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COMPLEX RAYS AND APPLICATIONS

ELMAN HASANOGLU", §

ABSTRACT. Complex rays are a fascinating aspect of modern diffraction theory, typically
sought as complex solutions to the eikonal equation. Traditionally, these solutions are
obtained by analytically continuing real rays into the complex domain. However, this
approach demands the analyticity of initial data, significantly limiting its applicability
to many practical problems. Additionally, unlike real rays, complex rays cannot be vi-
sualized in space, presenting another drawback. In this paper, we present an alternative
interpretation of complex rays, as introduced in [1], and describe a novel approach to
two model diffraction problems and Gaussian beams.

Keywords: wave equation, eikonal equation, complex rays, Minkowski space, Gaussian
beams.
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1. INTRODUCTION

Following Schrodinger’s groundbreaking formulation of his seminal equation, numerous ef-
forts were made to precisely solve this equation. However, exact solutions remained elusive,
achievable only for the most elementary scenarios. With powerful numerical methods and
computational capabilities yet to emerge, researchers sought approximate solutions that
could closely mimic exact outcomes. In 1926, Wentzel, Kramers, and Brillouin indepen-
dently devised an asymptotic approach known as the Wentzel-Kramers-Brillouin (WKB)
method, offering a means to approximate solutions. This method proved invaluable not
only for tackling the Schrodinger equation but also for analyzing many other complex
wave behaviors at high frequencies. Over time, it has become an indispensable tool across
various realms of physics. The primary advantage of the WKB method lies in its ability
to simplify the study of wave phenomena, characterized by small parameter. For this the
field (electromagnetic, aucustic, seismic ets.) under question is assumed to be represented
in the asymptotic form

e A
u(a,y, zk) ~ S S 0 (1)
n=0 (Zk)

called ray anstaz, where k = w/c is a wavenumber, S = S(z,y,z) is a phase function
and A,, = A, (z,y,z) are amplitudes no more depending on k. It is well known that in
nonhomogenous and isotropic medium each component of electrical and magnetic vectors
in the classical Maxwell equations satifies the scalar Helmholtz equation (time factor e~*
suppressed)

Au + k*n?u =0, (2)
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where A is the Laplace operator, n = n(x,y,z) is the refractive index of media. To
find the ray solutions or high frequency asymptotic solutions of (2) subject to a rapidly
oscillating boundary condition

U (:Cv Y, O) =Up ($, y) eikcp(x,y)7 (3)

where ¢ (z,y) = S (x,y,0) is the initial phase, we substitute (1) into (2) and after equating
the corresponding degrees of k we get an equation

(B (B (B

for determining S = S (x,y, z), called eikonal equation, and a sequence of equations
2V Ay - VS + AgA*S =0,

.................... (5)
OV A, -VS+ A,A’S = A,

for determining amplitudes A, (x,y, z), called transport equations. The zero approxima-
tion in (1),

u(z,y,2) = Ao (2, y, 2) €502, (6)
is essentially the primary equation of the geometrical optics approximation. Since the
eikonal equation (4) does not involve the amplitudes, it can be solved separately and
independently of the transport equations. In fact, (4) is no other than Hamilton-Jacobi
equation for the variational principle (Fermat’s Principle)

min/n(a:,y,z) ds (7)
L

of geometrical optics and is a nonlinear first-order partial differential equation. It is well
known that the extremals (light rays) of equation (7) satisfy the Euler-Lagrange system
of ordinary differential equations; see, for example, [2], [3] and other standard textbooks
on classical geometrical optics. Notably, in contrast to the general theory of Hamilton—
Jacobi equations, equation (4) may admit complex-valued solutions, known as complex
rays. These solutions describe the field in regions where the real solutions of (4) do not
exist, such as shadow regions. In what follows, we aim to describe the field in these
domains. For other applications of complex rays, see [7-11] and the extended bibliography
therein.

2. MATHEMATICAL BACKGROUND

The fundamental property of equations of the type (4) is that finding their solutions
can be reduced to solving a system of ordinary differential equations, called characteristic
system. Here, we focus on solutions of (4) in the z-direction. Studying wave propagation
along a specified direction is more realistic than analyzing radiation from an ideal isotropic
source, as truly isotropic emitters do not exist in nature. This physical fact is typically
reflected in the mathematical formulation by imposing appropriate initial conditions on
the governing equations. In the considerations that follow, in our case of geometrical
optics this becomes crucial, since the resulting geometry differs substantially from the
usual Euclidean space; instead, it gives rise to a three-dimensional pseudo-Riemannian
geometry, analogous to the well-known four-dimensional pseudo-Riemannian structure
employed in the general theory of relativity. Remember that the three-dimensional affine
coordinate space R? becomes a metric space with indefinite metric if we intruduce a scalar
product of two vektors € = (€1,&2,&3) and 7 = (1, 1m2,m3) in R3 as

(€7) = &ang =0 (€am + &a2m) (®)
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where n = n (x,y,z) > 0 is a smooth function defined on R3. Then the length of a vector
with respect to the scalar product (8) is defined to be

&= vg-n (G +9). (©)

A manifold whose the tangent space T'M, at each point z is furnished by the scalar product
a8

(8), we shall indicate as Miz. Now solving (4) with respect to 2, we get

0S oS oS
— 2— 2— 2: s :7, :77 = . 1
reVnt=pt—g? =0, r=o-p=5-4 (10)

Then the characteristic system for (4) reads as

dx P
dz  \/n2—p2— g2
dr nn,
dz  /nZ—p2— g2
dp NNy

A2 Jn2—pr—g

~ oy
by_ 4 (11a)
dz /0?2 —p? — @2
d 2
s (1
n2—p?—q
dg ____ nny (11c)

dz /n2 — p2 — ¢2

and should be solved subject to the initial conditions

(zo (&) 90 (§,m) 0 (§,1) 590 (§,m) 5 70 (€,m) ;50 (§5m))

at z = 0, where z is the parameter along the rays as it is supposed to be and, (£,7) are
coordinates on the initial surface S (£,71,0) = ¢ (£, 7n) . The solutions of the system (11a-c)
under these conditions provide solutions (at least, locally) of (4) in parametric form :

r=x(§,n2),y=yEmz2),z2=2p=p&n2),q=q(&n2),r=(&n;2),8 = 5(5(,17;)2)

12
called Lagrange manifold of ray configurations in space (to be exact, the first six equatios).
Now, to find the solution of (4) in explicit form S = S (z,y; z), one should solve the first
two equations of (12) with respect to x,y and substitute into the last equation of (12) to
get an explicit solution S = S (z,y,z), or in the terms of classical Hamilton mechanics
(or symplectic geometry), project Lagrange manifold onto the configuration space of the
ray configuration. If the Jacobian of (12)

fe)

O(e.yi2) _|o¢ oyl _0wdy 0w dy
. - — T = — A~ A T A 4~ 1
T&m2) = Fie ) ST 9gdn  onoe )

doesn’t vanish at some point (xg,yo) (therefore, at some vicinity of (zg,yp)) then (13)
is reversiable and & and 7 can be expressed via the variables x and y in the form £ =
(z,y;2),n = (z,y; 2). Incorporating this into the last equation of (12) we get the solution
in explicit form S = S (z,y;z). A special case occurs at points for where J (£,7;2) = 0.
These points form caustics of wave fronts. On the plane z = 2y they represent intersection
curves of caustics with the z = 2y plane.

After solving equation (4) for S, one substitutes this solution into system (5) to deter-
mine the amplitudes A,, of the irradiation in a successive manner. A fundamental property
used in these considerations is that the rays remain orthogonal to the initial surface with
respect to the scalar product (8), and that the wavefronts constitute equidistant surfaces
from the initial surface in the metric specified by (9). This geometric structure is lost if
the rays are interpreted in the standard Euclidean space. From (11a-11c¢) we observe that
if p? 4 ¢®> > n? then the solutions become complex. Usually, for finding complex rays, the
analytical continuation with respect to coordinates is used which requires analiticity of all
functions involved. For example, in the extendent survey [10] on complex rays (about 100
pages), the definition of the complex rays in two dimensial case is given as follows:



ELMAN HASANOGLU: COMPLEX RAYS AND APPLICATIONS 2793

A complex ray is the set of complex points (x,y) corresponding to fixing a complex value
of s in the ray equation of 11a)-c) with boundary values (zg (§,7m) ,yo (§,m),p0 (§,1), 90 (§,7),
ro (§,m), 50 (§,m)) necessarily analytic functions and then allowing the distance parameter
z to range over all complex values with z = 0 coinciding with the initiation point on the
boundary.

Along with the hard conditions imposed on the boundary values, an analytical contin-
uation is rather harmful and geometrically unclear operation in its own way. In fact, if
instead of complexification of coordinates one admits complex distances, that is, if the
equations (1la-c) are interpreted in non Euclidean spaces, this difficulty can be avoided.

GEOMETRICAL INTERPPRETATION OF EIKONAL EQUATION

Since we are going to use tensor notations, for conviniency we set = z!,y = 22, 2 = 3.

Let R} be the Riemann manifold endowed by a pseudo-riemann metric tensor

ds® = gijdmidxj =n? ($1,$2,$3) (dz3)2 - (dx1)2 — (d:n2)2, (14)
that is, g11 = g2 = —1,g33 = n? (x1,$2,m3), and g;; = 0 if ¢ # j. The equation for
geodesics with respect to the metric (9) reads as

d%zk dx' da?
— Tk L k=1,2,3 15
d82 7,] dS dS ) <Z7j7 ) ) )7 ( )

where I‘fj (i,k =1,2,3) are connection coefficients with respect to the metric (9). They
are defined via the metric tensor as

1 o
ngifm%m+%m—%ﬂ% (i,5,k,1 =1,2,3), (16)

where g;; ., = gzii and gkl are the contravariant coordinates of the metric tensor. Notice
that in (14)-(16), the contraction rule is used: if the same symbol appears twice (one upper
and one lower) within a term, it means that over this pair a summation occures. Since
gij = 0ifi # j and ¢33 = #,gll =¢*2 =—1, Ffj = I‘?Z- (i,j,k =1,2,3), then, among the
coefficients I‘fj non zero are only those, which involve two 3 symboles. Straightforward
calculations show that

1 2 3 n 3 3 i 3 3 n
I35 = nng, I'sy=nn,, I'sy;= f, I3 =173 = ﬁa Doz = T35 = ;y
Returning back to the cartesian coordinates, (15) becomes as
d*x dz\ > d%y dz\? &%z 1ldndz (17)
— = —nng | — —= =—nny | — — =
ds? “\ds) ’ ds? Y\ds) * ds? n ds ds

and ds = \/712 (dz3)? — (dz1)? — (d2)?. In (17) we recognize the standart Euler-Lagrange
equations for the varitional problem (7) which are equivalent to 11a)-11c) in Hamilton’s
formalizm of geometrical optics ([2-3]). Thus we arrive at the following theorem.

Theorem 1. The rays given by the solutions of the system 11a)-c) are geodesics in
M?,Q with respect to the metric (14).

In Mig equidistance surfaces along the geodesics are perpendicular to the surfaces.
Hence, solving the initial value problem (1)-(2) is equivalent to drawing normals in M‘Z”Q
to the initial value function u (z,y,0) = ¢ (x, y) at each point. Notice that in usual space,
rays are not perpendicular to the initial surface unless the initial surface it self is not a wave
front. At each point of space where the ray arrives, two rays are in fact present: one lies
inside the light cone and is a real ray with real length, while the other lies outside the light
cone and is a complex ray with complex length. Moreover, these rays are perpendicular
to each other in the sense of the metric (9).
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3. DIFFRACTION IN LINEAR LAYER AND COMPLEX RAYS

We illustrate this with a simple model problem, where the direction of propagation is
the z-axis, and the oncoming wave is a plane wave with unit amplitude in a medium with
a refractive index n = 1:

u(x,z) = xsinf + z cos . (18)

It is assumed that the wave undergoes refraction at the z = 0 plane and progresses toward
positive z. Suppose that the refractive index of the region z > 0 is n?(z) = 1 — %, where
zo > 0. For simplicity, consider the two-dimensional i.e. cylindrical system:.

qg—/n?—p?>=0, q-gj P 05

Then the characteristic system for 11a)-c) reads as:

dx dz dp dq 1

_ = _— = —_ = P — 1

ar P T ur 0, dr 270’ (19)
ar " z’ (20)

where 7 is a parameter along the rays. Integrating under the initial conditions (&, 0, sin 6, £ sin §),
keeping in mind that £ stands for x on the initial plane and serves as the initial point of
the ray, we get:

p(&,7) = sinf, q(&,7) = cos — - (21)
220
and
-2
a) x(§,7) =&+ 7sinf, b) 3(5,7'):7'0089—4—, (22)
20
0 1
c) S, 1) =¢Esinf+ 71— ngo o 122(2)7'3 (23)
To find the ray trajectories in the (z,x) coordinates, eliminating 7 from a) and b):
(z — & — 2zsin20)? = 4z sin® 0 (zo cos’ 0 — z) . (24)
Now setting a = & + z9sin26,b = —4zysin? 6, c = 2(2) sin? 26, we get:
(z —a)? = —bz +c, (25)

which represents a family of parabolas whose vertices are located at z = 2z cos? §, and the
axes are parallel to the z-axis. The equation z = 2z cos?# defines a plane perpendicular
to the z-axis. Consequently, rays have turning points on this plane; after touching it,
they return and intersect the initial plane where ¢ is negative in (7). Thus, the plane z =
2o cos? ) serves as a caustic for the rays. After finding S from (23), it can be incorporated
into the system (5) to determine the amplitudes A,, of the irradiation successively. In fact,
the first equation in (5) is no other than the energy conservation law in a small ray tube.
For small ¢ > 0 and for 0 < z < zgcos? 0 — ¢, it reads as:

x’z(z,f)‘é:A(o 9 /%o cos 6
2,(0,¢) 7 Vzocostl — z

If 2 — 2y cos? @, the ray tube vanishes, and the field’s amplitude becomes infinite. Clearly,
this violates the energy conservation law and is physically meaningless. Below, by slightly

A(z,0) = A(0,0)

. (26)
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modifying the Maslov method, we will eliminate this singularity and calculate the ampli-
tude on the caustic (see also [11]). Here, we are interested in the case zgcos?f — z < 0,
where the rays are complex.. Let us rewrite the system (22)-(23) in the following form:

z (&, T) 0 cos 0 —1/4z%
z(&T1)| = I3 + 7 |sinf| + 72 0 +
S (&) £sind 1 —cos0/2z
0
+r3 1 -0 |, (27)
—1/12z

where 7 is a parameter along the ray. To interpret (27), it is convient to introduce three
dimensional pseudo Riemann space (z, x,S) endowed with indefinite scaler product

<uvVv >=5159 — n2 (1‘1.%'2 + 212’2) ,

and length of a vector endowed with |[ul|* = §2 — n? (2% + 2?) . The angle between two

vectors 1s defined to be
<u,v >
os? P = ’

- 2 2 =
[afl* v

Therefore, in this geometry cosy) < —1 or cosv > 1. With each point (29, zo,Sp) in
space we associate a cony (S — Sp)% — n?(z) [(1: —z0)? + (2 — 20)2} = 0, called light
cony. At every point this cony divides the space into two regions where (S — 50)2 —
n? (2) [(x —a0)? 4 (2 — 20)2} >0 and (S — So)? — n? (2) [(w )2+ (2 — zo)ﬂ < 0. The
vectors, whose initial points are at (2o, 2o, Sp) with positive length, that is they lay in the
light cony, are called timelike and they are called spacelike if lay outside of the cone and
have negative lengths. The vectors whose length are zero are called izotrop vectors. Thus

we have defined a cony field in space. Remember that, in this spase the unit normal vector
to a surface ¢ (z, z) is defined to be

n— Pz Py n’ .
N AN AN
In our case ¢ () = S(0,2) = zsinf, ¢, = sind, p, = 0, n?(0) = 1. Since the tangent
vector to ¢ (z,2) at z = 01ist = (0, 1,sinf) and in the mentioned metric it is perpendicular
to the vector e = (cosf,sin@,1). Moreover, e is an izotropic vector: [le[|? = 1 — cos2 6 —
sin?@ = 0. (27) shows that in the mentioned space wave behavier depends on the second

power of 7.Since we are interested propogation in the z direction, let us express 7 via z
variable. Solving (22b) for 7 we obtain:

T =22 (cos@— \/2060820—2),

from which we observe that for the values z < 2z cos® § parameter 7 is real which means
that the ray is real

P (4z§ cos? 0 — zpcos O + z) — <8zg\/ 20 cos2 60 — z) 1

or for small z/z :

5 3
72 = (423 cos® 0 — zg cos O + z) — (8202 cosf — 4z cos® 9> 1.

Now ignoring cubic term in (27), for the phase function S (z,z) we get

cos 0

S(z,2) = (x — sinf) sin + (a + bi) 5 = zsinz — sin® 6+

20
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acos bcosH . )
+ 1= c+di,
22’0 22’0
where a = 422 cos? 0—zp cos 0+z, b = —823v/29cos20 — z,¢ = (x — sin ) sin O+a cos 0 /22,
d = bcosf/2zy. Substituting S (z, z) into (6) and keeping in mind that we consider two
dimensional case, for u (z, z) we get

\/Zg cos 0
Vzgcos?0 — z

\/Zg cos 0
N

Zg cos 0

u(z,z) = A(0,x) e} —

—A(0,2) gilerdi)

or

e~ dei = Aje e’ (28)

where

0 .
Ay (z,2) = A(0,x) v/ cos e’

Vzgcos?l — z
Thus, the field exponentially decreases behind the caustics, since after touching the caus-
tic d becomes is positive. From (28) we observe that at the caustic z = zgcos?f the
amplitude steel remains unbounded. Eleminating the appearing singularity is one of the
subtle problems of asymptotic approximation method and has a deep connection with the
catastrophe theory, symplectic geometry and differential topology ([12-13]). The problem
is that a geometric optical configuration mathematically can be described by means of six
dimensional symplectic geometry stemming from Hamiltonian mechanics. A symplectic
geomery is an even dimentional (in our case it is Rg or R4 ) smooth manifold furnished by
nondegenerate and closed skew symmetric bilineer form on its cotangent bundle. In this
geometry the length of every vector on every tangent space is zero (are isotrop) and an
angle between vectors is a meaningless. Since position of a ray is uniquely determined by
its initial point (z,y,z) and by direction (p,q,r) in space, then the point (z,vy, z;p,q,7)
in six dimensional space Rg will completely describe the position of the ray (in our case
the corresponding simplectic manifold is R4). A submanifold of a symplectic manifold is
said to be an isotrop manifold if the scew symmetric form vanishes at it. The maximal
dimension of a isotrop subspace don’t exceed the half of the dimension of the manifold
and an isotrop submanifold of maximal dimension is called Lagrange manifold. It turns
out that solution of the eikonal equation (4),

$:$(§,T,U), y:y(gvTvg)az:Z(gvTaa)a

pZP(f,T,O’), q:y(S,T,U),p:p(ﬁ,T,J) (29)
is a three dimensional Lagrange manifold of Rg, that is the symplectic form vanishes at
this submanifold. To find the phase function S (z,y, z) we should express p, q, z via z,y, z
and substitute them into

S(x,y,2) = ¢ (x,y,2) + /pdﬂf + qdy + rdz,
L
where L is a ray (a characteristic) joining an initial point with (z,y, z) . The main difficulty
in this process is that expressing p,q, z via x,y, z, in other words, projecting Lagrange
manifold over (z,y, z) space might fail at some points or curves, that is, the jacobian

d(p,q,r)
(&, 1,0)

vanishs at these points. In our case these points excactly are caustics:

z=1/%pcos20

J =
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Now, let
2 = zpcos? 6 — t2.
Substituting into (28), we get
21 2
S (x,t) = —gﬁt?’ + xsinf + 30 cos® 0, x (&) =
—(2y/Z0sin0) t + zsin 26, z (t) = zgcos? O — 2,

Aten =A@ |2 E m ~ 4(0).

therefore the singularity on the caustics disappears.

4. GAUSSIAN BEAMS

Usually, the Gaussian beams expression is derived from the paraxial wave equation.
Complex rays allow a convenient framework for describing Gaussian beams. Below, we
present a simple geometric method for obtaining the Gaussian beam based on the con-
siderations outlined above. Let us consider again two dimensional case and let n (z,x) =
1, Ao = 1/R, ¢(z) = S(0,2) = —vx? — R%. Notise that in the (z,S) plane the curve
¢ (r) = —Vx2 — R? describes the left branch of the unit circle S2 —x? = —R? of imaginary
radius ¢R in two dimensional Minkowski plane. We have

VI—E @ =
Ny o

Then (9) becomes as

z=11=-¢2(x) E=x+710,, S=p(x)+T,

z (&, 1) 0 1—¢2
x(§7T) = 5 +7 P

sEen)  |-ve-m 1

or by projecting on the z — S plane and eliminating 7 we have

and we get

__ Pz ¢
xT _ f :|+Z 1—p2 :|: f :|—|—Z _2m2] ) (30)
- Lol <[ 7] - L]

Since the vector

— £
W = [ £2Z_RR2]
iR

is the unit normal to initial phase front ¢ (z), (30) can be written in the form:

| _ 3 —

[S] = [_ ) —Rz} +2zr. (31)
(31) persists to asume that rays are perpendicular to ¢ (z) in the mentioned geomety and
z serves as the parameter along the rays (Fig.1). In contrast to describing Gaussian beams
in usual Euclidean space rays are not perpendicular to wave fronts (Fig.2). Now excluding
¢ from (30) to find the phace function S (x, z), we get

S (x,2) = —\/22 + (R +i2)?,
and incorporation into (6) we obtain

1 ok 2+(R+iz)?

(e z) = gy
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v — hy};erbolic angle

—R] O~k >

Fig.1. Gaussian beam in 2-S plane. Complex
rays are perpendicular to wave fronts.

Fig.2. Gaussian beam in z-x plane. Rays
are not perpendicular to wave fronts.

In the last equation we recognize the standart Gaussian beam with waist R.

5. DIFFRACTION ON HALF PLANE
Now consider the following two-dimensional model problem
Au+k*u=0, u=u(z,2), 2>0, (32)
and
u(z,0) = eik% on z2=0 (33)

previously studied in [3] in under a slightly different aspect. The corresponding ray solution

is
2
r=s+V1—22r, z=7V1— 22, u:%—i-r

The equation for centers of curvature (i.e. the caustic) in (z,s) coordinates is

z:—(1—32)% (34)

which is real if |s| < 1 and pure imaginary otherwise. After eliminating 7 and using (34)
we obtain the parametric equation of the caustic in (x, z,u) space as

3

3

1‘233,,2:—(1—52) ,u:gs2—1 (35)
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which is real only for |s| < 1. But the projection of this curve onto the ”"extended” (z,u)
space (furnished with the metric of R%n) regardless of z whether is real or complex,

provides
3 2

u= 53:5 -1 (36)
which is real for all s and therefore for all x. For |x| < 1 it represents real part of the
caustics and for |z| > 1 the complex part of the caustic. Now studying Figure 1 we may
make some conclusions about the ray picture of the problem (32)-(33).

u
4

e m\nT 1/ //unm

real rays complexTays

.~} //Complex caustic

v 17/ /8 v

> X

*|"/real caustic

i 14‘.\

Fig. 3 Ray picture of the problem (32)-(33)

The wave fronts are propagating inside the parabola but the caustic lies outside the
parabola. Both real and complex portions of the caustic are represented by one equation
(36) in real coordinates. However along the complex part of the caustic the curve param-
eter is pure imaginary. The figure predicts the number of rays passing through each point
in the (z,u) plane. In zone I there is one real ray through each point. At each point of
zone II meet two rays: one real and one complex. In zone III through each point passes
one complex ray and no comes into zone IV. Point B is the point of switching real rays to
complex.

CONCLUSIONS

It turns out that the eikonal equation provides a convinient metric in pseudo-Riemann
geometry and in this geometry complex rays become visiable as their real counterparts.
Copmplex reys and real rays are perpendicular that allows to trace their trajectory in the
same space.
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