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SOLVING HIGHER-ORDER FUZZY DIFFERENTIAL EQUATIONS VIA

LAPLACE RESIDUAL POWER SERIES APPROACH

A. EL GHAZOUANI1∗, M. ELOMARI1, S. MELLIANI1, §

Abstract. In this paper, we have applied a new method called Laplace residual power
series method (LRPSM) introduced by (T. Eriqate et. al. ) for solving n-order fuzzy lin-
ear differential equations. The algorithm gains powerful results for this kind of problem.
Initially, we analyze in general the Laplace residual power series technique, and then
we expand it and use it to solve 2-order and 4-order fuzzy linear differential equations
with extended Hukuhara differentiability as a two examples to demonstrate efficiency
and accuracy of the approch.
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1. Introduction

The concept of FDEs has received extensive focus in current history and has been
quickly evolving. Multiple scientists thoroughly researched it (see [13, 18, 22]). Other
academics have created certain numerical approaches and algorithms for solving these
types of problems (see [1, 5, 12,20]).

The residual power series (RPS) approach is a numerical analytical tool used to han-
dle partial, ordinary and fuzzy differential equations, as well as fractional-order integro-
differential equations. It is a useful optimization approach because it provides solutions in
a mathematical expression of known functions. The RPS approach has effectively solved
a variety of Integrodifferential equations, fuzzy FDEs, and FDEs. Furthermore, the RPS
technique enables us to design the precise solution of initial value issues with polynomials
results. The RPS method analyzes several mathematical frameworks, covering differential
equations that include the framework of vibration model of big membranes, fractional
Black-Scholes option pricing equations, and temporal fractional fuzzy vibration equation
of large membranes. For instance, you can see [2–4].
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The fuzzy Laplace transform technique is an effective solving mechanism many signif-
icant models that are emerging in numerous sectors of sciences. Combining analytical
methodologies with the fuzzy Laplace transform operator increases accuracy while taking
less time to solve non-linear problems. For instance [9].

Eriqat et al. [17] developed the LRPSM to deal with certain types of fractional dif-
ferential equations through the integration of the LT and the RPSM. This novel ap-
proach promises to be more simple than RPSM for generating precise and estimated
solutions to linear and nonlinear FDEs, such as neutral FDEs [17] and high-order FPDEs
(see [11,15–17,19,21,23–26] ).

The major purpose of this work is to investigate analytic and approximation solutions for
nonlinear and linear FDE phenomena utilising the Laplace residual power series (LRPSM)
technique. The LRPSM process combines the Fuzzy Laplace transform strategy and the
RPS mechanism to provide precise and approximated results as faster power series (PS)
solutions while turning the core dilemma to Fuzzy Laplace area and coming up with
solutions for the novel equations, and eventually the solution to the key concern could be
acquired by fuzzy Laplace inverse of the study findings. In contrast to the RPS approach,
which relies on the derivative and may take time to compute the numerous derivatives in
phases of discovering solutions, the unknown factors in a new fuzzy Laplace expression
may be calculated by using limit principle. The LRPSM approach has modest computing
needs that need less time and more precision.

This research is divided into different sections: Section 2 contains some essential fun-
damental conclusions for fuzzy numbers, Hukuhara difference, extended Hukuhara differ-
entiability, and Fuzzy Laplace transform. Section 3 describes the proposed approach for
getting solutions for FDE systems. Section 4 investigates the simplicity and application
of the LRPSM technique by solving two systems of FDEs. Finally, in Section 5, we make
conclusions about our findings.

2. Preliminaries

This part covers the fundamentals of fuzzy theory. In addition, we discuss the Fuzzy
Laplace transform and its relationship to generalized Hukuhara differentiability.

Assume that E represents the set of all fuzzy numbers on R.

Definition 2.1. [28] π : R → [0, 1] A fuzzy membership function is said to as a fuzzy
number if and only if the very next cases are met:

(1) π, is normal. This indicates that there’s a x0 such as u (x0) = 1.
(2) π, is fuzzy convex.
(3) π, is upper semi-continuous.
(4) Supp(π) = {x ∈ R | π(x) > 0} is a compact set as a support set.

If π is a fuzzy number on R, therefore, the r-cut of π is [π]r = {s ∈ R | π(s) ≥ r}, for
r ∈ (0, 1].

Since [π]r is a compact set of all r ∈ [0, 1], then we can represent [π]r by [π(r), π(r)].

Definition 2.2. [28] Assume that Φ and Ψ are two level-wise fuzzy numbers. The
Hukuhara difference Φ⊖Ψ is defined as follows:

∃Ω; Φ⊖Ψ = Ω ⇔ Φ = Ψ⊕ w (1)

The presence of the difference is clearly reliant on the existence of the fuzzy value Ω.

Definition 2.3. A function f : (a, b) → E is what we call it strongly generalized differen-
tiable of the n-order at x0 ∈ (a, b); if there’s a component fn (x0) ∈ E such as



A. EL GHAZOUANI, M. ELOMARI, S. MELLIANI: HIGHER-ORDER FUZZY DIFFERENTIAL EQUATIONS311

(i) ∀h > 0 that are adequately little, there’s a fn−1 (x0 + h) ⊖ fn−1 (x0) , f
n−1 (x0) ⊖

fn−1 (x0 − h), as well as the limitations

lim
h→0+

fn−1 (x0 + h)⊖ fn−1 (x0)

h
= lim

h→0+

fn−1 (x0)⊖ fn−1 (x0 − h)

h
= fn (x0)

or
(ii) ∀h > 0 that are adequately little, there’s a

fn−1 (x0)⊖ fn−1 (x0 + h) , fn−1 (x0 − h)⊖ fn−1 (x0), as well as the limitations

lim
h→0+

fn−1 (x0)⊖ fn−1 (x0 + h)

(−h)
= lim

h→0+

fn−1 (x0 − h)⊖ fn−1 (x0)

(−h)
= fn (x0)

or
(iii) ∀h > 0 that are adequately little, there’s a fn−1 (x0 + h)⊖fn−1 (x0) , f

n−1 (x0 − h)⊖
fn−1 (x0), as well as the limitations

lim
h→0+

fn−1 (x0 + h)⊖ fn−1 (x0)

h
= lim

h→0+

fn−1 (x0 − h)⊖ fn−1 (x0)

(−h)
= fn (x0)

or
(iv) ∀h > 0 that are adequately little, there’s a

fn−1 (x0)⊖ fn−1 (x0 + h) , fn−1 (x0)⊖ fn−1 (x0 − h), as well as the limitations

lim
h→0+

fn−1 (x0)⊖ fn−1 (x0 + h)

(−h)
= lim

h→0+

fn−1 (x0)⊖ fn−1 (x0 − h)

h
= fn (x0) .

Definition 2.4. [27] Any fuzzy value function f have exponential scale p if there are
values M > 0 as well as p so for t0 ≥ 0, |f(t)| ≤ Mept · 1̃, t ≥ t0.

Definition 2.5. (see [6]) Allow χ to be a continuous fuzzy value function. Assume that
e−pxχ(x) is fuzzy Riemann improper integrable on [0,∞ [ , so

∫∞
0 e−px ⊙ χ(x)dx is known

as the χ fuzzy Laplace transform and is identified as

L[χ(x)] =

∫ ∞

0
e−px ⊙ χ(x)dx, p > 0

Indicate by L(χ) the classic Laplace transform of a crisp function χ. As such∫ ∞

0
e−pxχ(x)dx =

(∫ ∞

0
e−pxχ(x, r)dx,

∫ ∞

0
e−pxχ̄(x, r)dx

)
,

therefore

L[χ(x)] = (L(χ(x, r)),L(χ(x, r))).

Theorem 2.1. [14] Assume that u(t), u′(t), . . . , u(n−1)(t) are continuous fuzzy value func-

tions on [0,∞) and of exponential order and that u(n)(t) is piece-wise continuous fuzzy

value function on [0,∞). Allow u(i1)(t), u(i2)(t), . . . , u(im)(t) to be (ii)-differentiable func-

tions for 0 ≤ i1 < i2 < . . . < im ≤ n − 1 and u(p) be (i)-differentiable function for
p ̸= ij , j = 1, 2, . . . ,m and u(t) = (u(t, α), ū(t, α)); then

(1) If m is an even number, we obtain

L
(
u(n)(t)

)
= snL(u(t))⊖ sn−1u(0)⊗

n−1∑
k=1

sn−(k+1)u(k)(0), (2)
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such as

⊗ =


⊖, if the number of (ii)− differentiable functions g(i), supplied

that i < k is an even number

−, if the number of (ii)− differentiable functions g(i), supplied
that i < k is an odd number

(2) If m is an odd number, we get

L
(
u(n)(t)

)
= −sn−1u(0)⊖ (−sn)L(u(t))⊗

n−1∑
k=1

sn−(k+1)u(k)(0), (3)

such as

⊗ =


⊖, if the number of (ii) − differentiable functions g(i), supplied

that i < k is an odd number

−, if the number of (ii) − differentiable functions g(i), supplied
that i < k is an even number

3. Analysis of Laplace residual power series method

In this part, we provide the algorithm for solving FDEs using the Fuzzy Laplace residual
power series approach. Consider the FDE of the next structure:

u(α)(t) = f(t, u(t), CgHDα−1
t u(t)), t > 0, (4)

subordinate to the preceding condition:

u(0) = u0 = (u0, ū0) ∈ E, (5)

where u(t) = (u(t, r), ū(t, r)) is a fuzzy function and f
(
t, u(t), CgHDα−1

t u(t)
)

is a fuzzy

value function, which is linear in regard to
(
u(t), CgHDα−1

t u(t)
)
.

To initiate adopting FLRPSM, we must first execute the Fuzzy Laplace transform to
Eq. (4),

L
[
C
gHDα

t u(t)
]
= L

(
f(t, u(t), CgHDα−1

t u(t))
)
. (6)

Assume that m is an even number, then according to 2 we have

L
(
C
gHDα

t u(t)
)
= sαU(s)⊖ sα−1u(0)⊗

α−1∑
n=1

sα−(n+1)u(n)(0),

due to the starting condition (5), Equation (6) may be described as

U(s) =
1

s
⊙ u0 ⊕

1

sα
⊙

α−1∑
n=1

sα−(n+1)u(n)(0)⊕ 1

sα
⊙ F (s), (7)

where U(s) = L[u(t)], F (s) = L
(
f(t, u(t), CgHDα−1

t u(t))
)
.

As a consequence, we presume that U(s), the fuzzy converted function, has the series
representation shown below.

U(s) =

∞∑
n=0

an
snα+1

, (8)

and the form of the k-th Fuzzy truncated series of the Eq. (8) has the form

Uk(s) =

k∑
n=0

an
snα+1

=
a0
s

⊕
k∑

n=1

an
snα+1

. (9)
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The Fuzzy Laplace residual function of Eq. (7) is now computed as

LRes(s) = U(s)⊖ 1

s
⊙ u0 ⊖

1

sα
⊙

α−1∑
n=1

sα−(n+1)u(n)(0)⊖ 1

sα
⊙ F (s), (10)

and the k-th Fuzzy Laplace residual function of Eq. (10) is provided by

LResk(s) = Uk(s)⊖
1

s
⊙ u0 ⊖

1

sα
⊙

α−1∑
n=1

sα−(n+1)u(n)(0)⊖ 1

sα
⊙ F (s), k = 1, 2, · · · (11)

Interestingly, as in [7, 8, 10], the following outcomes are critical in determining FPS solu-
tions.

LRes(s) = 0 and lim
n→∞

LResn(s) = LRes(s) for all s > 0

lim
s→∞

s⊙ LRes(s) = 0 where it reveals lim
s→∞

s⊙ LResn(s) = 0.

lim
s→∞

snα+1LRes(s) = lim
s→∞

snα+1LResn(s) = 0, n = 1, 2, · · · .

Furthermore, in order to derive the factors an, we should first resolve the preceding sys-
tem’s recurrence relations.

lim
s→∞

skα+1 ⊙ LResk(s) = 0, k = 1, 2, · · · .

Therefore, we take the an findings and plug them into the series expression (9) to establish
the form of the k-th Laplace series solution, Uk(s). Ultimately, we use the fuzzy inverse
Laplace transform on the form of Uk(s) to obtain the k-th LFPS approximation solution
to the first issue (4).

4. Applications of LRPSM

The proposed approach is used to solve two interesting problems in this part. The study
demonstrates that FLRPSM is scalable and has the potential to be an effective approach
for solving FDEs.

Example 4.1.  x(2)(t) = σ0, σ0 ∈ E,
x(0) = x0, x0 ∈ E,
x′(0) = 0̃ ∈ E.

(12)

In light of the previous description of the Fuzzy Laplace RPS strategy, we begin through
using the Fuzzy Laplace transform to Eq. (12), which generates the following system
utilizing the starting data:

X(s) =
1

s
⊙ x0 ⊕

1

s3
⊙ σ0, (13)

Presume that the system’s Fuzzy Laplace series solutions (13) adopt the pursuing type:

X(s) =

∞∑
n=0

an
s2n+1

, s > 0, (14)

It is certain that lims→∞ sX(s) = a0 = x(0) = x0. As a corollary, the k-th Fuzzy Laplace
series solutions of (13) will be stated as follows:

Xk(s) =
x0
s

⊕
k∑

n=1

an
s2n+1

. (15)
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where the undetermined factors an may be identified for n = 1, 2, 3, · · · by generating the
k-th Fuzzy Laplace residual functions LResk (X(s)) of system (13) in such a way that

LResk (X(s)) = Xk(s)⊖
1

s
⊙ x0 ⊖

1

s3
⊙ σ0, (16)

For the first-Laplace series solutions, take k = 1 in the Fuzzy Laplace residual Eq. (16).

LRes1 (X(s)) =
x0
s

⊕ a1
s3

⊖ 1

s
⊙ x0 ⊖

1

s3
⊙ σ0, (17)

Thus, by multiplying either parts of the resultant equation (17) by s3, one may obtain:

s3LRes1 (X(s)) = a1 ⊖ σ0. (18)

Following that, by resolving, lims→∞ s3LRes1 (X(s)) = 0, one could earn a1 = σ0. As
an end, the system’s 1st-Laplace series solutions (13) will be stated as:

X1(s) =
x0
s

⊕ σ0
s3

.

Similarly, to determine the shape of the Eq’s 2nd-Fuzzy Laplace series solutions (13), we
need

LRes2 (X(s)) =
x0
s

⊕ σ0
s3

⊕ a2
s5

⊖ 1

s
⊙ x0 ⊖

1

s3
⊙ σ0, (19)

After that, multiply either sides of LRes2 (Y (s)) by s5 to get

s5LRes2 (X(s)) = a2, (20)

Finally, in order to acquire the constant, a2, one able to solve,
lims→∞ s5LRes2 (X(s)) = 0, in order to confirm that a2 = 0 Furthermore, the sys-

tem’s 2nd-Fuzzy Laplace series solutions (13) may be expressed as

X2(s) =
x0
s

⊕ σ0
s3

. (21)

As a result, by adopting the fuzzy inverse Laplace over sides of the resultant expression
of (21), the Fuzzy Laplace PS solutions for the system FDE’s (12) may be written as the
very next expansion:

x2(t) = x0 ⊕
t2

2
σ0. (22)

Example 4.2.  x(4)(t) = x(t),
x(0) = x0, x0 ∈ E,
x′(0) = x′′(0) = x′′′(0) = 0̃ ∈ E.

(23)

We urge m to be an odd integer, and applying 3 on the system (23) and the beginning
information, we get the following system:

X(s) =
−s3

(1− s4)
x0, (24)

Suppose that the system’s Fuzzy Laplace series solutions (13) adopt the following structure:

X(s) =

∞∑
n=0

an
s2n+1

, s > 0, (25)
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It is obvious that lim s → ∞sX(s) = a0 = x(0) = x0. As an outcome, the k-th Fuzzy
Laplace series solutions of the Eq. (24) will be displayed as follows:

Xk(s) =
x0
s

⊕
k∑

n=1

an
s2n+1

. (26)

where the missing factors an may be recovered for n = 1, 2, 3, · · · by creating the k-th Fuzzy
Laplace residual functions LResk (X(s)) of system (24) in such a way that

LResk (X(s)) = Xk(s)⊖
−s3

(1− s4)
x0, (27)

Considering k = 1 in the Fuzzy Laplace residual Eq. (27) to derive the first-Laplace series
solutions.

LRes1 (X(s)) =
x0
s

⊕ a1
s3

⊖ −s3

(1− s4)
x0, (28)

However, multiplying either parts of the resultant Eq. (28) by s3 yields:

s3LRes1 (X(s)) = a1 ⊕
s2

1− s4
x0. (29)

Following that, by finding, lims→∞ s3LRes1 (X(s)) = 0, one could attain a1 = 0. As an
end, the system’s first-Laplace series solutions (24) will be given as:

X1(s) =
x0
s
.

Likewise, to discover the shape of the system’s 2nd-Fuzzy Laplace series solutions (24), we
require

LRes2 (X(s)) =
x0
s

⊕ a2
s5

⊖ −s3

(1− s4)
x0, (30)

After that, multiply each sides of LRes2 (Y (s)) by s5 to get

s5LRes2 (X(s)) = a2 ⊕
s4

(1− s4)
x0, (31)

Lastly, in order to acquire the numbers a2, one might solve,
lims→∞ s5LRes2 (X(s)) = 0, to state that a2 = x0 As a conclusion, the system’s

2nd-Fuzzy Laplace series solutions (24) may be presented as

X2(s) =
x0
s

⊕ x0
s5

. (32)

Similarly, to produce the 3rd-Laplace series solutions of (24), insert X3(s) of (26) into
the 3rd-Laplace residual functions of (27), and afterwards multiply the resulting equation.

s7LRes3 (X(s)) = a3 ⊕
s2

(1− s4)
x0, (33)

by lims→∞ s7LRes2 (X(s)) = 0, we get a3 = 0 As a result, the system’s 2nd-Fuzzy
Laplace series solutions (24) can be phrased as

X3(s) =
x0
s

⊕ x0
s5

. (34)

In the identical statement, for k = 4, and depending on the finding lim
s→∞

s9LRes4 (X(s)) =

0, produces a4 = x0 . The answers to the 4th-Lapalce series can be summarized as

X4(s) =
x0
s

⊕ x0
s5

⊕ x0
s9

. (35)
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Moreover, rely on the fact lims→∞ s2k+1LResk (X(s)) = 0, for k = 5, 6, 7, · · · , The
system’s Fuzzy Laplace series solutions (23) are found by

X(s) =
x0
s

⊕ x0
s5

⊕ x0
s9

⊕ x0
s13

⊕ x0
s17

⊕ · · · (36)

As a response, by considering the fuzzy inverse Laplace along both halves of the resultant
expansion of (36), the Fuzzy Laplace PS solutions for the system FDE’s (23) may be
written as the resulting expansion:

x(t) = x0 ⊕
x0
Γ(5)

t4 ⊕ x0
Γ(9)

t8 ⊕ x0
Γ(13)

t12 ⊕ x0
Γ(17)

t16 ⊕ · · · (37)

5. Conclusion

In the present study, we used an innovative approach to solve n-order fuzzy linear
differential equations termed the Laplace residual power series method (LRPSM) that was
created (T. Eriqate et al.). We first examine the Laplace residual power series methodology
in broad terms, next enhance it and apply it to address 2-order and 4-order fuzzy linear
differential equations with extending Hukuhara differentiability as instances for showing
the approch’s accuracy and correctness. In future studies, we plan to investigate this
methodology for Solving Nonlinear Caputo Fractional Differential Equations.
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