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EVACUATION PLANNING PROBLEMS ON UNIFORM PATH

LENGTH NETWORK WITH PRIORITIZED DESTINATIONS

P. P. BHANDARI1, S. R. KHADKA2∗, §

Abstract. Optimization models for evacuation with capability of holding evacuees at
intermediate places are of particular interest when all the evacuees cannot be sent to
the safe destination. We study the maximum flow evacuation planning problem that
aims to lexicographically maximize the evacuees entering a set of capacitated terminals
with respect to a given prioritization. We propose a polynomial time algorithm for the
problem modeled on uniform path length (UPL) network. We also extend the solution
idea to solve quickest flow evacuation planning problem that lexicographically minimizes
the time required to fulfill the demands of evacuees at such terminals. Moreover, we
consider an earliest arrival version of the problem with sufficient vertex capacities, and
propose a polynomial time algorithm for uniform path length two terminal series parallel
(UPL-TTSP) network.

Keywords: TTSP network, Uniform path length network, Lexicographically maximum
flows, Evacuation planning problem

AMS Subject Classification: 90B06, 90B20

1. Introduction

The transshipment of flow over a network from one vertex to another, which is called
the network flow problem, has a wide range of real-world applications. The transshipment
of evacuees over a network modeled as an evacuation planning problem allows evacuees to
leave the source vertex, from where they will be transshipped via intermediate ones, and
reach the sink vertex, the safe one. In many evacuation scenarios, there may be situations
in which one may send a maximum number of evacuees even to the intermediate vertices,
which are relatively safe and can hold a fixed amount of evacuees, at least for temporary
purposes. Such intermediate vertices are prioritized and are constrained to fixed capacities.
The prioritization depends on various factors, for example, facilities, distance from the

1 Department of Science and Humanities, Khwopa Engineering College, Bhaktapur, Nepal.
e-mail: phanindra.maths@gmail.com; ORCID: https://orcid.org/0000-0001-6496-6873.

2 Central Department of Mathematics, Tribhuvan University, Kritipur, Nepal.
e-mail: shree.khadka@cdmath.tu.edu.np; ORCID: https://orcid.org/0000-0001-8581-8634.

∗ Corresponding author.
§ Manuscript received: August 03, 2023; accepted: December 29, 2023.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.2; © Işık University, Depart-
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source vertex, holding capacities at the vertices, etc. The problem modeling the later
situation is known as the lexicographic evacuation planning problem or the evacuation
planning problem with prioritized destinations.

The dynamic version of maximum flow evacuation planning problem attempts to send a
maximum number of evacuees from risk zone (source) to the safe destination (sink) within
a given time horizon [13]. Many dynamic network flow problems have been investigated
in the context of evacuation planning problems since then; see, e.g., [9, 10, 12, 17, 16, 22,
28, 29]. A problem closely related to a maximum dynamic flow problem is quickest flow
problem which sends a given units of flow from the source to the sink in minimum possible
time. For models and solutions, see [11], [19] and [23]. Problem that attempts to send a
maximum number of evacuees from the source to the sink as earliest as possible within a
given time horizon is earliest arrival flow problem [1, 14, 18, 26, 30, 32].

Authors in [6] studied the maximum flow evacuation planning problem modeled with
relaxed flow conservation constraint that allows evacuees to be held at temporary shelters
of sufficient capacities at intermediate vertices. Lexicographic maximum flow problem
with multiple sources and multiple sinks of given priorities and sufficient sink capacities
has been studied as an extension of maximum flow problem and showed that this problem
can be solved in polynomial time in [24, 25, 26]. Authors in [18, 19] studied lexicographic
maximum dynamic flows and developed a polynomial time algorithm based on tempo-
rally repeated flows. The problem that computes a feasible dynamic flow maximizing the
amount of flow entering a set of terminals (sink and specified intermediate vertices) lex-
icographically with respect to a given prioritization and given vertex capacities has been
considered in [9] (see also [4]). The authors proposed a polynomial time algorithm for the
static version of the problem and a pseudo-polynomial time algorithm for the dynamic
case. They also showed that the dynamic version of the problem can be solved polyno-
mially, if vertex capacities are sufficient. The problem for sufficient vertex capacities has
also been considered in [27] at which prioritization is made with respect to distance only.
The problem with contraflow approach has been studied in [7] by considering a general
multinetwork with fixed vertex capacities. The earliest arrival flow problem in network
with multiple sinks has been studied in [31] where all arc transit time are zero. For this
setting, they have given a complete characterization of the class of networks that always
allow for earliest arrival flows. An earliest arrival flow problem, maximizing the ratios
of flow values to capacities on the sinks lexicographically instead of strictly obeying the
capacity constraints on them, has been studied in [20]. A pseudo-polynomial and a poly-
nomial time algorithms, for solving the problem with arbitrary and zero transit time for
every arc, respectively, have also been proposed.

Polynomial and pseudo-polynomial time algorithms for static and dynamic cases, re-
spectively, of evacuation planning problem with prioritized and capacity restricted desti-
nations have been investigated in the literature. However, the polynomial time algorithm
for the problem in the dynamic case over general network does not exist so far. This paper
proposes such an algorithm for the problem over network with uniform path lengths. We
also show that this algorithm can be applied to solve the quickest version of the problem
for UPL network and the earliest version of the problem with sufficient vertex capacities
for UPL-TTSP network.

Mathematical formulation of lexicographically maximum dynamic flow (LexMDF) prob-
lem [9] is presented in Section 2 and an efficient solution procedure for UPL network is
proposed in Section 3. The solution procedure is applied to solve lexicographically earliest
arrival flow (LexEAF) problem with sufficient vertex capacities for UPL-TTSP network
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in Section 4. The lexicographically quickest flow (LexQF) problem modeled on UPL net-
work is considered and its solution is proposed in Section 5. Section 6 concludes the paper
with future research directions. Preliminary versions of these results were presented in the
proceedings papers [5] and [8], and also included in PhD thesis [3].

2. Model discussion

We consider a directed graph G = (V,A) without containing parallel arcs and loops to
define evacuation planning problem. Here, V with n := |V | and A with m := |A| denote
the vertex set and arc set, respectively, which are assumed to be finite. Vertices and arcs,
in our case, represent the intersections of routes and the route segments joining these
intersections, respectively. Two specified vertices s and d denote the source and the sink,
respectively. We assume a terminal set S ⊂ V with S := {v1, . . . , vr} prioritized from
higher to lower priority, i.e., v1 ≻ · · · ≻ vr, to be given, where v1 = d. The arc capacity
function u : A → N0 := N ∪ {0} bounds the number of flow units on each arc at each
time step from above. Similarly, the vertex capacity function k : S → N0 bounds the total
number of flow units, which may be held in each vertices v ∈ S. We set k(d) = ∞ and
k(v) to be finite for all v ∈ S \ {d}. Further, the transit time function τ : A → N specifies
the time needed by a flow unit to traverse an arc. We assume a time horizon T ∈ N to
be given and treat time parameter in a discrete manner, i.e., T := {0, 1, . . . , T}. With
these setup for graph G, i.e., for network N = (G, u, k, τ, s, d, T ), we give the network flow
model for the evacuation planning problem in the following.

The non-negative flow variables f(a, t), evacuees on the road segment at time t, defined
by f : A× T → N0 specifying the flow over time in the network N is the number of flow
units entering arc a at time step t ∈ T . The number of flow units entering arc a at time
step t is assumed to be bounded by the capacity of an arc, i.e., f(a, t) satisfies the capacity
constraints 0 ≤ f(a, t) ≤ u(a) for all a ∈ A and for all t ∈ T . Moreover, f(a, t) has to be
equal to zero for all t > T − τ(a) and for all a ∈ A. The excess flow at vertex v ∈ V at
time t ∈ T is defined as

0 ≤ exf (v, t) :=
∑

a∈δ−(v)

t−τ(a)∑
ξ=0

f(a, ξ)−
∑

a∈δ+(v)

t∑
ξ=0

f(a, ξ). (1)

Further, we need to ensure that

exf (v, T ) ≤ k(v) for all v ∈ S. (2)

Consequently, the total flow of evacuees leaving the source s equals the total flow of the
evacuees held at vertices v ∈ S over the time horizon T , i.e.,∑

a∈δ+(s)

T∑
ξ=0

f(a, ξ)−
∑

a∈δ−(s)

T∑
ξ=0

f(a, ξ) =
∑
v∈S

exf (v, T ). (3)

The objective function of the maximum flow evacuation planning problem asks to lexico-
graphically maximize the vector (exf (v1, T ), . . . , exf (vr, T ))

⊤ such that exf (vi, T ) ≤ k(vi)
for i = 1, . . . , r. The flow problem on network N with this objective is called lexicographic
maximum dynamic flow (LexMDF) problem. Dynamic flow problem that aims to fulfill
the objective of LexMDF problem at each time t ∈ T is lexicographic earliest arrival flow
(LexEAF) problem (cf. Section 4). For given set S of prioritized vertices with fixed de-
mand at each v ∈ S, the dynamic flow problem that aims to lexicographically minimize
the time required to fulfill these demands is lexicographic quickest flow (LexQF) problem
(cf. Section 5).
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3. Solution to LexMDF problem on UPL network

Here, the goal is to solve the LexMDF problem on N in polynomial time using tem-
porally repeated flows (TRFs). For general network, flow computed by TRFs for some
vertices vi ∈ S as the sink may exceed their capacities or may not induce optimal flows for
these vertices due to non-uniqueness of path decomposition [9]. An ordinary TRF does
not yield a maximum flow even for two terminal series parallel network [4]. These hurdles
occur due to fixed vertex capacities at vertices. We fix this hurdle for the problem on a
uniform path length (UPL) network N . A two terminal network N with source vertex s is
a UPL network if, for any vertex v ∈ N , all possible directed s− v paths on N have equal
distances. We consider the distance of the path with respect to its transit time. That is,
a network N is a uniform path length network for which the sum of the transit times on
arcs on any possible path from the source s to any vertex v ∈ N is equal, see Figure 1.

s

3,3
p

5,2 q

2,1

4,1

2,2

d

(∞)

(6)

(10)

Figure 1. A uniform path length (UPL) network N with source vertex s.
First and second numbers next to each arc denote arc capacity and transit
time, respectively.

The main idea of the solution procedure for the LexMDF problem on N is to find all
necessary s − vi paths at all possible time steps t ∈ T with corresponding flow values
and send as many units of flow as possible along paths as long as possible. Such paths
can be found by decomposing the flow computed by solving Lexicographic Minimum Cost
Circulation (LexMCC) problem on N , iteratively.

Any minimum cost circulation (MCC) algorithm can be applied to solve LexMCC prob-
lem on N repeatedly for each vi ∈ S as a sink in given priority order on corresponding
residual network of N with additional arc (vi, s) with capacity equal to k(vi) and transit
time −(T + 1). Also, the transit time τ(a) for all a ∈ A is switched into the cost c(a).
This yields a set Γvi of all s− vi paths, denoted as Γvi , that could be temporally repeated
from time step zero for each vi ∈ S. It is noteworthy to mention that path γvi is a chain
of vertices and arcs in the network N starting at the source s and terminating at vertex
vi. To each path γvi , we associate the following information: (a) f(γvi) – the flow value
that can be sent along γvi at once, (b) τ(γvi) – the time required to travel γvi by a flow
unit, (c) It(γvi) – the time step at which the flow along γvi starts to get repeated and (d)
Ft(γvi) – the time step after which the flow along γvi stops to get repeated. The procedure
for solving LexMCC problem is termed as LexMCC Algorithm, hereafter.

Lemma 3.1. Given a UPL network N with prioritized set of vertices S ⊂ V . Then
LexMCC problem can be solved in O(n×MCC(n,m)) times on N where MCC(n,m) is
the time complexity for a single MCF problem.

Proof. Lemma follows directly from the fact that |S| < |V | = n. □

3.1. Construction of extended set ΓE
vi. Consider a UPL networkN = (G, u, k, τ, s, d, T ).

Any temporally repeated flow on N generated by Γvi , the set of s− vi paths obtained by
applying LexMCC algorithm, has limitation. The limitation is that there may exist s− vi
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path on N , say γvi such that γvi /∈ Γvi , for vi ∈ S and i > 1, on the residual network of
N for an interval of time with transit time τ(γvi) < T +1− It(γvi) along which some flow

units could be sent at vi. This situation occurs when any path γvj ∈
⋃i−1

j=1 Γvj is free to

carry flow units at vi at time It(γvi) > 0, due to time limit or capacity at vertex vj for some
j < i, before the time T + 1− τγvi . In this situation, It(γvi) = Ft(γvj ) + 1−N(γvj ) where

N(γvj ) is the actual number of times that the flow along γvj is repeated. The number
of actual repetitions N(γvi) along any path vi depends upon vertex capacity k(vi) and is
given by the Path Flows Repetition (PFR) technique (cf. Subsection 3.2). Thus, applying
lexMCC Algorithm at time zero only may not be enough for the optimal solution at all
possible vertices using the TRF approach. Thus, it is required to find an extended set ΓE

vi
that contains all possible s − vi paths, say γvi , which could be started to repeat at time
It(γvi) ≥ 0.

An extended set of paths ΓE
vi is given by

ΓE
vi :=

{
Γvi for i = 1

Γvi ∪ Γ
′
vi for i > 1

where Γ
′
vi is the set of all s − vi paths that are free to carry flow units at vi at time

intervals I1(γvi−1) = [It(γvi−1), Ft(γvi−1)−N(γvi−1)] and I2(γvi−1) = [Ft(γvi−1)+1, T ] with

respect to each path γvi−1 ∈ ΓE
vi−1

containing vi. These two intervals are the complement
of the interval of time period in which the path γvi−1 is engaged in sending flow units at
vertex vi−1, given by [Ft(γvi−1)+1−N(γvi−1), Ft(γvi−1)], on the time interval [It(γvi−1), T ].
First interval, I1(γvi−1) is discarded if Ft(γvi−1)−N(γvi−1) < It(γvi−1), and second interval
I2(γvi−1) is discarded if its own immediate parent interval is I1(γvi−2). If no interval is
discarded, they are merged into a single interval: [It(γvi−1), T ] if N(γvi−1) = 0, and taken
as two different intervals if N(γvi−1) > 0. It is to be noted that I1(γv1) = ∅ ∀ γv1 ∈ Γv1 .

Residual network of N after solving LexMCC problem on it, say NΓvr
, is renovated with

respect to the path γvi−1 for corresponding free time intervals I1 and I2, separately. Then

LexMCC Algorithm is applied on it to find the set Γ
′
vi . During renovation, the capacity

of each arc a ∈ NΓvr
is increased by f(γvi−1) if the arc a = (v, w) also belongs to path

γvi−1 ; and the capacity of the arc (w, v) ∈ NΓvr
is decreased by the same value f(γvi−1).

That is,

u(a) :=

{
u(a) + f(γvi−1) for a = (v, w) ∈ NΓvr

such that a = (v, w) ∈ γvi−1

u(a)− f(γvi−1) for a = (w, v) ∈ NΓvr
such that a = (v, w) ∈ γvi−1 .

The LexMCC Algorithm is applied only after renovation of residual network NΓvr
with

respect to all paths γvi−1 ∈ ΓE
vi−1

, containing vi, that are free at the same interval of

time to significantly reduce its overall computational complexity (number of applications
of MCC Algorithm). Application of LexMCC Algorithm after such renovation is possible
due to equal transit time of all s− vi paths, i.e., N being a UPL network. While choosing
the second, third, and so on set of paths for renovation, the network that is renovated;
and on which LexMCC Algorithm is applied; with respect to first, second, and so on set
of paths, respectively, is taken. This process is repeated for all γvi−1 ∈ ΓE

vi−1
containing

vi. All the paths γvi−1 not containing vi are also kept in the set Γ
′
vi . Such later paths,

termed non-contributing paths with respect to vi, may contribute to sending flow at some
vertices vp; p = i+ 1, i+ 2, ..., r; nonetheless, they do not contribute to sending flow at vi.

3.2. Path flows repetition (PFR) technique. To compute a lexicographic maximum
dynamic flow on N , it is required to repeat path flows in ΓE

vi respecting capacities k(vi) for
each vi ∈ S. For this, we propose the following Path Flows Repetition (PFR) Technique.
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Contributing paths γvi ∈ ΓE
vi are indexed as γpvi , p = 1, 2, ..., l, in such a way that the

path with highest final time, Ft(γ
p
vi) among the paths γvi ∈ ΓE

vi with highest initial time,

It(γ
p
vi) gets the least vertex exponent p and so on. If two paths γv′i and γv′′i have same final

time, choice of path depends on the priority vertex the paths pass through. For example,
if path γv′i passes through the vertex vi−1 and the path γv′′i passes through the vertex
vi−2 while reaching at vertex vi, we choose the path γv′′i . Any tie after this can be broken
arbitrarily.

The computation of TRF f(γpvi) :=
∑p

q=1(T + 1 − It(γ
q
vi) − τ(γqvi))f(γ

q
vi) for vertex vi

starts with p = 1. If f(γpvi) = k(vi), f(γ
p
vi) is a maximum flow for vi. If f(γpvi) < k(vi),

f(γp+1
vi ) is computed if p + 1 ≤ l, otherwise f(γpvi) is maximum. If k(vi) < f(γpvi), k(vi) is

maximum flow if p = 1 and f(γp−1
vi )+kr(vi) is maximum if p > 1 at the vertex vi. The TRF

is likely to get flow repeated more than once over the time horizon T . If flow repetition

occurs more than once along the path γpvi over T , the time interval T ′ =
[
It(γ

p
vi), T − τγp

vi

]
is halved, and the TRF is computed for time steps in the second half. The computed flow
is then added to f(γp−1

vi ). The total flow is compared to the vertex capacity. Flow in the
first half is also computed and then added if the total flow is less than the vertex capacity.
If the total flow exceeds the vertex capacity, the added flow is discarded. Then the second
half is further halved and the procedure is repeated. Integral time units of time horizon
T is preserved by rounding up or down to the nearest integer during halving the interval.
The procedure is executed if the total flow equals the vertex capacity or if l < p.

A flow with a value greater than the residual vertex capacity kr(vi) may occur along
the path γpvi while sending even at once at the vertex vi. In this situation, the set ΓE

vi

is updated by splitting γpvi into γp
′

vi and γp
′′

vi with flow values kr(vi) and f(γpvi) − kr(vi),
respectively.

Algorithm 1 summarizes the procedure that yields the maximum flow on network N at
each of the possible vertices in given priority order.

Algorithm 1 DT-LexMDF Algorithm for UPL Network

(1) Given a dynamic UPL network N = (G, u, k, τ, s, d, T ), S = {v1, . . . , vr} with
d = v1 ≻ · · · ≻ vr.

(2) Find Γvi ∀ i = 1, 2, . . . , r by solving the LexMCC problem on N with additional
arcs (vi, s) with capacity k(vi) and transit times −(T + 1).

(3) For i = 1, set ΓE
vi = Γvi and apply PFR technique on ΓE

vi . For i > 1, go to step 4.

(4) For each path γvi−1 ∈ ΓE
vi−1

, find the interval [Ft(γvi−1) + 1 − N(γvi−1), Ft(γvi−1)]

and intervals I1 = [It(γvi−1), Ft(γvi−1)−N(γvi−1)] and I2 = [Ft(γvi−1) + 1, T ].
(5) Renovate the network NΓvr

with respect to path γvi−1 for intervals I1 and I2.

(6) Find Γ
′
vi ∀ i = 2, . . . , r by solving the LexMCC problem on renovated NΓvr

as
initial time It(γvi) with additional arcs (vi, s) with capacity k(vi) and transit times
−(T + 1).

(7) Set ΓE
vi = Γvi and update ΓE

vi := ΓE
vi ∪ Γ

′
vi ∀ i = 2, . . . , r.

(8) Apply PFR technique on ΓE
vi .

(9) Obtain dynamic s− vi flow on N .

Example 3.1. Consider the network N in Figure 1 with the terminal set S = {p, q, d}
with d ≻ p ≻ q and time horizon T = 5. Proceed with LexMCC Algorithm on it. Here, the
set of paths ΓE

d = Γd = {γ1d , γ2d , γ3d} where γ1d = (s− q− d : 2, 4, [0, 1]), γ2d ,= (s− q− p− d :
1, 4, [0, 1]) and γ3d ,= (s − p − d : 3, 4, [0, 1]) in each of which the path is followed by f(γd),
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τ(γd), and interval [It(γd), Ft(γd)] , respectively. Likewise, Γp = {(s − q − p : 1, 3, [0, 2])}
and Γq = {(s− q : 1, 2, [0, 3])}. The resulting residual network is depicted in Figure 2(a).

Here, ΓE
d = Γd and maximum dynamic s− d flow in N for T = 5 is of value 12 units.
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Figure 2. (a) The residual network after applying LexMCC Algorithm in
the network in Figure 1. (b) Renovated network of the network in (a) with
respect to γ2d and γ3d . (c) Renovated network of the network in (a) with
respect to γ1d .

Among the paths in ΓE
d , the path γ1d enters, as it is, in Γ

′
p since it is non-contributing

path with respect to p. For γ2d and γ3d, I1 = [0,−1] (discard I1) and I2 = [2, 5]. Renovate
the network in Figure 2(a) for I2 (Figure 2 (b)); and apply LexMCC Algorithm on it to

get Γ
′
p = {(s− p : 3, 3, [2, 2]), (s− q − p : 1, 3, [2, 2])}; and Γ

′
q = ∅.

Thus, ΓE
p = Γp∪Γ

′
p = {(s−q−d : 2, 4, [0, 1]), (s−q−p : 1, 3, [0, 2]), (s−q−p : 1, 3, [2, 2]),

(s− p : 3, 3, [2, 2])}.
To apply PFR technique in ΓE

p , at first, index the contributing paths in ΓE
p as follows.

γ1p = (s− p : 3, 3, [2, 2]) γ2p = (s−q−p : 1, 3, [2, 2]) γ3p = (s−q−p : 1, 3, [0, 2]).

Flow value along γ1p and γ
2
p totals to 4 units, which is less than k(p). Compute the flow

along γ3p also that results in a total flow of 7 units exceeding k(p) . So, the interval [0, 2]

is split into intervals [0, 0] and [1, 2]. Flow value along γ3p for time steps in [1, 2] is of 2
units. Now, total flow sent to p is 6 units, which equals to k(p) and is optimal.

Among the paths in ΓE
p , the path γ1p enters, as it is, in Γ

′
q since it is a non-contributing

path with respect to q.
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Figure 3. (a) Residual network after applying MCC Algorithm on net-
work in Figure 2(c). (b) The renovated network of the network in (a) with
respect to γ2p . (c) Residual network after applying MCC Algorithm on net-
work in (b).

For γ1d, I1 = [0,−1] (discard I1) and I2 = [2, 5]. Renovate the network in Figure 2(a)
with respect to γ1d for I2 (Figure 2(c)) and apply MCC Algorithm on it with q as sink, to
get the path (s− q : 2, 2, [2, 3]). The residual network is depicted in Figure 3(a).
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For γ2p , I1 = [2, 1] (discard I1) and I2 = [3, 5]. Renovate the network in Figure 3(a) for
I2 (Figure 3(b)) and apply MCC Algorithm on it with q as sink, to get the path (s − q :
1, 2, [3, 3]). The residual network is depicted in Figure 3(c).
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Figure 4. (a) The renovated network of the network in Figure 3(c) with
respect to γ3p . (b) The residual network after applying MCC Algorithm on
the network in (a).

For γ3p , I1 = [0, 0] and I2 = [3, 5]. Renovate the network in Figure 3(c) with respect to

γ3p for both intervals [0, 0] and [3, 5] (Figure 4(a)), and apply MCC Algorithm on it with
q as sink, to get paths (s − q : 1, 2, [3, 3]) and (s − q : 1, 2, [0, 0]). The residual network is
depicted in Figure 4(b).

Thus, ΓE
q = Γq ∪ Γ

′
q = {(s− q : 1, 2, [0, 3]), (s− q : 2, 2, [2, 3]), (s− p : 3, 3, [2, 2]),

(s− q : 1, 2, [3, 3]), (s− q : 1, 2, [0, 0]), (s− q : 1, 2, [3, 3])}
To apply PFR technique in ΓE

q , at first, index the contributing paths in ΓE
p as follows;

along which the optimal dynamic flow is of value 8 units.

γ1q = (s− q : 1, 2, [3, 3])

γ2q = (s− q : 1, 2, [3, 3])

γ3q = (s− q : 1, 2, [3, 3])

γ4q = (s− q : 1, 2, [0, 3])

γ5q = (s− q : 1, 2, [0, 0])

Thus, LexMDF in N with terminal set {p, q, d} with d ≻ p ≻ q with time horizon T = 5
is (12, 6, 8).

Lemma 3.2. In Algorithm 1, LexMCC problem is solved at most 2n times for each vi ∈ S.

Proof. At first we prove that the application of PFR technique on ΓE
vi , for each vi ∈ S,

creates at most 2 new free time intervals for next prioritized vertex vi+1. For, let TRF fγp
vi

be any optimal flow for vi on N obtained by the application of PFR on ΓE
vi . Also, let γ

p
vi

be the path that exists in the interval [It(γvi), Ft(γvi)]. Here, if TRF fγp
vi

is obtained when

all the paths that exist to carry flow at vi are repeated temporally for all time steps in
the interval, no new free time interval for vi+1 is formed. If all of such paths are repeated
for equal number of times less than the maximum possible time steps in the interval, only
one new free time interval is formed. And, if any one of such paths needs to be split into
two paths and repeated one of them for some less or more number of times than other,
one extra new free time interval is formed for next prioritized vertex vi+1.

For i = 1, the MCC Algorithm is applied only once and twice for i = 2; once with
initial time as zero and next with initial time as Ft(γv1), being sufficient capacity at
v1 = d. However, for i > 2, the number of times for the application of the algorithm is
increased by at most 2 in each of at most n iterations, due to above argument and since it
is applied only after the renovation of NΓvr

with respect to all paths γvi−1 ∈ ΓE
vi−1

that are

free at the same interval of time. Therefore, to compute the extended set ΓE
vi , LexMCC

problem is solved at most 2n times for each vi ∈ S. □

Lemma 3.3. Renovation of the residual network NΓvr
is well defined for each iteration.
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Proof. The residual network NΓvr
is well defined by its definition. It is renovated with

respect to each path γvi−1 ∈ ΓE
vi−1

that exists in the same interval of time by taking any
one of such paths at the first. While choosing the second, third, and so on paths, the
network which is renovated with respect to first, second, and so on paths, respectively,
is considered for renovation. During renovation with respect to path γvi−1 , the capacity
of each arc a = (v, w) ∈ NΓvr

is increased by f(γvi−1) if the arc a also belongs to γvi−1 ,
and the capacity of the arc (w, v) ∈ NΓvr

is decreased by the same value f(γvi−1). The
renovation of the network is done only for those intervals of time which were never been
used by the path γvi−1 during temporal repetition. Thus, the renovation of the residual
network NΓvr

is well defined for each iteration. □

Lemma 3.4. For any vi ∈ S, the number of paths in extended set ΓE
vi is bounded above

by 2nm.

Proof. By lemma 3.2, LexMCC problem is solved at most 2n times for each vi ∈ S. And,
since in each iteration the flow value on at least one arc is decreased to zero, at most m
minimum cost flow paths from the source s to the vertex vi do exist for each iteration.
Therefore, the number of paths in ΓE

vi , for vi ∈ S, does not exceed 2nm. □

Lemma 3.5. The residual network NΓvr
is renovated in time O(nm) for each vi ∈ S.

Proof. For each vertex vi ∈ S, the residual network NΓvr
is renovated with respect to

each path γvi−1 ∈ ΓE
vi−1

, separately. By Lemma 3.4, there are at most 2nm paths in ΓE
vi .

Therefore, the number of iterations for renovation of network NΓvr
for a vertex vi ∈ S is

2nm. This concludes that the residual network NΓvr
can be renovated in time O(nm) for

each vi ∈ S. □

Lemma 3.6. The PFR technique executes in time O(nm+ logT ).

Proof. The extended set ΓE
vi has at most 2nm paths, by Lemma 3.4. Therefore, TRF

fγp
vi

is computed on ΓE
vi and compared to the vertex capacity k(vi) at most 2nm times.

Additionally, while the computed TRF fγp
vi

exceeds the vertex capacity at vi, the interval

T ′ = [It(γ
p
vi), Ft(γ

p
vi)] is halved, and the TRF is computed in one of the half intervals.

This process needs repetition until the length of the halved interval is unity in the worst
case. Therefore, this process takes O(logT ) time to execute. This concludes that the PFR
technique executes in time O(nm+ logT ). □

Theorem 3.1. Given a UPL network N = (G, u, k, τ, s, d, T ) and terminal set S =
{v1, . . . , vr} ⊂ V with d = v1 ≻ · · · ≻ vr. Then, Algorithm 1 yields an optimal solu-
tion to the LexMDF problem on N .

Proof. As the vertex v1(= d) has sufficient storage capacity, applying Path Flows Rep-
etition technique for this vertex as the sink is equivalent to pushing the flow units with
value f(γv1) along each path γv1 ∈ Γv1 for each time step t ∈

{
0, 1, . . . , T − τγv1

}
from the

source s to the sink d. This temporally repeated flow for sink d induces a dynamic s− d
flow, which is feasible and optimal [13].

For each i > 1, the extended set ΓE
vi contains all minimum cost s− vi paths that exist

at any time step t ∈ {0, 1, . . . , T} on residual network of N with respect to the optimal
flow fγp

vi−1
at previous immediate prioritized vertex vi−1. Thus, the TRF fγp

vi
obtained by

applying PFR technique on ΓE
vi is feasible. The technique pushes flows of corresponding

values along each path as long as possible unless k(vi) is satisfied. Moreover, the flow is
pushed along the paths in ΓE

vi with the strategy of saving unused paths in ΓE
vi for the use
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of next less prioritized vertex vi+1 without violating the optimality at vi. This is assured
by selecting the path with highest final time, Ft(γ

p
vi) among the paths γvi ∈ ΓE

vi with

highest initial time, It(γ
p
vi) at the first, and so on. Thus, TRF fγp

vi
is optimal on N for

each vi ∈ S. □

Theorem 3.2. Algorithm 1 runs in strongly polynomial time.

Proof. Due to Lemmas 3.1 and 3.2, the LexMCC problem can be solved in time O(n ×
MCF (n,m)) for at most 2n times for each of at most n vertices vi ∈ S. Due to Lemma 3.5,
the residual network NΓvr

is renovated in time O(nm) for each vi ∈ S. The PFR technique
can be performed in O(nm + logT ) time for each vertex vi ∈ S, by Lemma 3.6. If one
wishes to apply the MCF algorithm of [15], LexMCC Algorithm has a complexity of order
O(n2m3 logn). Thus, Algorithm 1 runs in O(n3 (n2m3 logn) + n(nm) + n(nm + logT )).
Equivalently, the algorithm has time complexity of order O(n5m3 logn + n2m + n logT )
which is strongly polynomial. □

4. Lexicographic earliest arrival flow problem on UPL-TTSP network

A DT-LexMDF problem that fulfills its objective at each time step t ∈ T is a discrete
time lexicographic earliest arrival flow (DT-LexEAF) problem. That is, the objective of a
DT-LexEAF evacuation planning problem is to send a maximum number of evacuees at
the earliest possible time from risk zone to the safety zone, together with relatively safe
prioritized intermediate spots within given time horizon T in given priority order.

It is clear that every earliest arrival flow is a maximum dynamic flow for given time
horizon. However, the converse is not always true for general network. In this section, we
propose a solution procedure that computes a lexicographic maximum dynamic flow on a
typical network and claim that this flow schedule has an earliest arrival property.

Consider a UPL-TTSP network N = (G, u, k, τ, T ) with terminal set S ⊂ V as in the
case of LexMDF problem in Section 3. Here, the vertex v1 always gets sufficient holding
capacity, whereas vertices vi for i ̸= 1, get either zero or sufficient capacities. That is,
not all vertices in V have holding capacities on them. With these settings, the LexEAF
problem on N aims to maximize the flow units sent to the terminals in S in given priority
order at each time step t ∈ T .

The solution strategy to DT-LexEAF problem on UPL-TTSP network N is similar to
that of EAF problem on TTSP network given in [30]. The strategy is applied to solve
the LexMCC problem on N repeatedly for each vi ∈ S with additional arc (vi, s) with
capacity equal to k(vi) and transit time −(T +1). This yields a set Γvi of all s− vi paths
that could be temporally repeated for each vi ∈ S. However, dynamic flow generated by
temporally repeated flow along the paths obtained by solving this problem may not be
optimal on N at all possible vertices. This hurdle can be overcome by the construction
of extended set of paths ΓE

vi as in the case of DT-LexMDF problem in Section 3 for UPL
network. Here, k(vi) being sufficient, there does not exist the free time interval I1 which
significantly reduces computational complexity of the LexMCC problem. The set ΓE

vi
induces an optimal dynamic flow for each vi on N .

The exact solution procedure that yields the discrete time maximum dynamic flow at
each vertices vi ∈ S is given in Algorithm 2.

Theorem 4.1. Algorithm 2 yields an optimal solution to DT-LexEAF problem on UPL-
TTSP network N = (G, u, k, τ, T ) in strongly polynomial time.

Proof. The algorithm pushes flow of value f(γvi) along each path on ΓE
vi for each possible

time step t ∈ {0, 1, 2, ..., T−τγvi} from the source vertex s to each of the destination vertex
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Algorithm 2 DT-LexEAF Algorithm for UPL-TTSP Network

(1) Given a UPL-TTSP network N = (G, u, k, τ, s, d, T ), S = {v1, . . . , vr} with d =
v1 ≻ · · · ≻ vr.

(2) Solve LexMCC problem on N with additional arcs (vi, s) with capacity k(vi) and
transit times −(T + 1) using algorithm in [2].

(3) Construct extended set ΓE
vi as in Algorithm 1.

(4) Push as much flow as possible along each path in ΓE
vi as long as possible within T .

(5) Obtain dynamic s− vi flow on N .

vi ∈ S in given priority order. Therefore, a maximum flow at each vi ∈ S is obtained at
the termination of algorithm, [13]. Moreover, the network N being a two terminal series
parallel in structure, this flow has an earliest arrival property [30].

The extended set of paths ΓE
vi in step 3 of algorithm is constructed by applying the

MCC Algorithm in [2] with time complexity of order O(mn+mlogm) at most nm times
for each vertex vi ∈ S. Step 4 is executed in constant time for each of at most n vertices
vi ∈ V . Therefore, Algorithm 2 yields a lexicographic earliest arrival flow on N in strongly
polynomial time. □

5. Lexicographic quickest flow problem on UPL network

Consider the network N , as in previous sections, with fixed vertex storage capacities.
Let us impose the condition for these capacities to be fulfilled as an upper bound as well as a
lower bound by the total flow value that is supposed to be held at that vertex. Then vertex
capacities can be taken as demands, say, µ(v) at v for v ∈ V \{s}. This consideration allows
to see a dynamic flow problem on N with demands at vertices and asking for a minimum
time to satisfy these demands in given priority order. The application of the problem to
evacuation planning is obvious when evacuees at the source are known in advance and one
wishes to send them to different prioritized safety places with fixed holding capacities.

The quickest transshipment problem that aims to send fixed amount of flow out of
each source and into each sink in the minimum overall time is studied and proposed a
polynomial-time algorithm in [19]. A low-order polynomial time algorithm is proposed in
[21] for a UPL network with single sink such that for each vertex v the minimum v − d
cut can be found from arcs incident to d whose tails are reachable from v. We study the
quickest flow problem for UPL networks with different flavors. In the following, we define
this problem formally.

Given a network N = (G, u, τ, µ) with terminal set S ⊂ V with S := {v1, . . . , vr}
prioritized from higher to lower priority, i.e., d = v1 ≻ · · · ≻ vr such that

∑
i µ(vi) = −µ(s)

where µ : V → N0 is the demand at the vertex v ∈ V . The negative demand at the source
s is termed as supply. Moreover, we restrict the arc capacity u(a) for each arc a ∈ A to be
strictly positive and consider the network N in such a way that the source vertex s is the
mother vertex for all the vertices vi ∈ S. That is, every vertex v ∈ V is reachable from
s. Then the lexicographic quickest flow (LexQF) problem finds a feasible dynamic flow fvi
of given value µ(vi) on network N from the source s to the vertex vi, in given priority
order, which sends the given µ(vi) units of flow from s to vi in minimum number T (µ(vi))
of time units. Moreover, the excess exf (vi, T (µ(vi))) at each vi ∈ S given by equation (1)
should be equal to the demand at µ(vi). That is,

exf (vi, T (µ(vi))) = µ(vi) ∀ vi ∈ S. (4)
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With these setup, the objective function of LexQF problem asks to lexicographically min-
imize the vector (T (µ(v1)), T (µ(v2)), . . . , T (µ(vr))

⊤.
Thus, the LexQF problem (that minimizes individual time horizon in priority order)

is quite different from the quickest transshipment problem (that minimizes overall time
horizons). However, if priority is not a matter for terminal vertices and the objective is to
minimize the overall time horizon, the problem reduces to quickest transshipment problem
with single source and multiple sinks and can be solved using algorithm in [19]. Moreover,
a low-order polynomial algorithm in [21] can be applied to solve the problem if a UPL
network is restricted to being one such that its inverse is fully connected.

5.1. Existence of lexicographic quickest flow. The existence of lexicographic quickest
flow on a UPL network N is obvious, if ΓE

vi (cf. Section 3) is not empty for each vi ∈ S.
There always exists at least one path from the source s to the vertex vi in the extended set
of paths ΓE

vi with corresponding positive flow value since every vertex vi ∈ S is reachable
from s, and u(a) is positive for each a ∈ A. This is ensured by the fact that during the
construction of extended set ΓE

vi the renovation of the network NΓvr
with respect to at

least one path γvi−1 ∈ ΓE
vi−1

makes the renovated network free to exist at least one path

from s to vi. Thus, Γ
E
vi ̸= ϕ for each vi ∈ S.

5.2. Solution for lexicographic quickest flow problem. Here we discuss the solution
procedure that solves lexicographic quickest flow problem for a UPL network N . The
procedure is similar to the binary search method for solving a quickest flow problem in
[11]. In this method, for a strictly increasing sequence of integral time points {Tn}, an
initial interval I0 = [Tl, Tu] such that f(Tl) < µ(vi) < f(Tu), is taken. Here, f(Tl) and
f(Tu) denote the maximum dynamic flow values for time horizons Tl and Tu, respectively.
Clearly, Tl ≤ T (µ(vi)) ≤ Tu where T (µ(vi)) is the minimum time that is required for flow
units of value µ(vi) to send from the source to the vertex vi. Then the mid-point, say, Tm,
of the interval I0 is computed, and f(Tm) is checked for whether it is equal to, less than,
or greater than µ(vi). Depending upon this value, it is decided whether the procedure
ends, or should work on the next interval on left or right of the mid-point Tm.

Since we are interested in finding such minimum time Tm for each vertices vi ∈ S in a
priority order, the maximum flow computation technique developed in Section 3 is adopted
as a subroutine of the procedure with necessary modifications. During the procedure, the
major step is to construct extended set of paths ΓE

vi . Here, the free time intervals I1 and
I2, if exist, with respect to each path γvi−1 ∈ Γvi−1 are to be calculated in each of new
selections of mid-point time Tm before renovation of the network NΓvr

. Now, the following
cases arise: If Ft(γvi−1) < Tm, replace T by Tm in I2. If Ft(γvi−1)−N < Tm < Ft(γvi−1)+1,
discard I2. If It(γvi−1) < Tm < Ft(γvi−1) + 1−N discard I2 and replace Ft(γvi−1)−N by
Tm in I1. And, if It(γvi−1) > Tm, discard both I1 and I2. It is to be noted that Γvj ,∀ j > i,
are discarded until we find Γvi that sends all flow µ(vi) in time horizon Tm such that it is
minimum. We proceed with this procedure for each vertex vi ∈ S in given priority order.

Due to the nature of construction of a maximum flow (cf. Algorithm 1), maximum flow
of value µ(vi) obtained for time horizon Tm, could also be possible to find in lesser time
horizon T ′

m for some vertices vi. That is, it cannot be guaranteed that the time Tm at
which dynamic flow of value µ(vi) can be sent to vi is the minimum time to attain this
flow value. One should check whether the same flow value is attained for some lesser time.
Thus, for f(Tm) = µ(vi), Tm is optimal if and only if f(Tm − 1) < µ(vi) for all vi ∈ S as
suggested in [11] for s− d quickest flow problem.

During the procedure, flow computed by the application of LexMDF Algorithm as a
subroutine is optimal due to Theorem 3.1. Also, this algorithm runs in strongly polynomial
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time due to Theorem 3.2. The next major step in the procedure is to perform a binary
search over time horizon repeatedly. This can be done in strongly polynomial time. Thus,
from above algorithmic discussion we can assert that LexQF problem on UPL network N
can be solved optimally in strongly polynomial time.

6. Conclusions

Evacuation models that aim to keep maximum evacuees in intermediate places besides
maximum evacuees in the specified safe destination are of particular interest to the evacu-
ators. Intermediate places could have limited capacities and be prioritized with respect to
facilities at shelter, distance from source, holding capacities, etc. In this paper, we studied
the maximum version of the problem that aims to lexicographically maximize the evacuees
entering a set of capacitated terminals with respect to a given prioritization. We proposed
an efficient algorithm, based on temporally repeated flows, for the problem modeled on
UPL network. We also applied this solution as a subroutine to solve LexQF problem.
Moreover, we studied LexEAF problem with sufficient vertex capacities, and proposed an
efficient algorithm for UPL-TTSP network. The search for efficient solutions for the prob-
lems with more general network settings would be future research work. Multi-commodity
flow problems with vertex capacities would also be interesting for researchers.
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