n . (31)

(31) persists to asume that rays are perpendicular to φ (x) in the mentioned geomety and
z serves as the parameter along the rays (Fig.1). In contrast to describing Gaussian beams
in usual Euclidean space rays are not perpendicular to wave fronts (Fig.2). Now excluding
ξ from (30) to find the phace function S (x, z) , we get

S (x, z) = −
√
x2 + (R+ iz)2,

and incorporation into (6) we obtain

u (x, z) =
1

R− iz
e−ik

√
x2+(R+iz)2 .
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In the last equation we recognize the standart Gaussian beam with waist R.

5. Dıffraction on Half Plane

Now consider the following two-dimensional model problem

∆u+ k2u = 0, u = u (x, z) , z > 0, (32)

and

u (x, 0) = eik
x2

2 on z = 0 (33)

previously studied in [3] in under a slightly different aspect. The corresponding ray solution
is

x = s+
√
1− x2τ, z = τ

√
1− x2, u =

x2

2
+ τ.

The equation for centers of curvature (i.e. the caustic) in (z, s) coordinates is

z = −
(
1− s2

) 3
2 (34)

which is real if |s| < 1 and pure imaginary otherwise. After eliminating τ and using (34)
we obtain the parametric equation of the caustic in (x, z, u) space as

x = s3, z = −
(
1− s2

) 3
2 , u =

3

2
s2 − 1 (35)
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which is real only for |s| < 1. But the projection of this curve onto the ”extended” (x, u)
space (furnished with the metric of R1

1,n) regardless of z whether is real or complex,
provides

u =
3

2
x

2
3 − 1 (36)

which is real for all s and therefore for all x. For |x| < 1 it represents real part of the
caustics and for |x| > 1 the complex part of the caustic. Now studying Figure 1 we may
make some conclusions about the ray picture of the problem (32)-(33).

Fig. 3 Ray picture of the problem (32)-(33)

The wave fronts are propagating inside the parabola but the caustic lies outside the
parabola. Both real and complex portions of the caustic are represented by one equation
(36) in real coordinates. However along the complex part of the caustic the curve param-
eter is pure imaginary. The figure predicts the number of rays passing through each point
in the (x, u) plane. In zone I there is one real ray through each point. At each point of
zone II meet two rays: one real and one complex. In zone III through each point passes
one complex ray and no comes into zone IV. Point B is the point of switching real rays to
complex.

Conclusions

It turns out that the eikonal equation provides a convinient metric in pseudo-Riemann
geometry and in this geometry complex rays become visiable as their real counterparts.
Copmplex reys and real rays are perpendicular that allows to trace their trajectory in the
same space.
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