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HYBRID THE SINE–COSINE WAVELET AND FINITE DIFFERENCE

METHOD FOR SOLVING THE NONLINEAR

BELOUSOV–ZHABOTINSKY REACTION SYSTEM

S. FOADIAN1∗, R. POURGHOLI2, §

Abstract. In this paper, a numerical method for solving the nonlinear Belousov–
Zhabotinsky reaction system is proposed. The method is based on hybrid function
approximations. In the solution process, the time derivative is discretized by the fi-
nite difference method, the spatial discretization is made by Sine–Cosine wavelets, and
the nonlinear terms are linearized by the quasilinearization technique. Also, the conver-
gence analysis of the proposed method has been discussed. Finally, to show the efficiency
and accuracy of the method in solving this system, an illustrative example is included
and the results are compared with the Haar wavelet method.

Keywords: Nonlinear Belousov–Zhabotinsky system, Sine–Cosine wavelets method, Fi-
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1. Introduction

Nonlinear phenomena have an important place in many areas of science and engineering.
Particularly, nonlinear chemical reactions can be widely seen in various fields, such as
biological and chemical physics. Especially there has been considerable interest in both
biochemical and biological systems resulting in sustained oscillation. For this reason, it
has become more important to seek solutions for these kinds of nonlinear phenomena.

One of these nonlinear natural phenomena is the Belousov–Zhabotinsky chemical re-
action. Most research work on oscillatory behavior in nonequilibrium dynamics was de-
veloped based on the discovery of a particular chemical reaction popularly called the
Belousov–Zhabotinsky reaction. The Belousov–Zhabotinsky reaction was first observed in
the 1950s by a Russian biochemist named Boris Belousov who attempted to simulate the
Krebs cycle in vitro. His work came to light through research findings of A. M. Zhabotinsky
in the 1960’s [1, 2, 3]. Nowadays, the Belousov–Zhabotinsky reaction system is generally
referred to as the chemical reaction in which an organic substrate is oxidized in the presence
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of acid by bromate ions with transition metal ions. The Belousov–Zhabotinsky reaction has
generated a lot of research attention in the area of applied sciences, most importantly in the
field of nonlinear dynamics by theorists interested in modeling complex patterns in biologi-
cal systems. The Belousov–Zhabotinsky reaction is known to have manifested into various
complex dynamic phenomena such as self-replicating patterns, stripes, spots, and mitotic
spots, as well as other unusual chaotic structures. The Belousov–Zhabotinsky is likely
the most widely studied reaction both theoretically and experimentally [4]. Akinyemi, in
[5], investigates numerical solutions to this model with Caputo fractional time derivative.
In [6], the operator splitting method has been presented for analysis of the Noyes–Field
model for the nonlinear Belousov–Zhabotinsky reaction.

In this paper, we investigate numerical solutions to this nonlinear oscillatory system as{
Φt = Φxx + αΨ+Φ− Φ2 − αΦΨ,

Ψt = Ψxx + βΨ− βΦΨ,
(1)

with the initial conditions

Φ(x, 0) = ρ1(x), Ψ(x, 0) = ρ2(x), 0 ≤ x ≤ 1, (2)

and the boundary conditions

Φ(0, t) = f1(t), Φ(1, t) = f2(t), 0 ≤ t ≤ T ∗,

Ψ(0, t) = g1(t), Ψ(1, t) = g2(t), 0 ≤ t ≤ T ∗,
(3)

where α and β ̸= 1 are positive parameters, ρ1(x), ρ2(x), f1(t), f2(t), g1(t), and g2(t),
are considered as known differentiable functions and T ∗ denotes a positive constant as the
final time. The numerical method is based upon hybrid function approximations with the
finite difference and Sine–Cosine wavelets method.

The wavelet methods have become a matter of attention lately in solving differential
equations numerically, and they were first applied to solving differential equations in the
early 1990s [7, 8]. In the present paper, we use the Sine–Cosine wavelets method. One
of the strengths of this method is the orthogonality and compact support of the basis
functions used in their construction. In addition, because the number of mother wavelet
elements is limited to one, we do not see the growth of computational complexity. Azizi and
Pourgholi [9] have used Sine–Cosine wavelets to solve Drinfel’d–Sokolov–Wilson system.
Idrees Caputo–Hadamard fractional differential equations In [11], a Sine–Cosine wavelet
method has been employed to solve Caputo–Hadamard fractional differential equations.
The numerical evaluation of the Hankel transform for seismology using the Sine–Cosine
wavelets approach has been given in [12].

The rest of this study is organized into the following sections. In Section 2, a review
of the Sine–Cosine wavelets, including: the properties of the Sine–Cosine wavelets, or-
thonormal basis functions, function approximation, and the convergence analysis of this
method are discussed. In Section 3, the application of the Sine–Cosine wavelet method to
get numerical solutions of system (1) is presented. The numerical computation and results
are made in Section 4. Finally, concluding remarks are drawn in Section 5.

2. A Review of the Sine–Cosine wavelets

In this section, individually, we present the properties of the Sine–Cosine wavelets,
orthonormal basis functions, function approximation, and the convergence analysis of this
method.
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2.1. The Sine–Cosine wavelets. Wavelets are useful mathematical functions constructed
from the dilation and translation of a single function called the mother wavelet, which can
be denoted by W(x). Assuming that the expansion parameter e and the translation pa-
rameter d are considered, we have the continuous wavelets family as follows [13]

Me,d(x) = |e|−
1
2W

(x− d

e

)
, e, d ∈ R, e ̸= 0.

If the parameters e and d are restricted to take values e = e−κ
0 and d = ιd0e

−κ
0 , where

e0 > 1, d0 > 0, a family of discrete wavelets is obtained as

Mκ,ι(x) = |e0|
κ
2W(eκ0x− ιd0), (4)

where ι and κ are positive integers. The set {Mκ,ι(x)} in (4), forms a wavelet basis for
L 2(R). Especially, if e0 = 2 and d0 = 1, the set {Mκ,ι(x)} forms an orthonormal basis.

Sine–Cosine wavelets are defined on interval 0 ≤ x ≤ 1 as [12]

Mι,λ(x) =

{
2

κ+1
2 Hλ(2

κx− ι), x ∈ [ ι
2κ ,

ι+1
2κ ),

0, elsewhere.
(5)

where κ = {0} ∪ N, ι = 0, 1, 2, . . . , 2κ − 1, also,

Hλ(x) =


1√
2
, if λ = 0,

cos(2λπx), if λ = 1, 2, . . . , ℓ∗,

sin(2(λ− ℓ∗)πx), if λ = ℓ∗ + 1, ℓ∗ + 2, . . . , 2ℓ∗,

(6)

where ℓ∗ is any positive integer.

2.2. Orthonormal basis functions. In this subsection, the orthonormal basis functions
for Sine–Cosine wavelets by fixing κ = 1 and ℓ∗ = 2 are obtained in the following
for 0 ≤ x < 1

2 : 

M0,0(x) =
√
2,

M0,1(x) = 2 cos(4πx),

M0,2(x) = 2 cos(8πx),

M0,3(x) = 2 sin(4πx),

M0,4(x) = 2 sin(8πx),

and for 1
2 ≤ x < 1: 

M1,0(x) =
√
2,

M1,1(x) = 2 cos(4πx− 2π),

M1,2(x) = 2 cos(8πx− 4π),

M1,3(x) = 2 sin(4πx− 2π),

M1,4(x) = 2 sin(8πx− 4π).

For instance, the graphs of Mι,λ(x) for κ = ℓ∗ = 1, with the collocation points

xi =
2i− 1

2M
, i = 1, 2, . . . , M = 2κ(2ℓ∗ + 1), (7)

are shown in Figure 1.
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Figure 1. The graphs of Mι,λ(x) for κ = 1 and ℓ∗ = 1.

2.3. Function approximation. Our aim in this subsection is to apply the Sine–Cosine
wavelets for solving system (1). Since Sine–Cosine wavelets have compact support and
are an orthonormal basis for L 2([0, 1)), Hence, it should be noted that any function
U(x) ∈ L 2([0, 1)) can be expanded into the Sine–Cosine wavelets as infinite series as
follows

U(x) =
∞∑
ι=0

2ℓ∗∑
λ=0

cι,λMι,λ(x), (8)

where the wavelet coefficients cι,λ are defined by cι,λ =< U ,Mι,λ >, where < ·, · > denotes
the inner product.
In practical purpose, for approximating unknown function U(x) ∈ L 2([0, 1)), the finite
terms of the Sine–Cosine wavelets series are needed; hence, by truncating the infinite series
(8) at level ι = 2κ − 1, we obtain an approximate representation for U(x) as follows

U(x) ≃
2κ−1∑
ι=0

2ℓ∗∑
λ=0

cι,λMι,λ(x) = CTΠ(x), (9)

where C and Π are (M× 1)-vectors and are given by

C =
[
c0,0, c0,1, . . . , c0,2ℓ∗ , c1,0, c1,1, . . . , c1,2ℓ∗ , . . . . . . , c2κ−1,0, c2κ−1,1, . . . , c2κ−1,2ℓ∗

]T
, (10)

Π =
[
M0,0(x), . . . ,M0,2ℓ∗(x),M1,0(x), . . . ,M1,2ℓ∗(x), . . . . . . ,M2κ−1,0(x), . . . ,M2κ−1,2ℓ∗(x)

]T
. (11)

Considering the collocation points (7), the Sine–Cosine wavelets matrix ΠM×M is given by

ΠM×M =

[
Π
( 1

2M

)
,Π

( 3

2M

)
, . . . ,Π

(2M− 1

2M

)]
,
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in other words

ΠM×M =



M0,0(
1
2M
) M0,0(

3
2M
) . . . M0,0(

2M−1
2M

)

M0,1(
1
2M
) M0,1(

3
2M
) . . . M0,1(

2M−1
2M

)

...
... . . .

...

M0,2ℓ∗(
1
2M
) M0,2ℓ∗(

3
2M
) . . . M0,2ℓ∗(

2M−1
2M

)

M1,0(
1
2M
) M1,0(

3
2M
) . . . M1,0(

2M−1
2M

)

M1,1(
1
2M
) M1,1(

3
2M
) . . . M1,1(

2M−1
2M

)

...
... . . .

...

M1,2ℓ∗(
1
2M
) M1,2ℓ∗(

3
2M
) . . . M1,2ℓ∗(

2M−1
2M

)

...
... . . .

...

...
... . . .

...

M2κ−1,0(
1
2M
) M2κ−1,0(

3
2M
) . . . M2κ−1,0(

2M−1
2M

)

M2κ−1,1(
1
2M
) M2κ−1,1(

3
2M
) . . . M2κ−1,1(

2M−1
2M

)

...
... . . .

...

M2κ−1,2ℓ∗(
1
2M
) M2κ−1,2ℓ∗(

3
2M
) . . . M2κ−1,2ℓ∗(

2M−1
2M

)



. (12)

For example, when κ = 1 and ℓ∗ = 2, Π10×10 is given as follows

Π10×10 =



1.4142 1.4142 1.4142 1.4142 1.4142 0 0 0 0 0
1.6180 −0.6180 −2.0000 −0.6180 1.6180 0 0 0 0 0

0.6180 −1.6180 2.0000 −1.6180 0.6180 0 0 0 0 0

1.1756 1.9021 0.0000 −1.9021 −1.1756 0 0 0 0 0
1.9021 −1.1756 −0.0000 1.1756 −1.9021 0 0 0 0 0

0 0 0 0 0 1.4142 1.4142 1.4142 1.4142 1.4142

0 0 0 0 0 1.6180 −0.6180 −2.0000 −0.6180 1.6180
0 0 0 0 0 0.6180 −1.6180 2.0000 −1.6180 0.6180

0 0 0 0 0 1.1756 1.9021 0.0000 −1.9021 −1.1756

0 0 0 0 0 1.9021 −1.1756 −0.0000 1.1756 −1.9021


.

The integration of the vector Π(x) where defined in equation (11), can be calculated as follows

∫ x

0

Π(τ) dτ = QΠ(x),

where the M× M operational matrix Q is given by

Q =
1

2
κ+1
2


X Y · · · Y
0 X · · · Y
...

...
. . .

...
0 0 · · · X

 .
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The (2ℓ∗ + 1)× (2ℓ∗ + 1)-matrices X and Y are defined as follows

X =



1
2

0 0 · · · 0 − 1
π

− 1
2π

· · · − 1
ℓ∗π

0 0 0 · · · 0 1
2π

0 · · · 0

0 0 0 · · · 0 0 1
4π

· · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · 0 0 0 · · · 1
2ℓ∗π

1
2π

− 1
2π

0 · · · 0 0 0 · · · 0

1
4π

0 − 1
4π

· · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

1
2ℓ∗π 0 0 · · · − 1

2ℓ∗π 0 0 · · · 0



,

Y =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

2.4. Convergence analysis of the Sine–Cosine wavelets.

Theorem 2.1. The approximate solution (9) converges to U(x) in (8), when κ → ∞.

Proof. Suppose that Jκ,ℓ∗ be a sequence of partial sums of cι,λMι,λ(x) as

Jκ,ℓ∗(x) =

2κ−1∑
ι=0

2ℓ∗∑
λ=0

cι,λMι,λ(x).

We demonstrate Jκ,ℓ∗ is a Cauchy sequence in Hilbert space L 2([0, 1)) and then, we show that when
κ → ∞, Jκ,ℓ∗ converges to U(x). To do this, first we let Jκ′,ℓ∗ be arbitrary sums of cι,λMι,λ(x) with
κ > κ′. Therefore,∥∥∥∥∥Jκ,ℓ∗ − Jκ′,ℓ∗

∥∥∥∥∥
2

=

∥∥∥∥∥
2κ−1∑
ι=2κ

′

2ℓ∗∑
λ=0

cι,λMι,λ(x)

∥∥∥∥∥
2

=

〈
2κ−1∑
ι=2κ

′

2ℓ∗∑
λ=0

cι,λMι,λ(x),

2κ−1∑
ι′=2κ

′

2ℓ∗∑
λ′=0

cι′,λ′Mι′,λ′(x)

〉

=

2κ−1∑
ι=2κ

′

2ℓ∗∑
λ=0

2κ−1∑
ι′=2κ

′

2ℓ∗∑
λ′=0

cι,λc̄ι′,λ′

〈
Mι,λ(x),Mι′,λ′(x)

〉

=

2κ−1∑
ι=2κ

′

2ℓ∗∑
λ=0

|cι,λ|2.

We have
∞∑
ι=0

2ℓ∗∑
λ=0

|cι,λ|2, is convergent (From Bessel’s inequality). So, when κ → ∞, we have

∥∥∥∥∥Jκ,ℓ∗ − Jκ′,ℓ∗

∥∥∥∥∥
2

→ 0.
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This result demonstrates that Jκ,ℓ∗ is a Cauchy sequence, and so, it converges to a function Z(x) ∈
L 2([0, 1)). Now, it is enough to show Z(x) = U(x).〈

Z − U ,Mι,λ

〉
=

〈
Z,Mι,λ

〉
−

〈
U ,Mι,λ

〉
= lim

κ→∞

〈
Jκ,ℓ∗ ,Mι,λ

〉
− cι,λ

= cι,λ − cι,λ = 0.

Hence,
2κ−1∑
ι=0

2ℓ∗∑
λ=0

cι,λMι,λ(x) converges to U(x) when κ → ∞ and this completes the proof. □

3. Description of the proposed method

In this section, we present the application of the Sine–Cosine wavelet method to get numerical solutions
of system (1), with initial and boundary conditions (2) and (3), respectively.

Firstly, for discretizing equations of system (1), we substitute Φt and Ψt by forward finite difference
and also use time average for Φxx, Ψxx, Ψ, Φ, Φ2, ΦΨ terms, so we get the following relations

Φ(x, tj+1)− Φ(x, tj)

ℏt
=
Φxx(x, tj+1) + Φxx(x, tj)

2
+ α

Ψ(x, tj+1) + Ψ(x, tj)

2

+
Φ(x, tj+1) + Φ(x, tj)

2
− Φ2(x, tj+1) + Φ2(x, tj)

2

−α
ΦΨ(x, tj+1) + ΦΨ(x, tj)

2
,

Ψ(x, tj+1)−Ψ(x, tj)

ℏt
=
Ψxx(x, tj+1) + Ψxx(x, tj)

2
+ β

Ψ(x, tj+1) + Ψ(x, tj)

2

−β
ΦΨ(x, tj+1) + ΦΨ(x, tj)

2
,

(13)

where ℏt is the time step. If we use the linearizations

2Φ(x, tj)Φ(x, tj+1)− Φ2(x, tj),

and
Ψ(x, tj)Φ(x, tj+1) + Φ(x, tj)Ψ(x, tj+1)− Φ(x, tj)Ψ(x, tj),

which is similar to the quasilinearization technique [14], instead of nonlinear terms Φ2(x, tj+1) and ΦΨ(x, tj+1),
respectively, and simplify the equations of system (13), we obtain{

Γ1Φ(x, tj+1) + Γ2Ψ(x, tj+1)− θΦxx(x, tj+1) = B1,

Γ3Φ(x, tj+1) + Γ4Ψ(x, tj+1)− θΨxx(x, tj+1) = B2,
(14)

where θ = ℏt
2

and

Γ1 = 1 + θ − 2θΦ(x, tj)− αθΨ(x, tj),

Γ2 = αθ
(
1− Φ(x, tj)

)
,

Γ3 = βθΨ(x, tj),

Γ4 = 1− βθ
(
1− Φ(x, tj)

)
,

B1 = θΦxx(x, tj) + (1 + θ)Φ(x, tj) + αθΨ(x, tj),

B2 = θΨxx(x, tj) + (1 + βθ)Ψ(x, tj).

3.1. Sine–Cosine wavelet method for spatial–discretization. In this subsection, we introduce the
discretization of spatial derivatives that appeared in system (14). For this, we divide the interval [0, T ∗]

into N subinterval with the length ℏt = T∗

N
and denote tj = (j − 1)ℏt, j = 1, 2, . . . , N+ 1. We assume that

Φxx(x, tj+1) and Ψxx(x, tj+1) can be expanded in terms of Sine–Cosine wavelets as

Φxx(x, tj+1) ≃
2κ−1∑
ι=0

2ℓ∗∑
λ=0

cι,λMι,λ(x) = CTΠ(x), (15)

Ψxx(x, tj+1) ≃
2κ−1∑
ι=0

2ℓ∗∑
λ=0

dι,λMι,λ(x) = DTΠ(x). (16)
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By integrating equations (15) and (16), twice times with respect to x from 0 to x, we get the following
equations

Φ(x, tj+1) = CTQ2Π(x) + Φ(0, tj+1) + xΦx(0, tj+1), (17)

Ψ(x, tj+1) = DTQ2Π(x) + Ψ(0, tj+1) + xΨx(0, tj+1). (18)

In equations (17) and (18), the terms Φx(0, tj+1) and Ψx(0, tj+1) are unknown. So, by using the boundary
conditions Φ(1, t) = f2(t) and Ψ(1, t) = g2(t) these equations are changed as follows

Φ(x, tj+1) = CTQ2Π(x) + (1− x)f1(tj+1) + xf2(tj+1), (19)

Ψ(x, tj+1) = DTQ2Π(x) + (1− x)g1(tj+1) + xg2(tj+1). (20)

Substituting (19) and (20) into the equtions of system (14), we get



[
Γ1Q2Π(x)− θΠ(x)

]
CT +

[
Γ2Q2Π(x)

]
DT = B1 − Γ1

[
(1− x)f1(tj+1) + xf2(tj+1)

]
− Γ2

[
(1− x)g1(tj+1) + xg2(tj+1)

]
,

[
Γ3Q2Π(x)

]
CT +

[
Γ4Q2Π(x)− θΠ(x)

]
DT = B2 − Γ3

[
(1− x)f1(tj+1) + xf2(tj+1)

]
− Γ4

[
(1− x)g1(tj+1) + xg2(tj+1)

]
.

(21)

By evaluating equations of system (21) at the collocation points (7), a linear system of equations for
unknown wavelet coefficients C and D is derived as follows

{
Λ1C

T + Λ2D
T = G1(xi, tj),

Λ3C
T + Λ4D

T = G2(xi, tj),
(22)

where

Λ1 = Γ1Q2Π(xi)− θΠ(xi),

Λ2 = Γ2Q2Π(xi),

Λ3 = Γ3Q2Π(xi),

Λ4 = Γ4Q2Π(xi)− θΠ(xi),

G1(xi, tj) = B1 − Γ1

[
(1− xi)f1(tj+1) + xif2(tj+1)

]
− Γ2

[
(1− xi)g1(tj+1) + xig2(tj+1)

]
,

G2(xi, tj) = B2 − Γ3

[
(1− xi)f1(tj+1) + xif2(tj+1)

]
− Γ4

[
(1− xi)g1(tj+1) + xig2(tj+1)

]
.

The linear system (22) can be represented in the matrix form as follows

[
Λ1 Λ2

Λ3 Λ4

]
2M×2M

[
C

D

]
2M×1

=

[
G1

G2

]
2M×1

(23)

This system is solved by using appropriate software and the wavelet coefficients C and D are found.
In the following, we provide an Algorithm 1 of the Sine–Cosine wavelets method to obtain a numerical
solution of the nonlinear Belousov–Zhabotinsky reaction system.
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Algorithm 1 Algorithm for the proposed Sine–Cosine wavelets method

• Input: The positive integers κ and ℓ∗.
• Define the Sine–Cosine wavelets Mι,λ(x) by equation (5).
• Construct the vector ΠM×1 from (11).
• Construct the Sine–Cosine wavelets matrix ΠM×M using the collocation points (7) (matrix (12)).
• Compute the operational matrix QM×M.
• Define unknown coefficient vectors

CM×1 =
[
c0,0, c0,1, . . . , c0,2ℓ∗ , c1,0, c1,1, . . . , c1,2ℓ∗ , . . . . . . , c2κ−1,0, c2κ−1,1, . . . , c2κ−1,2ℓ∗

]T
,

and

DM×1 =
[
d0,0, d0,1, . . . , d0,2ℓ∗ , d1,0, d1,1, . . . , d1,2ℓ∗ , . . . . . . , d2κ−1,0, d2κ−1,1, . . . , d2κ−1,2ℓ∗

]T
.

• Convert the equations of system (1) into a system of discrete equations by using forward finite difference
and also use time average method.

• Convert the obtained equations into a linearized differential equation by using the quasilinearization
technique.

• Approximate the highest spatial derivatives function in system (14) by Sine–Cosine wavelets.
• Establish the system of algebraic equations (22).
• Solve the system of algebraic equations in the previous step by any classical method in the appropriate

software.
• Substitute the obtained wavelet coefficients C and D into (19) and (20).
• Output: The approximate solutions Φ(x, t) and Ψ(x, t) on [0, 1]× [0, T ∗].

4. Numerical computation and results

In this section, numerical computation of the nonlinear Belousov–Zhabotinsky reaction equation (1) is
obtained. These results and graphical outputs were generated by MATLAB R2015b, and all codes were
run on a personal computer.
To show the performance of the proposed method as compared with the exact solution, we used the error
norms L∞, for 0 < x < 1 and 0 < t ≤ T ∗ as follows

(L∞)Φ = ||Φexact(x, t)− Φapprox(x, t)||∞ = max |Φexact(x, t)− Φapprox(x, t)|,
(L∞)Ψ = ||Ψexact(x, t)−Ψapprox(x, t)||∞ = max |Ψexact(x, t)−Ψapprox(x, t)|,

and the error norms L2 as follows

(L2)Φ =

√√√√ℏx
M∑

i=1

(
Φexact(xi, t)− Φapprox(xi, t)

)2

,

(L2)Ψ =

√√√√ℏx
M∑

i=1

(
Ψexact(xi, t)−Ψapprox(xi, t)

)2

,

where ℏx = 1
M
. Also,

(L2)Φ =

√√√√ℏt
N+1∑
j=2

(
Φexact(x, tj)− Φapprox(x, tj)

)2

,

(L2)Ψ =

√√√√ℏt
N+1∑
j=2

(
Ψexact(x, tj)−Ψapprox(x, tj)

)2

,

where ℏt = T∗

N
.

4.1. Model problem. For the implementation of numerical works carried out in section 3, we will consider
the nonlinear Belousov–Zhabotinsky reaction equation (1) with the following initial conditions

ρ1(x) =
1

4

[
tanh

(√ β

24
x
)
− 1

]2

, ρ2(x) =
β − 1

4α

[
tanh

(√ β

24
x
)
− 1

]2

, 0 ≤ x ≤ 1,
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and the boundary conditions

f1(t) =
1

4

[
tanh

(5β
12

t
)
+ 1

]2

, f2(t) =
1

4

[
tanh

(√ β

24
− 5β

12
t
)
− 1

]2

, 0 ≤ t ≤ T ∗,

g1(t) =
β − 1

4α

[
tanh

(5β
12

t
)
+ 1

]2

, g2(t) =
β − 1

4α

[
tanh

(√ β

24
− 5β

12
t
)
− 1

]2

, 0 ≤ t ≤ T ∗.

The exact solutions are given in [5] as

Φ(x, t) =
1

4

[
tanh

(√ β

24
x− 5β

12
t
)
− 1

]2

, Ψ(x, t) =
β − 1

4α

[
tanh

(√ β

24
x− 5β

12
t
)
− 1

]2

.

We take α = β = 2, T ∗ = 1, and ℏt = 0.01.
The numerical results are compared with the Haar wavelet method, [10]. Tables 1–4, compare the error
norms L∞ and L2 for the Sine–Cosine wavelet (SCW) and Haar wavelet (HW) methods at the different
values x and t. Comparison between the exact and computed solutions Φ(x, t) and Ψ(x, t) in the 3-
dimensional graphs are shown in Figures 2 and 3, respectively. In Figures 4–7, we show the L2 and L∞
Errors for Φ(x, t) and Ψ(x, t) at different space and time levels.

Table 1. The comparison among the exact and numerical solutions for Φ(0.475, t).

t
SCW (ℓ∗ = κ = 2) HW (J = 3)

Φexact Φapprox |Φexact − Φapprox| Φapprox |Φexact − Φapprox|

0.1 0.223854 0.229491 5.636470e− 03 0.216396 7.457661e− 03

0.2 0.264987 0.269839 4.851715e− 03 0.249831 1.515627e− 02

0.3 0.309360 0.313166 3.806702e− 03 0.284187 2.517307e− 02

0.4 0.356250 0.358820 2.570298e− 03 0.325065 3.118473e− 02

0.5 0.404804 0.406035 1.230867e− 03 0.364164 4.064088e− 02

0.6 0.454106 0.453990 1.162383e− 04 0.406758 4.734797e− 02

0.7 0.503235 0.504209 9.744409e− 04 0.448075 5.515954e− 02

0.8 0.551331 0.551109 2.220420e− 04 0.490346 6.098543e− 02

0.9 0.597646 0.595123 2.522691e− 03 0.530310 6.733545e− 02

1 0.641568 0.637486 4.081906e− 03 0.625770 1.579795e− 02

L∞ Error 5.981972e− 03 4.162985e− 02

L2 Error 3.331779e− 03 6.733545e− 02
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Table 2. The comparison among the exact and numerical solutions for Ψ(0.475, t).

t
SCW (ℓ∗ = κ = 2) HW (J = 3)

Ψexact Ψapprox |Ψexact −Ψapprox| Ψapprox |Ψexact −Ψapprox|

0.1 0.111927 0.114756 2.829054e− 03 0.108233 3.693724e− 03

0.2 0.132493 0.134927 2.433295e− 03 0.124974 7.519563e− 03

0.3 0.154680 0.156586 1.906004e− 03 0.143706 1.097422e− 02

0.4 0.178125 0.179407 1.281757e− 03 0.164826 1.329914e− 02

0.5 0.202402 0.203007 6.050098e− 04 0.185488 1.691435e− 02

0.6 0.227053 0.226977 7.616807e− 05 0.207776 1.927652e− 02

0.7 0.251617 0.251014 6.030613e− 04 0.229886 2.173131e− 02

0.8 0.275666 0.274465 1.200731e− 03 0.252168 2.349782e− 02

0.9 0.298823 0.297099 1.723649e− 03 0.273673 2.514959e− 02

1 0.320784 0.318696 2.087995e− 03 0.314018 6.765360e− 03

L∞ Error 3.000326e− 03 2.514959e− 02

L2 Error 1.752998e− 03 1.651617e− 02

Table 3. The comparison among the exact and numerical solutions for Φ(x, 1).

t
SCW (ℓ∗ = κ = 2) HW (J = 3)

Φexact Φapprox |Φexact − Φapprox| Φapprox |Φexact − Φapprox|

0.125 0.690973 0.689037 1.936460e− 03 0.703977 1.300360e− 02

0.225 0.677319 0.674283 3.035193e− 03 0.670138 7.180178e− 03

0.325 0.663289 0.659474 3.815090e− 03 0.647996 1.529366e− 02

0.425 0.648896 0.644786 4.110780e− 03 0.632435 1.646176e− 02

0.525 0.634153 0.630021 4.132548e− 03 0.619421 1.473204e− 02

0.625 0.619075 0.615455 3.619904e− 03 0.607530 1.154478e− 02

0.725 0.603680 0.600596 3.084689e− 03 0.597236 6.444137e− 03

0.825 0.587989 0.586039 1.949879e− 03 0.591094 3.105750e− 03

0.925 0.572022 0.570607 1.415732e− 03 0.593248 2.122538e− 02

L∞ Error 4.203572e− 03 2.664550e− 02

L2 Error 3.036066e− 03 1.457509e− 02
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Table 4. The comparison among the exact and numerical solutions for Ψ(x, 1).

t
SCW (ℓ∗ = κ = 2) HW (J = 3)

Ψexact Ψapprox |Ψexact −Ψapprox| Ψapprox |Ψexact −Ψapprox|

0.125 0.345487 0.344524 9.628590e− 04 0.350042 4.555041e− 03

0.225 0.338659 0.337143 1.515995e− 03 0.335095 3.564335e− 03

0.325 0.331645 0.329760 1.884463e− 03 0.324787 6.857755e− 03

0.425 0.324448 0.322383 2.065293e− 03 0.317280 7.168556e− 03

0.525 0.317077 0.315001 2.075183e− 03 0.310896 6.180504e− 03

0.625 0.309538 0.307630 1.907914e− 03 0.304979 4.558660e− 03

0.725 0.301840 0.300244 1.595654e− 03 0.299581 2.259580e− 03

0.825 0.293994 0.292873 1.120910e− 03 0.295379 1.384505e− 03

0.925 0.286011 0.285460 5.507815e− 04 0.293618 7.606433e− 03

L∞ Error 2.087995e− 03 9.719003e− 03

L2 Error 1.522960e− 03 5.724693e− 03

Figure 2. Comparison between the exact and computed solutions Φ(x, t) in the 3-
dimensional graph, using the Sine–Cosine wavelets method, when ℓ∗ = κ = 2.
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Figure 3. Comparison between the exact and computed solutions Ψ(x, t) in the 3-
dimensional graph, using the Sine–Cosine wavelets method, when ℓ∗ = κ = 2.

Figure 4. L2 and L∞ Errors for Φ(x, t) and Ψ(x, t) with different space levels, using
the Sine–Cosine wavelets method, when ℓ∗ = κ = 1.
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Figure 5. L2 and L∞ Errors for Φ(x, t) and Ψ(x, t) at different time levels, using the
Sine–Cosine wavelets method, when ℓ∗ = κ = 1.

Figure 6. L2 and L∞ Errors for Φ(x, t) and Ψ(x, t) with different space levels, using
the Sine–Cosine wavelets method, when ℓ∗ = κ = 2.

Figure 7. L2 and L∞ Errors for Φ(x, t) and Ψ(x, t) at different time levels, using the
Sine–Cosine wavelets method, when ℓ∗ = κ = 2.

CPU time consumption in Matlab for the SCW method is 123.097848 and for the HW method is
542.811835 seconds. These computational results show that our proposed method (SCW) is effective and
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accurate in comparison with HW. Also, the SCW method is superior to the HW method due to the smaller
CPU time.

5. Conclusion

In conclusion, in this paper, a numerical method for solving the nonlinear Belousov-Zhabotinsky reaction
system was presented. As shown in the paper, the method is based upon hybrid function approximations;
the time derivative was discretized by the finite difference method, and the spatial discretization was made
by Sine–Cosine wavelets. The shown numerical results confirmed the accuracy of the method, and the
plotted graphs confirmed the reliability of the applied methods. We also, compared this method with
the Haar wavelet method to show the effectiveness of the Sine–Cosine wavelets method. The results
of this comparison also confirm the accuracy of the method. Compared to the execution time of the
program, the Sine–Cosine wavelets method has a better speed with low storage space. On the other hand,
the operational matrix based on Sine–Cosine wavelets has a large number of zero components, which
ensures good system performance and provides acceptable accuracy even with fewer collocation points.
The methodology reported in this paper can be extended to solve other real-life problems. Due to the
importance of the type of reaction diffusion equation in chemistry and the several physical phenomena, in
future research, to improve the approximation to exact solution, new basis functions, and new numerical
methods can be used; especially the focus will be on fractional order diffusion models.
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