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A NEW VARIANT OF KIKKAWA-SUZUKI TYPE FIXED POINT

THEOREM FOR MULTI-VALUED MAPPINGS WITH STABILITY

ANALYSIS AND APPLICATION TO VOLTERRA INTEGRAL

INCLUSION

MD. S. ZAMAN1∗, N. GOSWAMI1, §

Abstract. This paper aims to present a new variant of Kikkawa-Suzuki type common
fixed point theorem for multi-valued mappings in the framework of partial metric space.
This result is followed by the establishment of a Reich type common fixed point theorem
applicable to multi-valued mappings. Some illustrative examples are provided to demon-
strate our findings. Moreover, we analyse the data dependence and stability of fixed
point sets for such mappings. To show the practical significance of the derived results,
an application is shown to a system of Volterra integral inclusions.
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1. Introduction

Fixed point theory deals with fundamental results in nonlinear analysis that establish
the existence of points that remain unchanged under certain mappings or functions. Over
the years, the most well-known Banach’s fixed point theorem[6] has been extended and
generalized by many researchers, leading to a wide range of powerful fixed point results
applicable to various settings. Fixed point theory for multi-valued mappings generalize the
concept of fixed point from single valued to set-valued mappings. Multi-valued mappings
are used to model situations where a single input can lead to multiple feasible solution
with potential outcomes. In 1969, S.B. Nadler [17] initially proved some fixed point theo-
rems for multi-valued contraction mapping on complete metric space. Thereafter, several
researchers have done a rigorous study in this area (refer to [7], [11]).

Partial metric spaces are generalization of metric spaces in the sense of defining a
non-zero self distance between points of a metric space. The concept of partial metric
was introduced by S.G. Matthews in 1994 [15]. In [3],[14], Altun et al. and Masiha
et al. developed fixed point theory in partial metric space considering contractive type
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mappings and weakly contractive type mappings respectively. Different interesting fixed
point results in partial metric spaces can be found in [1],[5],[9],[10],[12].

In [13], Kikkawa and Suzuki derived a fixed point theorem for generalized contractions
with constants in a complete metric space. Their findings represented a broader extension
of a fixed point theorem previously demonstrated by Suzuki [18] ,which itself was a new
generalization of the Banach contraction principle, offering insights into the characteriza-
tion of metric completeness. Motivated by these works, here we derive a new variant of
Kikkawa-Suzuki type common fixed point theorem considering multi-valued mapping in
partial metric space along with a Reich type common fixed point theorem. As applica-
tion, we provide an analysis of data dependence and stability of fixed point sets for such
mappings. Another application is given for showing the existence of solution to a system
of Volterra integral inclusions.

2. Preliminaries and Definitions

Before going to the main findings, we present some basic definitions and related results.

Definition 2.1. [15] Consider a non-empty set X, and let p : X × X → [0,∞) be a
mapping that satisfies the following axioms for all x, y, z ∈ X:
P0 : 0 ≤ p(x, x) ≤ p(x, y)
P1 : p(x, x) = p(x, y) = p(y, y) if and only if x = y
P2 : p(x, y) = p(y, x)
P3 : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
Then p is called the partial metric and the pair (X, p) forms a partial metric space.

For example, on the set of non-negative real numbers, p1(x, y) = max{x, y}, p2(x, y) =
1 + |x− y| are some partial metrics. Some other examples are as follows.
(i) If X = {[a, b] : a, b ∈ R, a ≤ b} and p([a, b], [c, d]) = max{b, d} −min{a, c} then (X, p)
is a partial metric space (refer to [15]).
(ii) Let X = {0, 2, 4} and p(x, y) = 1

4 |e
x − ey|+ 1

2 max{ex, ey} for all x, y ∈ X. Then p is
a partial metric on X.

Definition 2.2. [15] Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) is said to be Cauchy if and only if lim
n,m→∞

p(xn, xm)

exists and is finite.
(ii) A sequence {xn} in (X,p) converges to y in X if and only if lim

n→∞
p(xn, y) =

lim
n→∞

p(xn, xn) = p(y, y).

Definition 2.3. [15] A partial metric space (X,p) is said to be complete if and only if
every Cauchy sequence {xn} in (X, p) converges to a point y in X, that is, p(y, y) =
lim

n,m→∞
p(xn, xm).

For a partial metric space (X, p), the function ps : X ×X → R, defined by
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X is a metric on X and it is known as
induced metric (refer to [8]).

Lemma 2.1. [8] In a partial metric space (X, p),

(i) A sequence {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy
sequence in the metric space (X, ps).
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(ii) A partial metric space (X,p) is complete if and only if the metric space (X, ps) is
complete. Moreover, lim

n→∞
ps(xn, z) = 0 if and only if

p(z, z) = lim
n→∞

p(xn, z) = lim
m,n→∞

p(xn, xm).

Remark 2.1. In a partial metric space (X, p), the uniqueness of the limit of a sequence
is not guaranteed. Furthermore, even if two sequences {xn} and {yn} in (X, p) converge
to x and y respectively, there is no assurance that p(xn, yn) will converge to p(x, y), i.e.,
p need not be continuous.

For a partial metric space (X, p), let P (X) denote the set of all subsets of X and
CBp(X) denote the set containing all non-empty closed and bounded subsets of X with
respect to the partial metric p. For any A,B ∈ CBp(X), the partial Hausdorff metric Hp

is defined by
Hp(A,B) = max{δp(A,B), δp(B,A)},

where p(a,A) = inf{p(a, x) : x ∈ A}, δp(A,B) = sup{p(a,B) : a ∈ A},
and δp(B,A) = sup{p(b, A) : b ∈ B} (refer to [5]).

Lemma 2.2. [5] Consider (X, p) a partial metric space and let h > 1. For any a ∈ A,
there exists b = b(a) ∈ B, where A,B ∈ CBp(X) such that p(a, b) ≤ hHp(A,B).

Definition 2.4. Let (X, p) be a partial metric space. A point x ∈ X is called a fixed point
of a multi-valued mapping T : X → P (X) if x ∈ Tx.

In [13], Kikkawa and Suzuki proved the following multi-valued fixed point theorem.

Theorem 2.1. [13] Let (X, d) be a complete metric space and let T be a mapping from X
into CB(X). Define a strictly decreasing function η from [0, 1) onto (12 , 1] by η(r) = 1

1+r .

Assume that there exists r ∈ [0, 1) such that

η(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Then there exists z ∈ X such that z ∈ Tz.

3. Main Results

Considering partial metric space, we prove the following new variant of Kikkawa-Suzuki
type common fixed point theorem. Here CF (S, T ) denotes the set of all common fixed
points of S and T.

Theorem 3.1. Let (X, p) be a complete partial metric space and S, T : X → CBp(x) be
multi-valued mappings. Let θ be a strictly decreasing function from [0, 12) onto (23 , 1] given

by θ(r) = 1
1+r . Assume that there exist r1 and r2 in [0, 12) with r2 ≤ r1 satisfying

θ(r1)min{p(x, Sx), p(z, Sz)}+ θ(r2)min{p(y, Ty), p(z, Tz)} ≤ p(x, z) + p(y, z)

⇒ max{Hp(Sx, Tz), Hp(Sz, Ty)} ≤ r1p(x, z) + r2p(y, z) for all x, y, z ∈ X. (1)

Then there exists a unique u ∈ X such that u ∈ CF (S, T ).

Proof. Let x0 ∈ X be arbitrary. For x1 ∈ Sx0, we have,

θ(r1)min{p(x0, Sx0), p(x1, Sx1} ≤ θ(r1)p(x0, Sx0) ≤ p(x0, Sx0) ≤ p(x0, x1).

Let h ∈ (1, 1
2r1

). By Lemma 2.2, there exists x2 ∈ Tx1 such that

p(x1, x2) ≤ hHp(Sx0, Tx1). (2)
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Now, θ(r1)min{p(x0, Sx0), p(x1, Sx1}+θ(r2)min{p(x2, Tx2), p(x1, Tx1)}
≤ p(x0, x1) + p(x1, x2).

By (1), max{Hp(Sx0, Tx1), Hp(Sx1, Tx2)} ≤ r1p(x0, x1) + r2p(x1, x2).

So, Hp(Sx0, Tx1) ≤ r1{p(x0, x1) + p(x1, x2)} (since r2 ≤ r1), (3)

and by (2), p(x1, x2) ≤ hHp(Sx0, Tx1) ≤ hr1{p(x0, x1) + p(x1, x2)},

i.e., p(x1, x2) ≤
hr1

1− hr1
p(x0, x1).

Again, for x2 ∈ Tx1, there exists x3 ∈ Sx2 such that

p(x2, x3) ≤ hHp(Tx1, Sx2), (4)

and θ(r1)min{p(x2, Sx2), p(x3, Sx3)}+θ(r2)min{p(x1, Tx1), p(x2, Tx2}
≤ p(x3, x2) + p(x2, x1).

Applying (1), max{Hp(Sx3, Tx2), Hp(Sx2, Tx1)} ≤ r1p(x3, x2) + r2p(x2, x1),

i.e., Hp(Sx2, Tx1) ≤ r1{p(x3, x2) + p(x2, x1)}. (5)

Using (5) in (4), we get,

p(x2, x3) ≤ hr1{p(x3, x2) + p(x2, x1)} =
hr1

1− hr1
p(x1, x2) ≤ (

hr1
1− hr1

)
2

p(x0, x1).

Continuing in this way, we generate a sequence {xn} in X with

x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1, x2n+3 ∈ Sx2n+2 such that

p(x2n+1, x2n+2) ≤ (
hr1

1− hr1
)
2n+1

p(x0, x1),

and p(x2n+2, x2n+3) ≤ (
hr1

1− hr1
)
2n+2

p(x0, x1) for all n ∈ N.

Thus, for each n ∈ N,

p(xn, xn+1) ≤ knp(x0, x1), where k =
hr1

1− hr1
< 1. (6)

Now, we show that {xn} is a Cauchy sequence in (X, p). For all n,m ∈ N,

p(xn, xn+m) ≤ p(xn, xn+1) + p(xn+1, xn+2) + .........+ p(xn+m−1, xn+m)

≤ (kn + kn+1 + ......+ kn+m−1 + .....)p(x0, x1)

=
kn

1− k
p(x0, x1) → 0 as n → ∞ (since 0 < k < 1).

Now, ps(xn, xn+m) ≤ 2p(xn, xn+m) → 0 as n → ∞.
Thus {xn} is a Cauchy sequence in (X, ps). Using Lemma (2.1), (X, ps) is complete, since
(X, p) is complete. So, there exists some u ∈ X such that lim

n→∞
ps(xn, u) = 0.

By Lemma 2.1,

p(u, u) = lim
n→∞

p(xn, u) = lim
n,m→∞

p(xn, xm) = 0. (7)

Now, θ(r1)min{p(x2n, Sx2n),p(x2n+1, Sx2n+1)}+ θ(r2)min{p(x2n+2, Tx2n+2),

p(x2n+1, Tx2n+1)} ≤ p(x2n, x2n+1) + p(x2n+1, x2n+2).
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So by (1),

max{Hp(Sx2n, Tx2n+1), Hp(Sx2n+1, Tx2n+2)} ≤ r1p(x2n, x2n+1) + r2p(x2n+1, x2n+2),

and hence, Hp(Sx2n, Tx2n+1) ≤ r1{p(x2n, x2n+1) + p(x2n+1, x2n+2)}.

Since p(u, Sx2n) ≤ p(u, x2n+2) +Hp(Tx2n+1, Sx2n)

≤ p(u, x2n+2) + r1{p(x2n, x2n+1) + p(x2n+1, x2n+2)},

taking n → ∞ and using (7), we get, lim
n→∞

p(u, Sx2n) = 0.

So, for given ϵ > 0, there exists n0 ∈ N such that p(u, Sx2n) < ϵ for all n ≥ n0.
Taking ϵ = r1p(u, x) with x ̸= u, for k ≥ n0, we get,

p(u, Sx2k) < r1p(u, x). (8)

For each n ∈ N, we choose vn ∈ Sx2k such that

p(u, vn) ≤ p(u, Sx2k) +
1

n
p(x, u). (9)

Now, p(x, Sx2k) ≤ p(x, vn) ≤ p(x, u) + p(u, Sx2k) +
1

n
p(x, u) (using (9))

< (1 + r1 +
1

n
)p(x, u), for all n ∈ N (using (8)).

In the limit as n → ∞,

1

1 + r1
p(x, Sx2k) ≤ p(x, u), i.e., θ(r1)p(x, Sx2k) ≤ p(x, u).

So, θ(r1)min{p(x, Sx2k), p(u, Su)} ≤ p(x, u) for all x ̸= u.
Since k ≥ n0 is arbitrary, so,

θ(r1)min{p(x, Sx2n), p(u, Su)} ≤ p(x, u) for all n ≥ n0 and for all x ̸= u.

In particular, for x = x2n,

θ(r1)min{p(x2n, Sx2n), p(u, Su)} ≤ p(x2n, u) for all n ≥ n0. (10)

Again, p(u, Tx2n+1) ≤ p(u, x2n+1) +Hp(Sx2n, Tx2n+1)

≤ p(u, x2n+1) + r1{p(x2n, x2n+1) + p(x2n+1, x2n+2)}.

Taking n → ∞ and using (9), we get, lim
n→∞

p(u, Tx2n+1) = 0.

In a similar manner as in the previous case, we can show that

θ(r2)min{p(x2n+1, Tx2n+1), p(u, Tu)} ≤ p(x2n+1, u) for all n ≥ n1. (11)

Let n2 = max{n0, n1} and adding (10) and (11), we get,

θ(r1)min{p(x2n, Sx2n), p(u, Su)}+ θ(r2)min{p(x2n+1, Tx2n+1), p(u, Tu)}
≤ p(x2n, u) + p(x2n+1, u) for all n ≥ n2.

Using (1),

max{Hp(Sx2n, Tu), Hp(Tx2n+1, Su)} ≤ r1p(x2n, u) + r2p(x2n+1, u) for all n ≥ n2. (12)

Now, p(u, Tu) ≤ p(u, x2n+1) +Hp(Sx2n, Tu)

≤ p(u, x2n+1) + r1{p(x2n, u) + p(x2n+1, u)} for all n ≥ n2. (by (12))
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As n → ∞, p(u, Tu) = 0, i.e., u ∈ Tu.
Similarly, p(u, Su) = 0, and thus, u ∈ CF (S, T ).
To prove the uniqueness, let u1, u2 ∈ CF (S, T ) such that u1 ̸= u2.

Now, θ(r1)min{p(u1, Su1), p(u2, Su2)}+θ(r2)min{p(u2, Tu2), p(u1, Tu1)}
≤ p(u1, u2) + p(u2, u1),

and so, max{Hp(Su1, Tu2), Hp(Su2, Tu1)} ≤ r1p(u1, u2) + r2p(u1, u2) ≤ 2r1p(u1, u2).
Again, p(u1, u2) ≤ hHp(Su1, Tu2) and p(u2, u1) ≤ hHp(Su2, Tu1). So,

p(u1, u2) ≤ hmax{Hp(Su1, Tu2), Hp(Su2, Tu1)} ≤ 2hr1p(u1, u2), i.e., p(u1, u2) = 0.

Similarly, p(u1, u1) = 0 = p(u2, u2), and thus, u1 = u2. □

Corollary 3.1. Let (X, p) be a complete partial metric space and S : X → CBp(x) be a
multi-valued mapping. Let θ be a strictly decreasing function from [0, 12) onto (23 , 1] given

by θ(r) = 1
1+r . Assume that there exist r1 and r2 in [0, 12) with r2 ≤ r1 satisfying

θ(r1)min{p(x, Sx), p(z, Sz)}+ θ(r2)min{p(y, Sy), p(z, Sz)} ≤ p(x, z) + p(y, z)

⇒ max{Hp(Sx, Sz), Hp(Sz, Sy)} ≤ r1p(x, z) + r2p(y, z) for all x, y, z ∈ X. (13)

Then there exists u ∈ X such that u ∈ F (S). (Here, F (S) denotes the set of all fixed points
of S.)

Remark 3.1. For S = T, x = y = z and taking r1 = r2 = r ∈ [0, 1) and θ from [0, 1)
onto (12 , 1], Corollary 3.1 reduces to Theorem 2 of [2].

Remark 3.2. It can be seen that Theorem 3.1 does not hold in general for an incomplete
partial metric space. For example, let X = (0,∞) ∩ Q with the partial metric p(x, y) =
max{x, y}, x, y ∈ X, which is not complete. Consider S, T : X → CBp(X) defined by

Sx = Tx = {x
5
} for all x ∈ X.

Then S and T satisfy condition (1) of Theorem 3.1. But S and T do not have a common
fixed point.

The following example exhibits Theorem 3.1.

Example 3.1. Let X = {1, 2, 3} and define a complete partial metric p on X by
p(1, 1) = 0 = p(2, 2), p(3, 3) = 2

3 ,

p(1, 2) = p(2, 1) = 1
3 , p(2, 3) = p(3, 2) = 14

17 , p(1, 3) = p(3, 1) = 9
11 .

Let S, T : X → CBp(X) be defined by

Sx = {1} for all x ∈ X and Tx =

{
{1}, if x ∈ {1, 2}
{1, 2}, otherwise .

Obviously {1} and {1,2} are closed in X with respect to the partial metric p.
Let r1 =

12
25 , and r2 =

9
20 , so that θ(r1) =

25
37 and θ(r2) =

20
29 .

Now, p(1, S1) = 0 = p(1, T1), p(2, S2) =
1

3
= p(2, T2), p(3, S3) =

9

11
= p(3, T3),

Hp(S1, T1) = 0 = Hp(S1, T2) = Hp(S2, T2) = Hp(S2, T1) = Hp(S3, T1) = Hp(S3, T2).

Hp(S1, T3) =
1

3
= Hp(S2, T3) = Hp(S3, T3).
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For convenience, we take

η1(x, y, z) = θ(r1)min{p(x, Sx), p(z, Sz)}+ θ(r2)min{p(y, Ty), p(z, Tz)}
η2(x, y, z) = max{Hp(Sx, Tz), Hp(Sz, Ty)}, ξ1(x, y, z) = p(x, z) + p(y, z)

and ξ2(x, y, z) = r1p(x, z) + r2p(y, z).

The values of ηi, ξi (i = 1, 2) for different values of x, y and z are depicted in the following
table.

x y z η1 ξ1 η2 ξ2 x y z η1 ξ1 η2 ξ2 x y z η1 ξ1 η2 ξ2
1 1 1 0 0 0 0 2 1 1 0 0.33 0 0.16 3 1 1 0 0.82 0 0.39
1 1 2 0 0.67 0 0.31 2 1 2 0.22 0.33 0 0.15 3 1 2 0.22 1.15 0 0.54
1 1 3 0 1.63 0.33 0.76 2 1 3 0.22 1.64 0.33 0.76 3 1 3 0.55 1.48 0.33 0.68
1 2 1 0 0.33 0 0.15 2 2 1 0 0.67 0 0.31 3 2 1 0 1.15 0 0.54
1 2 2 0.23 0.33 0 0.16 2 2 2 0.45 0 − − 3 2 2 0.45 0.82 0 0.39
1 2 3 0.23 1.64 0.33 0.76 2 2 3 0.45 1.64 0.33 0.76 3 2 3 0.78 1.49 0.33 0.69
1 3 1 0 0.82 0.33 0.36 2 3 1 0 1.15 0.33 0.52 3 3 1 0 1.64 0.33 0.76
1 3 2 0.23 1.15 0.33 0.53 2 3 2 0.45 0.82 0.33 0.37 3 3 2 0.45 1.64 0.33 0.76
1 3 3 0.23 1.48 0.33 0.69 2 3 3 0.78 1.49 0.33 0.69 3 3 3 1.11 1.33 0.33 0.62

From the table, it is clear that if η1(x, y, z) ≤ ξ1(x, y, z) then η2(x, y, z) ≤ ξ2(x, y, z) for
all x, y, z ∈ X, that is, the hypothesis (1) of Theorem 3.1 is satisfied by the mappings S
and T. Hence S and T have a unique common fixed point, which is clearly 1 here.

Our next result is a Reich type common fixed point theorem.

Theorem 3.2. Let (X, p) be a complete partial metric space and S, T : X → CBp(x) be
multi-valued mappings. Let θ be a strictly decreasing function from [0, 1)3 onto (−∞, 1]

given by θ(x, y, z) = 1−y−z
1+x , x, y, z ∈ [0, 1). If for some non-negative real numbers k1, k2, k3

and h1, h2, h3 with k3 ≤ k2, h3 ≤ h2, , k1 + k2 + k3 = h1 + h2 + h3 = µ and 2k1 + 3k2 +
k3, 2h1 + 3h2 + h3 ∈ [0, 12), S and T satisfy the following conditions:

(i) θ(k1, k2, k3)min{p(x, Sx), p(z, Sz)}+ θ(h1, h2, h3)min{p(y, Ty), p(z, Tz)}
≤ p(x, z) + p(y, z)

⇒ max{Hp(Sx, Tz),Hp(Sz, Ty)} ≤ k1p(x, z) + k2p(x, Sx) + k3p(z, Tz) + h1p(y, z)

+ h2p(z, Sz) + h3p(y, Ty) for all x, y, z ∈ X, (14)

(ii) p(x, Sx) + p(y, Ty) ≤ 2p(x, y) for all x, y ∈ X ,
then there exists u ∈ X such that u ∈ CF (S, T ).

Proof. Let x0 ∈ X be arbitrarily chosen. For x1 ∈ Sx0, we have,

θ(k1, k2, k3)min{p(x0, Sx0), p(x1, Sx1} ≤ θ(k1, k2, k3)p(x0, Sx0) ≤ p(x0, x1).

Let λ ∈ (1, 1
µ+k1+2k2

). By Lemma 2.2, there exists x2 ∈ Tx1 such that

p(x1, x2) ≤ λHp(Sx0, Tx1). (15)

Now, θ(k1, k2, k3)min{p(x0, Sx0), p(x1, Sx1}+ θ(h1, h2, h3)

min{p(x2, Tx2), p(x1, Tx1)} ≤ p(x0, x1) + p(x1, x2).

By (14), we get,

max{Hp(Sx0, Tx1), Hp(Sx1, Tx2)} ≤ k1p(x0, x1) + k2p(x0, Sx0) + k3p(x1, Tx1)

+ h1p(x1, x2) + h2p(x1, Sx1) + h3p(x2, Tx2),

and so, Hp(Sx0, Tx1) ≤ k1p(x0, x1) + k2p(x0, x1) + k3p(x1, Tx1) + h1p(x1, x2)

+ h2p(x1, Sx1) + h3p(x2, Tx2). (16)
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From (15) and (16), we get,
p(x1, x2) ≤ λHp(Sx0, Tx1)

≤ λ[(k1 + k2)p(x0, x1) + (k3 + h1)p(x1, x2) + h2{p(x1, Sx1) + p(x2, Tx2)}]
(since h2 ≥ h3)

≤ λ{(k1 + k2)p(x0, x1) + (k3 + h1)p(x1, x2) + 2h2p(x1, x2)}

≤ λ(k1 + k2)

1− λ(h1 + 2h2 + k3)
p(x0, x1) (17)

≤ ap(x0, x1), where a =
λ(k1 + k2)

1− λ(h1 + 2h2 + k3)
. (18)

Again, for x2 ∈ Tx1, there exists x3 ∈ Sx2, such that p(x2, x3) ≤ λHp(Tx1, Sx2).
Similar to the previous case, we get,

p(x2, x3) ≤ bp(x1, x2), where b =
λ(h1 + h3)

1− λ(k1 + 2k2 + h2)
,

and by (18), p(x2, x3) ≤ abp(x0, x1).
Again, for x3 ∈ Sx2, there exists x4 ∈ Tx3, such that p(x3, x4) ≤ λHp(Sx2, Tx3),
and as above, p(x3, x4) ≤ a2bp(x0, x1).
Continuing in this way, we generate a sequence {xn} in X with x2n+1 ∈ Sx2n,
x2n+2 ∈ Tx2n+1 such that

p(x2n+1, x2n+2) ≤ an+1bnp(x0, x1), (19)

and p(x2n+2, x2n+3) ≤ an+1bn+1p(x0, x1) for all n ∈ N. (20)

For all n,m ∈ N, we have,

p(x2n+1, x2n+m) ≤ p(x2n+1, x2n+2) + p(x2n+2, x2n+3) + ....+ p(x2n+m−1, x2n+m)

≤ p(x2n+1, x2n+2) + p(x2n+2, x2n+3) + . . .+ p(x2n+m−1, x2n+m) + . . .

= anbn(a+ ab+ a2b+ a2b2 + a3b2 + a3b3 + . . .+ . . .)p(x0, x1)

= anbn{(a+ a2b+ a3b2 + . . .) + (ab+ a2b2 + a3b3 + . . .)}p(x0, x1)

= anbn(
a

1− ab
+

ab

1− ab
)p(x0, x1) → 0 as n → ∞ (since 0 < a, b < 1).

Similarly, we have, p(x2n+2, x2n+m) → 0 as n → ∞.
Therefore, p(xn, xn+m) → 0 as n → ∞. Since ps(xn, xn+m) ≤ 2p(xn, xn+m) for all
n,m ∈ N, so, {xn} is a Cauchy sequence in (X, ps). Also, (X, ps) is complete, so, there
exists u ∈ X such that lim

n→∞
ps(xn, u) = 0.

Again by Lemma 2.1,

p(u, u) = lim
n→∞

p(xn, u) = lim
n,m→∞

p(xn, xm) = 0. (21)

Now,

θ(k1, k2, k3)min{p(x2n, Sx2n),p(x2n+1, Sx2n+1)}+ θ(h1, h2, h3)min{p(x2n+2, Tx2n+2),

p(x2n+1, Tx2n+1)} ≤ p(x2n, x2n+1) + p(x2n+1, x2n+2).
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By (14),

max{Hp(Sx2n, Tx2n+1), Hp(Sx2n+1, Tx2n+2)} ≤ k1p(x2n, x2n+1) + k2p(x2n, Sx2n)

+ k3p(x2n+1,Tx2n+1) + h1p(x2n+1, x2n+2) + h2p(x2n+1, Sx2n+1) + h3p(x2n+2, Tx2n+2)

and so, Hp(Sx2n, Tx2n+1) ≤ k1p(x2n, x2n+1) + k2p(x2n, x2n+1) + k3p(x2n+1, x2n+2)

+ h1p(x2n+1, x2n+2) + h2{p(x2n+2, Sx2n+1) + p(x2n+2, Tx2n+2)}
i.e., Hp(Sx2n, Tx2n+1) ≤ (k1 + k2)p(x2n, x2n+1) + (k3 + h1 + 2h2)p(x2n+1, x2n+2).

Since p(u,Sx2n) ≤ p(u, x2n+2) +Hp(Tx2n+1, Sx2n)

≤ p(u, x2n+2) + (k1 + k2)p(x2n, x2n+1) + (k3 + h1 + 2h2)p(x2n+1, x2n+2),

taking n → ∞, we get, lim
n→∞

p(u, Sx2n) = 0.

So, for given ϵ > 0, there exists n0 ∈ N, such that p(u, Sx2n) < ϵ for all n ≥ n0.

Taking ϵ = (k1 +
k2
θ1
)p(u, x), where x ̸= u and θ1 = θ(k1, k2, k3), for k ≥ n0, we get,

p(u, Sx2k) < (k1 +
k2
θ1

)p(u, x). (22)

For all n ∈ N, we choose vn ∈ Sx2k such that

p(u, vn) ≤ p(u, Sx2k) +
1

n
p(x, u). (23)

Therefore, p(x, Sx2n0) ≤ p(x, vn) ≤ p(x, u) + p(u, vn)− p(u, u)

≤ p(x, u) + p(u, Sx2n0) +
1

n
p(x, u) (using (23))

≤ (1 + k1 +
k2
θ1

+
1

n
)p(u, x) + k3p(x, Sx2n0). (using (22))

As n → ∞, (1− k3)p(x, Sx2n0) ≤ (1 + k1 +
k2
θ1

)p(x, u),

i.e., p(x, Sx2n0) ≤
(1 + k1 +

k2
θ1
)

(1− k3)
p(x, u).

This gives θ(k1, k2, k3)p(x, Sx2n0) ≤ p(x, u),
and so, θ(k1, k2, k3)min{p(x, Sx2n0), p(u, Su)} ≤ p(x, u) for all x ̸= u.
This is satisfied for all k ≥ n0.
So, θ(k1, k2, k3)min{p(x, Sx2n), p(u, Su)} ≤ p(x, u) for all n ≥ n0.
In particular, for x = x2n,

θ(k1, k2, k3)min{p(x2n, Sx2n), p(u, Su)} ≤ p(x2n, u) for all n ≥ n0. (24)

Proceeding as above, it can be shown that

θ(h1, h2, h3)min{p(x2n+1, Tx2n+1), p(u, Tu)} ≤ p(x2n+1, u) for all n ≥ n1. (25)

Let n2 = max{n0, n1} and adding (24) and (25), we get,

θ(k1, k2, k3)min{p(x2n, Sx2n),p(u, Su)}+ θ(h1, h2, h3)min{p(x2n+1, Tx2n+1),

p(u, Tu)} ≤ p(x2n, u) + p(x2n+1, u) for all n ≥ n2.
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By (14),

max{Hp(Sx2n, Tu), Hp(Su, Tx2n+1)} ≤ k1p(x2n, u) + k2{p(x2n, Sx2n) + p(u, Tu)}
+ h1p(u, x2n+1) + h2{p(u, Su) + p(x2n+1, Tx2n+1)}

≤ k1p(x2n, u) + 2k2p(x2n, u) + h1p(u, x2n+1) + 2h2p(u, x2n+1) for all n ≥ n2.

Now, p(u,Tu) ≤ p(u, x2n+1) +Hp(Sx2n, Tu)

≤ p(u, x2n+1) + (k1 + 2k2)p(x2n, u) + (h1 + 2h2)p(u, x2n+1) for all n ≥ n2.

As n → ∞, p(u, Tu) = 0 ⇒ u ∈ Tu.
Similarly, u ∈ Su, and thus, u is a common fixed point of S and T . □

Example 3.2. Let X={0,2,4} and define a complete partial metric p on X by
p(0, 0) = 0, p(2, 2) = 1

5 , p(4, 4) = 19
23 ,

p(2, 0) = p(0, 2) = 1
5 , p(4, 0) = p(0, 4) = 19

23 , p(2, 4) = p(4, 2) = 19
23 .

Let S, T : X → CBp(X) be defined by

Sx = {0} for all x ∈ X and Tx =

{
{2}, if x = 4

{0}, otherwise .

Obviously {0} and {2} are closed in X with respect to the partial metric p.
Let k1 =

7
30 , k2 =

2
15 , k3 =

1
10 and h1 =

1
6 , h2 =

1
6 , h3 =

2
15 .

So, θ(k1, k2, k3) =
23
37 and θ(h1, h2, h3) =

3
5 .

Now, p(0, S0) = 0 = p(0, T0), p(2, S2) =
1

5
= p(2, T2), p(4, S4) =

19

23
= p(4, T4),

Hp(S0, T0) = 0 = Hp(S0, T2) = Hp(S2, T2) = Hp(S2, T0) = Hp(S4, T0) = Hp(S4, T2),

Hp(S0, T4) =
1

5
= Hp(S2, T4) = Hp(S4, T4). We take,

η1(x, y, z) = θ(k1, k2, k3)min{p(x, Sx), p(z, Sz)}+ θ(h1, h2, h3)min{p(y, Ty), p(z, Tz)}
η2(x, y, z) = max{Hp(Sx, Tz), Hp(Sz, Ty)}, ξ1(x, y, z) = p(x, z) + p(y, z),

ξ2(x, y, z) = k1p(x, z) + k2p(x, Sx) + k3p(z, Tz) + h1p(y, z) + h2p(z, Sz) + h3p(y, Ty).

A table illustrating the values of ηi, ξi (i = 1, 2) corresponding to various combinations of
x, y and z is presented below.

x y z η1 ξ1 η2 ξ2 x y z η1 ξ1 η2 ξ2 x y z η1 ξ1 η2 ξ2
0 0 0 0 0 0 0 2 0 0 0 0.2 0 0.07 4 0 0 0 0.82 0 0.30
0 0 2 0 0.4 0 0.13 2 0 2 0.12 0.4 0 0.16 4 0 2 0.2 1.02 0 0.38
0 0 4 0 1.64 0.2 0.55 2 0 4 0.12 1.02 0.2 0.57 4 0 4 0.51 1.65 0.2 0.66
0 2 0 0 0.2 0 0.06 2 2 0 0 0.4 0 0.13 4 2 0 0 1.02 0 0.36
0 2 2 0.12 0.4 0 0.16 2 2 2 0.24 0.4 0 0.18 4 2 2 0.24 1.02 0 0.41
0 2 4 0.12 1.65 0.2 0.57 2 2 4 0.24 1.65 0.2 0.66 4 2 4 0.63 1.65 0.2 0.68
0 4 0 0 0.82 0.2 0.24 2 4 0 0 1.02 0.2 0.47 4 4 0 0 1.65 0.2 0.55
0 4 2 0.12 1.65 0.2 0.41 2 4 2 0.24 0.7 0.2 0.37 4 4 2 0.24 1.65 0.2 0.6
0 4 4 0.49 1.65 0.2 0.66 2 4 4 0.62 1.65 0.2 0.77 4 4 4 0.82 1.65 0.2 0.77

From the tabulated data, it is evident that whenever η1(x, y, z) ≤ ξ1(x, y, z) the corre-
sponding η2(x, y, z) ≤ ξ2(x, y, z) for all x, y, z ∈ X. This observation validates condition (i)
of Theorem 3.2 for the mappings S and T . Condition (ii) is also clearly satisfied. Conse-
quently, S and T have a common fixed point, which is clearly 0 here.

4. Data Dependence and Stability

The study of data dependence of fixed point sets estimates the distance between the
fixed point set of a mapping with that of another mapping. In the following, we obtain
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a data dependence result concerning our defined type of mapping in a complete partial
metric space.

Theorem 4.1. Let (X, p) be a complete partial metric space and S, T : X → CBp(X) be
two multi-valued mappings such that Hp(Sx, Tx) ≤ M for all x ∈ X, where M > 0 is a
constant. For a strictly decreasing function θ from [0, 12) onto (23 , 1] given by θ(r) = 1

1+r

and r1, r2 ∈ [0, 12) with r2 ≤ r1, suppose T satisfies Corollary 3.1 and F (S) ̸= ∅. Then
sup

x∈F (S)
p(x, F (T )) ≤ βM, where β > 0.

Proof. Since F (S) ̸= ∅, let y0 ∈ Sy0. By Lemma 2.2, there exists y1 ∈ Ty0 such that
p(y0, y1) ≤ hHp(Sy0, T y0) ≤ hM.
Again by Lemma 2.2 , for y1 ∈ Ty0, there exists y2 ∈ Ty1 such that

p(y1, y2) ≤ hHp(Ty0, T y1).

As T satisfies (13), similar to the proof of Theorem 3.1, we can construct a sequence {yn}
in X such that for all n ∈ N,

yn+1 ∈ Tyn and p(yn, yn+1) ≤ knp(y0, y1), where k =
hr1

1− hr1
< 1.

Then {yn} is a Cauchy sequence in X, and so, there exists u ∈ X, such that yn → u as
n → ∞, and u is a fixed point of T , i.e., u ∈ Tu.

Now, p(y0, u) ≤
n∑

i=0

p(yi, yi+1) + p(yn+1, u) ≤
n∑

i=0

kip(y0, y1) + p(yn+1, u).

Taking limit as n → ∞, we have,

p(y0, u) ≤
∞∑
i=0

kip(y0, y1) ≤
1

1− k
p(y0, y1) ≤

1− hr1
1− 2hr1

hM.

Therefore, for given y0 ∈ F (S), we have, u ∈ F (T ), such that p(y0, u) ≤ 1−hr1
1−2hr1

hM holds.

Hence, p(y0, F (T )) ≤ 1−hr1
1−2hr1

hM.

Since y0 ∈ F (S) is arbitrary, we get,

sup
x∈F (S)

p(x, F (T )) ≤ 1− hr1
1− 2hr1

hM = βM, where β =
1− hr1
1− 2hr1

h > 0.

□

The following result gives the stability analysis of the fixed point sets for a sequence of
uniformly convergent continuous multi-valued mappings.

Theorem 4.2. Let (X, p) be a complete partial metric space with p continuous, and
{Tn : X → CBp(X) : n ∈ N} be a sequence of continuous multi-valued mappings, which
uniformly converges to T : X → CBp(X). Suppose for a strictly decreasing function θ from
[0, 12) onto (23 , 1] given by θ(r) = 1

1+r and {r1n}, {r2n} ⊂ [0, 12) with r2n ≤ r1n for all n ∈ N,
and lim

n→∞
r1n = r1, lim

n→∞
r2n = r2 such that r1, r2 ∈ [0, 12), each Tn(n ∈ N) satisfies the con-

dition (13). Then F (Tn) ̸= ∅ for each n ∈ N and F (T ) ̸= ∅, lim
n→∞

Hp(F (Tn), F (T )) = 0,

i.e., the fixed point sets of the sequence of mappings {Tn} are stable.



MD. S. ZAMAN, N. GOSWAMI: A NEW VARIANT OF FIXED POINT THEOREM... 497

Proof. By Theorem 3.1, F (Tn) ̸= ∅ for every n ∈ N.
Let x, y, z ∈ X. Since each Tn satisfies the condition (13), so, for each n ∈ N,

θ(r1n)min{p(x, Tnx), p(z, Tnz)}+ θ(r2n)min{p(y, Tny), p(z, Tnz)} ≤ p(x, z) + p(y, z)

⇒ max{Hp(Tnx, Tnz), Hp(Tnz, Tny)} ≤ r1np(x, z) + r2np(y, z), for all x, y, z ∈ X.

Taking limit as n → ∞ and using the continuity of p and Tn, (n ∈ N),

θ(r1)min{p(x, Tx), p(z, Tz)}+ θ(r2)min{p(y, Ty), p(z, Tz)} ≤ p(x, z) + p(y, z)

⇒ max{Hp(Tx, Tz), Hp(Tz, Ty)} ≤ r1p(x, z) + r2p(y, z) for all x, y, z ∈ X.

Thus, T satisfies the condition (13), and by Theorem 3.1, F (T ) ̸= ∅.
Now, let Mn = sup

x∈X
Hp(Tnx, Tx), n ∈ N. Since Tn → T uniformly, so,

lim
n→∞

Mn = lim
n→∞

sup
x∈X

Hp(Tnx, Tx) = 0.

By Theorem 4.1, we get,

sup
x∈F (T )

p(x, F (Tn)) ≤ βMn and sup
x∈F (Tn)

p(x, F (T )) ≤ βMn for all n ∈ N.

Therefore, Hp(F (Tn), F (T )) ≤ βMn, for all n ∈ N.
Thus, lim

n→∞
Hp(F (Tn), F (T )) ≤ lim

n→∞
βMn = 0, i.e., lim

n→∞
Hp(F (Tn), F (T )) = 0. □

5. Application to Volterra Type Integral Inclusion

In this section, we apply our derived result to prove the existence of a common solution
for a system of integral inclusions of Volterra type. Let X = C([0, 1), [1,∞)) be the space
of all continuous functions from I = [0, 1) into [1,∞). We consider the following system
of Volterra type integral inclusions:

x(t) ∈ f(t) +

∫ t

0
K1(t, s, x(s)) ds, t ∈ I, (26)

x(t) ∈ f(t) +

∫ t

0
K2(t, s, x(s)) ds, t ∈ I

where f ∈ X and K1,K2 : I × I × R → CBp(R).
Define the partial metric p : X ×X → [0,∞) as

p(x, y) = sup
t∈I

|x(t)− y(t)| for all x, y ∈ X.

Clearly (X, p) is a complete partial metric space.

Theorem 5.1. Suppose that the following conditions hold:

(i) For each x ∈ X, the multi-valued mappings K1,K2 : I×I×R → CBp(R) are such
that K1,x(t, s) := K1(t, s, x(s)) and K2,x(t, s) := K2(t, s, x(s)) are lower semicon-
tinuous in I × I.

(ii) There exists a continuous function η : I × I → [0, 1) such that for each k1,x :
I×I → R with k1,x(t, s) ∈ K1,x(t, s), there exists a continuous function k2,y(t, s) ∈
K2,y(t, s) satisfying |k1,x(t, s) − k2,y(t, s)| ≤ η(t, s)|x(s) − y(s)| for all t, s ∈ I
and for all x, y ∈ X with x ̸= y.

(iii) There exists λ ∈ [0, 1) such that sup
t∈I

∫ 1

0
η(t, s) ≤ λ

2
.

Then the system of integral inclusions (26) has a solution in X.
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Proof. Consider the multi-valued mappings S, T : X → CBp(X) as follows:

Sx = {u ∈ X : u(t) ∈ f(t) +

∫ t

0
K1(t, s, x(s)) ds, t ∈ I}

Tx = {v ∈ X : v(t) ∈ f(t) +

∫ t

0
K2(t, s, x(s)) ds, t ∈ I}

for each x ∈ X. It is obvious that common fixed point of S and T is a solution of the
system (26).
Now, we consider K1,x,K2,x : I × I → CBp(R). By Michael’s selection theorem [16], for
x ∈ X there exist continuous mappings k1,x, k2,x : I × I → R+ such that k1,x(t, s) ∈
K1,x(t, s) and k2,x(t, s) ∈ K2,x(t, s) for all t, s ∈ I.
We take u1, u2 ∈ X, where

u1(t) = f(t) +

∫ t

0
k1,x(t, s) ds and u2(t) = f(t) +

∫ t

0
k2,x(t, s) ds, t ∈ I.

Then u1 ∈ Sx and u2 ∈ Tx and so, Sx ̸= ∅, Tx ̸= ∅. Since f and K1,x,K2,x are continuous
on I and I×I respectively, so their ranges are bounded and thus, Sx and Tx are bounded.
Also, Sx and Tx are closed in (X, p).
For x, y, z ∈ X let u ∈ Sx and v ∈ Sz.

Then u(t) ∈ f(t) +
∫ t
0 K1,x(t, s, x(s)) ds, t ∈ I.

This implies u(t) = f(t) +
∫ t
0 k1,x(t, s) ds, (t, s) ∈ I × I, for some k1,x(t, s) ∈ K1,x(t, s).

From (ii), there exists g(t, s) ∈ K2,z(t, s) such that

|k1,x(t, s)− g(t, s)| ≤ η(t, s)|x(s)− z(s)| for all (t, s) ∈ I × I.

Consider the multi-valued operator L defined by

L(t, s) = K2,z(t, s) ∩ {w ∈ R : |k1,x(t, s)− w| ≤ η(t, s)|x(s)− z(s)|}, for all (t, s) ∈ I × I.

Since by (i), L is lower semicontinuous, there exists a continuous function k2,z : I×I → R+

with k2,z(t, s) ∈ L(t, s) for t, s ∈ I, such that

m(t) = f(t) +

∫ t

0
k2,z(t, s) ds ∈ f(t) +

∫ t

0
K2(t, s, z(s)) ds, t ∈ I.

Now, |u(t)−m(t)| = |
∫ t

0
k1,x(t, s) ds −

∫ t

0
k2,z(t, s) ds |

≤
∫ t

0
η(t, s)|x(s)− z(s)| ds

≤
∫ t

o
η(t, s) sup

t∈I
|x(s)− z(s)| ds

= p(x, z)

∫ t

0
η(t, s) ds

≤ p(x, z) sup
t∈I

∫ t

0
η(t, s) ds

≤ r1p(x, z), where r1 =
λ

2
(using (iii)).

Consequently, p(u,m) ≤ r1p(x, z).
Exchanging the roles of u and m, we have, Hp(Sx, Tz) ≤ r1p(x, z)
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Now, for v ∈ Sz, we have, v(t) ∈ f(t)+
∫ t
0 K1,z(t, s, z(s)) ds, t ∈ I. So, for some k1,z(t, s) ∈

K1,z(t, s),

v(t) = f(t) +

∫ t

0
k1,z(t, s) ds, (t, s) ∈ I × I.

From (ii), there exists h(t, s) ∈ K2,y(t, s) such that

|k1,z(t, s)− h(t, s)| ≤ η(t, s)|z(s)− y(s)| for all (t, s) ∈ I × I.

Similar to the previous case, we define a multi-valued operator M by

M(t, s) = K2,y(t, s) ∩ {w ∈ R : |k1,z(t, s)− w| ≤ η(t, s)|z(s)− y(s)|}, for all (t, s) ∈ I × I,

and there exists a continuous function k2,y with k2,y(t, s) ∈ M(t, s) for t, s ∈ I, such that

n(t) = f(t) +

∫ t

0
k2,y(t, s) ds ∈ f(t) +

∫ t

0
K2(t, s, y(s)) ds, t ∈ I.

Now, |v(t)− n(t)| ≤ sup
t∈[0,1)

|z(s)− y(s)|
∫ t

0
η(t, s) ds

≤ r2p(x, z), where r2 =
λ

2
.

Therefore, Hp(Sz, Ty) ≤ r2p(y, z), and thus,

Hp(Sx, Tz) +Hp(Sz, Ty) ≤ r1p(x, z) + r2p(y, z).

Clearly, max{Hp(Sx, Tz), Hp(Sz, Ty) ≤ r1p(x, z) + r2p(y, z)}.
Thus, S and T satisfy the hypothesis of Theorem 3.1. Hence, S and T have a unique
common fixed point and so, the system of Volterra integral inclusions has a common
solution. □

6. Conclusion

We have derived some common fixed point results concerning multi-valued mappings
in partial metric spaces with analysis of data dependence and stability of fixed point
sets. It is worth mentioning that the completeness property is a necessary condition for
Theorem 3.1, since the result fails to hold in general for an incomplete partial metric space.
In this regard, the investigation of the existence of common fixed point for our derived
type of mappings considering incomplete partial metric space is a scope for further study.
In [4], Amiri et al. established the existence of solutions for the Reimann-Liouville and
Atangana-Baleanu fractional integral inclusion by using common fixed point results for αc-
admissible multi-valued mappings in the framework of complex-valued double controlled
metric space. Similar study can be carried out for the mappings discussed in this paper
in case of double controlled partial metric space.
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