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MACWILLIAMS IDENTITIES OF THE LINEAR CODES OVER
Z4[u,v]

⟨u2,v2,uv,vu⟩

B. ÇALIŞKAN1∗, §

Abstract. In this paper, complete weight enumerators, the symmetrized weight enu-
merators and the Lee weight enumerators for the linear codes over the ring S = Z4 +
uZ4+vZ4, where u

2 = v2 = uv = vu = 0 are defined. The MacWilliams identity denotes
an identity between a linear code and its dual code on their weight distribution. We
classify elements of S into seven classes and study MacWilliams identities of linear codes
over S. Finally, we calculate the Lee weights of Gray images of the elements and give an
example.
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1. Introduction

MacWilliams identities are related to the weight enumerator of a linear code and the
weight enumerator of its dual code. It is one of the most fundamental results in coding
theory. In the last few decades, the study of codes over various finite rings has received
much attention. A number of papers have been published on MacWilliams identities
for linear codes over finite rings for various types of weight enumerators. For example,
in [10] linear codes over Z4 + uZ4 were investigated and MacWilliams identities for a
variety of weight enumerators were proven. In [3] linear codes were studied over the ring
F2+uF2+u2F2, where p is an odd prime. Also, a Gray map and MacWilliams identity were
given. In [7] linear codes were considered over the ring Z4[u]/

〈
u2 − 1

〉
and Lee weights,

Gray maps and all weight enumerators for these codes were defined and MacWilliams
identities for the complete, symmetrized and Lee weight enumerators were proved. In [8]
the authors investigated linear codes over the ring Z4+uZ4+u2Z4. Lee weights, Gray maps
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for these codes were defined and MacWilliams identities for the complete, symmetrized
and Lee weight enumerators were proven.

Extensions of the ring Z4 received a special attention in the study of codes over rings.
For example, in [6] linear codes over R = Z4+uZ4+vZ4+uvZ4 and MacWilliams identities
for linear codes over R with respect to both Lee and Hamming weight enumerators were
obtained. In a recent work [5] the authors considered the commutative ring Z4+uZ4+vZ4,
where u2 = v2 = uv = vu = 0 with 64 elements. They completely determined the
generators of cyclic and constacyclic codes over this ring. Moreover, they constructed the
minimal generating sets for cyclic codes over Z4 + uZ4 + vZ4.

Motivated by these works, we define complete weight enumerators, the symmetrized
weight enumerators and the Lee weight enumerators for linear codes over the ring S =
Z4 + uZ4 + vZ4, where u2 = v2 = uv = vu = 0 and prove MacWilliams identities for all
the weight enumerators involved.

2. Preliminaries

Consider the ring S = Z4 + uZ4 + vZ4, where u2 = v2 = uv = vu = 0. It can be
also viewed as the quotient ring Z4[u, v]/

〈
u2, v2, uv, vu

〉
. Any element of s ∈ S can be

expressed uniquely as s = a+ub+vc, where a, b, c ∈ Z4. The finite ring S has the following
properties:

• It has 64 elements.
• Its units are given by

U = {a∗ + ub+ vc : a∗ is unit in Z4, b, c ∈ Z4} .

• It is a local Frobenius ring with unique maximal ideal I = ⟨2, u, v⟩.
• It is a non-chain extension of the ring Z4.
• It is not a principal ideal ring [5].

Recall that a linear code C of length n over the ring S is an S-submodule of Sn. For
any element s = (s0, s1, . . . , sn−1) of S

n, the cyclic shift operator is defined as:

σ (s0, s1, . . . , sn−1) = (sn−1, s0, . . . , sn−2) .

Let C be a linear code of length n over S, then C is called cyclic if σ(C) = C.
The Lee weight wL of any element a of Z4 as

wL(a) = min {a, 4− a} .

The Lee weight wL(a) of a vector a ∈ Zn
4 is defined as the rational sum of the Lee weights

of its coordinates. In [5] the Gray map was defined as follows

ϕ : S → Z3
4

a+ ub+ vc 7→ (a, a+ b, a+ c) .

We define the Lee weight of any element s = a+ ub+ vc ∈ S as wL(ϕ(s)). That is,

wL(s) = wL (a, a+ b, a+ c)

where a, b, c ∈ Z4 [5].
This map is extended componentwise to

Φ : Sn → Z3n
4

and the Lee weight wL(s) of s ∈ Z3n
4 is defined as the rational sum of Lee weights of its

coordinates.



B. ÇALIŞKAN: MACWILLIAMS IDENTITIES OF THE LINEAR CODES OVER
Z4[U,V ]

⟨U2,V 2,UV,V U⟩ 293

Let w = (w0, w1, . . . , wn−1) and z = (z0, z1, . . . , zn−1) ∈ Sn. The Euclidean inner
product of w and z is defined as

w · z = w0z0 + w1z1 + · · ·wn−1zn−1

where the operations are performed in the ring S.

Definition 2.1. Let C be linear code of length n over S. Then the dual of C is defined as

C⊥ = {w ∈ Sn : w · v = 0 for all v ∈ C} .

3. Weight Enumerators and MacWilliams Identities

3.1. The Complete Weight Enumerator. The complete weight enumerator gives us
a lot of information about the code such as the size of the code, the minimum weight of
the code and the weight enumerator of the code for any weight function. Since S is a
Frobenius ring, the MacWilliams identities for the complete weight enumerator hold.

We list the elements of the ring S as S = {g1, g2, . . . , g64} given in Table 1 along with
the Gray image of each element. Next, we partition the elements of S into 7 classes based
on Lee weights as N0, N1, N2, N3, N4, N5, N6, where for 0 ≤ i ≤ 6,

Ni = {s ∈ S : wL(s) = i}.

The size of each Ni is given as |N0| = |N6| = 1, |N1| = |N5| = 6, |N2| = |N4| = 15,
|N4| = 20. Then define

NiNj = {xy : x ∈ Ni, y ∈ Nj} .

Clearly, N0Nj = N0 (0 ≤ j ≤ 6).
The complete weight enumerator (cwe) of a linear code C over S is defined by

cweC (x1, x2, . . . , x64) =
∑
d∈C

x
wtg1 (d)
1 x

wtg2 (d)
2 · · ·xwtg64 (d)

64

where wtgi(d) is the number of gi in the codeword d. This is a homogeneous polynomial
in 64 variables x1, x2, . . . , x64 with total degree on each term being n, the length of C.

Remark 3.1. We observe the following basic facts about the cwe of a code.

(1) Since 0 ∈ C, the term xn1 always appears in cweC(x1, x2, . . . , x64).
(2) cweC(1, 1, . . . , 1) = |C|.
(3) cweC(a, 0, . . . , 0) = an.

Definition 3.1. Let I be a non-zero ideal of S. Define χ : I → C∗ by χ(a + ub + vc) =
ia+b+c, where C∗ is the multiplicative group of non-zero complex numbers, and χ is a non-
trivial character of I. We then define the 64× 64 matrix M , by letting M(i, j) = χ(gigj).

We have the following theorem from [9].

Theorem 3.1. Let C be a linear code of length n over S. Then

cweC⊥ (x1, x2, . . . , x64) =
1

|C|
cweC

(
M (x1, x2, . . . , x64)

T
)

where M is the 64×64 matrix defined by M(i, j) = χ(gigj) and T represents the transpose.
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3.2. The Symmetrized Complete Weight Enumerator and Lee Weight Enumer-
ator. Since in Z4, wL(1) = wL(3) = 1, the symmetrized weight enumerator the code over
Z4 was defined in [2] as

sweC (x, y, z) = cweC (x, y, z, y) .

Adopting the same idea, we will define the symmetrized weight enumerator of the code
over S. To do this we need Table 2 which gives us the elements of S, their Lee weights
and the corresponding variables. Considering the elements that have the same weights we
can define the symmetrized weight enumerator as follows:

Definition 3.2. Let C be a linear code over S of length n. Then define the symmetrized
weight enumerator of C as

sweC (x, y, z, w, p, r, s) = cweC

x, y, . . . , y︸ ︷︷ ︸
6

, z, . . . , z︸ ︷︷ ︸
15

, w, . . . , w︸ ︷︷ ︸
20

, p, . . . , p︸ ︷︷ ︸
15

, r, . . . , r︸ ︷︷ ︸
6

, s

 ,

where x, y, z, w, p, r, s represent the elements of Lee weight 0,1,2,3,4,5,6 respectively. There-
fore,

sweC (x, y, z, w, p, r, s) =
∑
d∈C

xwt0(d)ywt1(d)zwt2(d)wwt3(d)pwt4(d)rwt5(d)swt6(d),

where wt0(d) = wtg1(d), wt1(d) =
∑7

i=2wtgi(d), wt2(d) =
∑22

i=8wtgi(d), wt3(d) =∑42
i=23wtgi(d), wt4(d) =

∑57
i=43wtgi(d), wt5(d) =

∑63
i=58wtgi(d), wt6(d) = wtg64(d).

Theorem 3.2. Let C be a linear code of length n over S. Then

sweC⊥ (x, y, z, w, p, r, s) =
1

|C|
sweC (D0, D1, D2, D3, D4, D5, D6), where

D0 = x+ 6y + 15z + 20w + 15p+ 6r + s

D1 = x+ 4y + 5z − 5p− 4r − s

D2 = x+ 2y − z − 4w − p+ 2r + s

D3 = x− 3z + 3p− s

D4 = x+ 2y − z − 4w − p+ 2r + s

D5 = x− 4y + 5z − 5p+ 4r − s

D6 = x− 6y + 15z − 20w + 15p− 6r + s

Proof. The proof is similar to that for Theorem 8 in [6]. It is obvious that if r ∈
N0, then

∑
s∈N0

χ(rs) = 1,
∑
s∈N1

χ(rs) = 6,
∑
s∈N2

χ(rs) = 15,
∑
s∈N3

χ(rs) = 20,
∑
s∈N4

χ(rs) = 15,∑
s∈N5

χ(rs) = 6,
∑
s∈N6

χ(rs) = 1.

From the proof of Theorem 8, if wL(α) = wL(β) for α, β ∈ S, we have∑
s∈Nj

χ(αs) =
∑
s∈Nj

χ(βs), (1 ≤ j ≤ 6).

So, if r ∈ N1, then
∑
s∈N0

χ(rs) = 1,
∑
s∈N1

χ(αg) = 4,
∑
s∈N2

χ(rs) = 5,
∑
s∈N3

χ(rs) = 0,∑
s∈N4

χ(rs) = −5,
∑
s∈N5

χ(rs) = −4,
∑
s∈N6

χ(rs) = −1. Others can be obtained similarly. □
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Definition 3.3. [4] Let C be a linear code of length n over Z4. Then, the Lee weight
enumerator of C is defined by

LeeC (x, y) =
∑
c∈C

x2n−wt(c)ywt(c).

Definition 3.4. Let C be a linear code of length n over S. Then, the Lee weight enumer-
ator of C is defined by

LeeC (x, y) =
∑
d∈C

x6n−wtL(d)ywtL(d).

Theorem 3.3. Let C be a linear code of length n over S. Then

LeeC (x, y) = sweC
(
x6, x5y, x4y2, x3y3, x2y4, xy5, y6

)
.

Proof. Let wtL(d) =
6∑

i=0

iwti(d). For n =
64∑
i=1

wtgi(d) =
6∑

i=0

wti(d), we have

6n− wtL(d) =

6∑
i=0

(6− i)wti(d).

From the definition of the Lee weight enumerator of C above, we have

LeeC(x, y) =
∑
d∈C

x6n−wtL(d)ywtL(d)

=
∑
d∈C

x
∑6

i=0(6−i)wti(d)y
∑6

i=0(6−i)wti(d)

=
∑
d∈C

6∏
i=0

(x6−iyi)wti(d)

= sweC
(
x6, x5y, x4y2, x3y3, x2y4, xy5, y6

)
.

□

Theorem 3.4. Let C be a linear code of length n over S. Then

LeeC⊥ (x, y) =
1

|C|
LeeC (x+ y, x− y) .

Proof. From Theorems 3.2 and 3.3, we have

LeeC⊥ (x, y) =
1

|C|
sweC (E0, E1, E2, E3, E4, E5, E6)

where

E0 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6 = (x+ y)6

E1 = x6 + 4x5y + 5x4y2 − 5x2y4 − 4xy5 − y6 = (x+ y)5(x− y)

E2 = x6 + 2x5y − x4y2 − 4x3y3 − x2y4 + 2xy5 + y6 = (x+ y)4(x− y)2

E3 = x6 − 3x4y2 + 3x2y4 − y6 = (x+ y)3(x− y)3

E4 = x6 + 2x5y − x4y2 − 4x3y3 − x2y4 + xy5 + y6 = (x+ y)2(x− y)4

E5 = x6 − 4x5y + 5x4y2 − 5x2y4 + 4xy5 − y6 = (x+ y)(x− y)5

E6 = x6 − 6x5y + 15x4y2 − 20x3y3 + 15x2y4 − 6xy5 + y6 = (x− y)6

Hence LeeC⊥ (x, y) = 1
|C|LeeC (x+ y, x− y). □
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Example 3.1. Let C be the linear code of length 3 over S generated by

G =

 3 + 2u+ 2u 0 0 1 + 2u 0 0
0 3 + 2u+ 2u 0 0 1 + 2u 0
0 0 3 + 2u+ 2u 0 0 1 + 2u

 .

By using Magma [1] we obtain the Lee weight enumerator of C as x36+6x30y6+15x24y12+
20x18y18 + 15x12y24 + 6x6y30 + y36. The dual code C⊥ is generated by

H =

 1 + 2u+ 2v 0 0 1 + 2u 0 0
0 1 + 2u+ 2v 0 0 1 + 2u 0
0 0 1 + 2u+ 2v 0 0 1 + 2u

 .

Moreover we have LeeC⊥ (x, y) = 1
|C|LeeC (x+ y, x− y).

4. Conclusion

In this paper, weight enumerators for the linear codes over the ring S = Z4+uZ4+vZ4,
where u2 = v2 = uv = vu = 0 are studied. MacWilliams identities for the complete,
symmetrized and Lee weight enumerators are proved.

Acknowledgement. We thank the referees for useful suggestions to improve the presen-
tation of this paper.
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Table 1. Lee weights of the elements of S

gi 1 ≤ i ≤ 64 The Gray image of gi Lee weight of gi The corresponding variable
0 000 0 g1
v 001 1 g2
3v 003 1 g3
u 010 1 g4
3u 030 1 g5

1+3u+3v 100 1 g6
3+u+v 300 1 g7

2v 002 2 g8
u+v 011 2 g9
u+3v 013 2 g10
2u 020 2 g11

3u+v 031 2 g12
3u+3v 033 2 g13
1+3v 110 2 g14

1+2u+3v 130 2 g15
1+3u 101 2 g16

1+3u+2v 103 2 g17
2+2u+2v 200 2 g18

3+v 330 2 g19
3+u 303 2 g20

3+2u+v 310 2 g21
3+u+2v 301 2 g22
u+2v 012 3 g23
2u+v 021 3 g24
2u+3v 023 3 g25
3u+2v 032 3 g26

1 111 3 g27
1+2v 113 3 g28

1+u+3v 120 3 g29
1+3u+v 102 3 g30
1+2u+2v 133 3 g31
2+u+2v 230 3 g32
2+2u+v 203 3 g33
2+2u+3v 201 3 g34
2+3u+2v 210 3 g35

3 333 3 g36
3+2v 331 3 g37

3+u+3v 302 3 g38
3+2u 313 3 g39

3+2u+2v 311 3 g40
3+3u+v 320 3 g41
1+2u 131 3 g42
1+v 112 4 g43

2u+2v 022 4 g44
1+u 121 4 g45

1+u+2v 123 4 g46
1+2u+v 132 4 g47
2+2v 220 4 g48
2+u+v 233 4 g49
2+u+3v 231 4 g50
2+2u 202 4 g51

2+3u+v 213 4 g52
2+3u+3v 211 4 g53

3+3v 332 4 g54
3+2u+3v 312 4 g55

3+3u 323 4 g56
3+3u+2v 321 4 g57
1+u+v 122 5 g58
2+v 223 5 g59
2+3v 221 5 g60
2+u 232 5 g61
2+3u 212 5 g62

3+3u+3v 322 5 g63
2 222 6 g64


