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SKEW-CYCLIC LINEAR CODES OVER THE FINITE RING

Rp = Fp[v1, v2, · · · , vτ ]/
〈
v2i = 1, vivj − vjvi

〉
: AN IN-DEPTH EXPLORATION

K. CHATOUH1∗, §

Abstract. This article introduces novel advancements in the realm of linear codes
over the ring of integers modulo a prime, denoted as Rp = Fp[v1, v2, · · · , vτ ]/

〈
v2i =

1, vivj − vjvi
〉
, with τ ≥ 1, p = qs and q is an odd prime. Specifically, we present a new

Gray map and Gray images tailored for linear codes over Rp, facilitating efficient rep-
resentation and manipulation of these codes. Building upon this foundation, the study
delves into the characterization and properties of skew cyclic codes over Rp, a class of
linear codes with intriguing mathematical structures. The investigation of skew cyclic
linear code properties reveals new insights into their algebraic properties. This work not
only contributes to the theoretical understanding of linear and skew cyclic codes over Rp

but also suggests practical implications for coding theory.

Keywords: Linear codes, Skew cyclic codes, Gray map, Lee weight, Skew cyclic LCD
codes.
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1. Introduction

In the realm of coding theory, error detection and correction have emerged as crucial
techniques for ensuring reliable data transmission in various communication and storage
systems. Linear codes, in particular, have been extensively studied for their capacity to
detect and correct errors by exploiting algebraic structures, see Refs [1, 2, 5, 7, 13, 17, 18].
Among these, skew cyclic linear codes have garnered significant attention due to their
intriguing properties and applications. In this article, we delve into the fascinating world
of skew cyclic linear codes, focusing specifically on their construction and properties over
the finite ring Rp. Skew cyclic codes extend the concept of cyclic codes, which are known
for their efficient encoding and decoding algorithms. The ”skew” aspect arises from con-
sidering non-commutative ring structures, enabling a broader array of code constructions
and applications. These codes have demonstrated their utility in various areas, such as
data storage devices, secure communication channels, and fault-tolerant systems. How-
ever, their study over non-standard algebraic structures like finite rings introduces novel
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nomic, Commercial and Management Sciences University of Batna 1, Batna, Algeria.
e-mail: karima.chatouh@univ-batna.dz ; ORCID: https://orcid.org/0000-0003-4061-1239.

∗ Corresponding author.
§ Manuscript received: September 5, 2023; accepted: February 15, 2024.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.3; © Işık University, Depart-
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challenges and opportunities. The finite ring Rp, serves as a captivating setting for explor-
ing skew cyclic linear codes. Unlike fields, rings may not possess multiplicative inverses for
all elements, making the study of codes over rings a more intricate endeavor. Nonetheless,
this complexity leads to codes that are better suited to specific scenarios, such as noisy
environments where traditional codes may falter.

This article aims to provide a comprehensive overview of skew cyclic linear codes over
Rp, encompassing both theoretical foundations and practical implications. We will inves-
tigate the construction methods employed to generate these codes, shedding light on the
algebraic structures that underpin their formation.

The article is structured into several key sections that delve into various aspects of lin-
ear and skew cyclic codes over the ring Rp. In Section 2, the focus is on introducing the
concept of Gray map and gray images within the context of linear codes over the ring Rp.
This section aims to provide readers with a fundamental understanding of these concepts
and their significance in the realm of coding theory. Section 3 builds upon this foundation
and delves into a comprehensive exploration of linear codes over Rp, offering insights into
their properties, characteristics, and potential applications. Transitioning to Section 4,
the discussion shifts towards skew cyclic codes over Rp, presenting readers with an in-
depth analysis of these specialized codes. This section not only covers the definition and
construction of skew cyclic codes but also delves into certain noteworthy properties that
these codes exhibit when defined over the ring Rp. By offering a deeper understanding of
these properties, this section contributes to the broader comprehension of the versatility
and capabilities of skew cyclic codes. Section 5 marks a significant aspect of the article,
focusing specifically on skew cyclic LCD codes over Rp. This section explores the inter-
section of skew cyclic codes and the LCD property.

In essence, this article seeks to unravel the intricacies of skew cyclic linear codes over
the finite ring Rp, offering readers a comprehensive understanding of their construction,
properties, and applications. By bridging the gap between abstract algebra and real-world
coding scenarios, we hope to illuminate the path toward more efficient and robust error-
detection and error-correction strategies in diverse communication and storage systems.

2. Background Information

In this section, we delve into the essential background information that forms the foun-
dation for our subsequent discussions. We begin by introducing the concept of a commu-
tative ring denoted as Rp, a fundamental algebraic structure where addition and multipli-
cation operations adhere to the commutative property. Building upon this, we explore the
notion of an inner product defined over the commutative ring Rp, which provides a means
to measure the geometric relationship between elements within this algebraic framework.
Furthermore, we investigate a crucial construct known as a linear code over Rp. This
specialized code utilizes the algebraic properties of the commutative ring to efficiently
represent and transmit information. By comprehending these interrelated concepts of the
commutative ring Rp, the inner product over it, and the linear code built upon it, we
establish the necessary groundwork to delve deeper into the subsequent discussions on



K. CHATOUH: SKEW-CYCLIC LINEAR CODES OVER THE RING RP AN IN-DEPTH... 513

advanced applications and analyses. According to [4], we can express Rp by

Rp = Fp +

(
τ∑

i=1

vi

)
Fp +

τ−1∑
i=1

vi

τ∑
j=i+1

vj

Fp + . . .+

(
τ∏

k=1

vk

)
Fp, (1)

with p = qs and q is an odd prime. The collection Rp constitutes a commutative ring that
encompasses a total of q2

τ s elements, exhibiting a characteristic of q. An Rp-module of
Rn

p defines a linear code C with a length of n over this ring. Consider x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn), where x and y are arbitrary elements of Rn

p . In this context, the

inner product over Rp is defined as follows, ⟨x, y⟩Rp =
n∑

i=1
xiyi. The dual code C⊥ of C

is defined by C⊥ = {x ∈ Rn
p |⟨x, y⟩Rp = 0 for all y ∈ C}. If C ⊂ C⊥, we say the code

is self-orthogonal, and if C = C⊥ then, the code C is self-dual. Our proposal involves
defining an asymmetric skew cyclic code based on the automorphism θ acting on the ring
Rp. This automorphism extends the one discussed in several articles [6, 11, 16].

θ : Rp → Rp

c 7→ θ(c),
(2)

where,

c = c0 +

(
τ∑

i1=1

vi1

)
ci11 +

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
ci1i22 + . . .+

(
τ∏

k=1

vk

)
c2τ−1,

and

θ(c) = (c0)
qm+

(
τ∑

i1=1

vi1

)
(ci11 )

qm+

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
(ci1i22 )q

m
+. . .+

(
τ∏

k=1

vk

)
(c2τ−1)

qm ,

so that

θ(c) = θ(c0) +

(
τ∑

i1=1

vi1

)
θ(ci11 ) +

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
θ(ci1i22 ) + . . .+

(
τ∏

k=1

vk

)
θ(c2τ−1).

The order of this automorphism is given by |⟨θ⟩| = s

m
. With respect to the automorphism

θ acting on Rp, the set

Rp[x, θ] = {f(x) =
n∑

i=0

aix
i, ai ∈ Rp, for 0 ≤ i ≤ n, (3)

form a ring under the usual addition of polynomials and the multiplication, where

(axi)(bxj) = aθi(b)xi+j . (4)

Definition 2.1. A linear code C of length n over Rp is said to be a skew cyclic code with
respect to the automorphism θ if and only if for any codeword

c = (c0, c1, c2, . . . , cn−1) ∈ C ⇒ σ(c) = (θ(cn−1), θ(c0), θ(c1), . . . , θ(cn−2)) ∈ C, (5)

where σ is a skew cyclic shift of C.
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3. New Gray Map and Gray Images of Linear Codes over Rp

In this section, we delve into a novel avenue of exploration within the realm of linear
codes overRp. Specifically, we introduce and discuss the concept of the ”Gray map” and its
associated ”Gray images.” These concepts present intriguing possibilities for enhancing the
efficiency and versatility of linear codes, offering fresh perspectives on their representation
and utilization. We establish the Gray map and Gray images for linear codes over Rp,
employing the Lee weight through a defined process

ϕ : Rp → F2τ
p

x 7→ ϕ(x) = H2τ · x, (6)

where

x = x0 +

(
τ∑

i1=1

vi1

)
xi11 +

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
xi1i22 + . . .+

(
τ∏

k=1

vk

)
x2τ−1, (7)

with x = (x0, x
i1
1 , x

i1i2
2 , . . . , x2τ−1). Furthermore, H2τ is a Hadamard matrix that is char-

acterized by the equation
H2τ = H2 ⊗H2τ−1 , (8)

where H2 represents one of these matrices.[
1 1
1 −1

]
,

[
1 −1
1 1

]
,

[
−1 1
1 1,

]
,

[
1 1
−1 1

]
,[

−1 −1
−1 1

]
,

[
−1 1
−1 −1

]
,

[
−1 −1
1 −1

]
,

[
1 −1
−1 −1

]
.

This application can be extended to Rn
p , yielding

Φ : Rn
p → F2τn

p

x = (x1, x2, . . . , xn) 7→ Φ(x),
(9)

with

xt = (x0)t +

(
τ∑

i1=1
vi1

)
(xi11 )t +

(
τ−1∑
i1=1

vi1
τ∑

i2=i1+1
vi2

)
(xi1i22 )t + . . . +

(
τ∏

k=1

vk

)
(x2τ−1)t,

for 0 ≤ t ≤ n.
When considering any two elements x and y belonging to Rp, the Lee distance between

them is defined as dLee(x, y) = wLee(x − y). Given the definition of the Gray map, it
becomes evident that we can discern the following outcomes.

Theorem 3.1. The Gray map is an isometry from ( Rn
p , Lee distance) to (F2τn

p , Hamming
distance).

Proof. Upon examining the definition of the Gray map, it becomes evident that Φ operates
as a linear map. Simultaneously, it also functions as a map that preserves distances. □

Lemma 3.1. If C is a linear code of length n over Rp, with minimum Lee distance dLee,
then Φ (C) is [2τn; k; dHam]p-linear codes over Fp.

Theorem 3.2. If C is self orthogonal, then Φ (C) is self orthogonal.

Proof. Consider two elements, denoted as x and y, belonging to a self-orthogonal code C.
Under this assumption, it follows that x · y = 0, where

x = x0 +

(
τ∑

i1=1

vi1

)
xi11 +

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
xi1i22 + . . .+

(
τ∏

k=1

vk

)
x2τ−1,
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and

y = y0 +

(
τ∑

i1=1

vi1

)
yi11 +

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
yi1i22 + . . .+

(
τ∏

k=1

vk

)
y2τ−1,

we have

0 = x0y0 + xi11 y
i1
1 + xi1i22 yi1i22 + . . .+ x2τ−1y2τ−1,

0 =
(
x0y

i1
1 + xi11 y0

)
+ . . .+

(
x
i1i2...i2τ−2

2τ−2 y2τ−1 + x2τ−1y
i1i2...i2τ−2

2τ−2

)
,

...

0 = (x0y2τ−1 + x2τ−1y0) + . . .+
(
xi11 y

i1i2...i2τ−2

2τ−2 + x
i1i2...i2τ−2

2τ−2 yi11

)
.

Conversely, Φ(x) ·Φ(y) = ⟨H2τ ·x, H2τ ·y⟩. With reference to the earlier derived equations,
it becomes evident that Φ(x) · Φ(y) = 0, indicating that the code Φ(C) exhibits self-
orthogonality. □

4. Linear Codes over Rp

In this section, we embark on an in-depth journey into the intricacies of linear codes
over Rp. By elucidating the theoretical foundations and practical implications of linear
codes over Rp, we aim to provide a comprehensive understanding of this crucial coding
paradigm. Through this exploration, we shed light on the advantages, challenges, and
novel applications associated with linear codes overRp. Referring to [12], when considering
an element denoted as c belonging toRp, it becomes possible to represent it in the following
format

c = ⟨ϖ,ϑ⟩Rp , (10)

where

ϖ =


ϖ0

ϖ1
...

ϖ2τ−1

 and ϑ = H2τ ·


c0
ci11
...

c2τ−1

 ,

we obtain
c = ϖ0(c0 + ci11 + ci1i22 + . . .+ c2τ−1)

+ϖ1(c0 + ci11 − ci1i22 + . . .− c2τ−1)
...

+ϖ2τ−1(c0 + ci11 − ci1i22 − . . .− c2τ−1),

(11)

with 
ϖ0

ϖ1
...

ϖ2τ−1

 =
1

2τ
H2τ


1
v1
...(

τ∏
k=1

vk

)
 . (12)

Example 4.1. In the case of τ being equal to 4, we select

H2 =

[
1 1
1 −1

]
.
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The orthogonal non-zero idempotents of a commutative ring Rp = Fp + v1Fp + v2Fp +
v3Fp+v4Fp+v1v2Fp+v1v3Fp+v1v4Fp+v2v3Fp+v2v4Fp+v3v4Fp+v1v2v3Fp+v1v2v4Fp+
v1v3v4Fp + v2v3v4Fp + v1v2v3v4Fp are



ϖ0

ϖ1

ϖ2

ϖ3

ϖ4

ϖ5

ϖ6

ϖ7

ϖ8

ϖ9

ϖ10

ϖ11

ϖ12

ϖ13

ϖ14

ϖ15



=
1

16



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1



·



1
v1
v2
v3
v4

v1v2
v1v3
v1v4
v2v3
v2v4

v1v2v3
v1v2v4
v1v3v4
v2v3v4

v1v2v3v4



,

we obtain

ϖ0 =
1

16
(1 + v1 + v2 + v3 + v4 + v1v2 + v1v3 + v1v4 + v2v3 + v2v4 + v3v4 + v1v2v3 + v1v2v4 + v1v3v4 + v2v3v4 + v1v2v3v4) ,

ϖ1 =
1

16
(1 − v1 + v2 − v3 + v4 − v1v2 + v1v3 − v1v4 + v2v3 − v2v4 + v3v4 − v1v2v3 + v1v2v4 − v1v3v4 + v2v3v4 − v1v2v3v4) ,

ϖ2 =
1

16
(1 + v1 − v2 − v3 + v4 + v1v2 − v1v3 − v1v4 + v2v3 + v2v4 − v3v4 − v1v2v3 + v1v2v4 + v1v3v4 − v2v3v4 − v1v2v3v4) ,

ϖ3 =
1

16
(1 − v1 − v2 + v3 + v4 − v1v2 − v1v3 + v1v4 + v2v3 − v2v4 − v3v4 + v1v2v3 + v1v2v4 − v1v3v4 − v2v3v4 + v1v2v3v4) ,

ϖ4 =
1

16
(1 + v1 + v2 + v3 − v4 − v1v2 − v1v3 − v1v4 + v2v3 + v2v4 + v3v4 + v1v2v3 − v1v2v4 − v1v3v4 − v2v3v4 − v1v2v3v4) ,

ϖ5 =
1

16
(1 − v1 + v2 − v3 − v4 + v1v2 − v1v3 + v1v4 + v2v3 − v2v4 + v3v4 − v1v2v3 − v1v2v4 + v1v3v4 − v2v3v4 + v1v2v3v4) ,

ϖ6 =
1

16
(1 + v1 − v2 − v3 − v4 − v1v2 + v1v3 + v1v4 + v2v3 + v2v4 − v3v4 − v1v2v3 − v1v2v4 − v1v3v4 + v2v3v4 + v1v2v3v4) ,

ϖ7 =
1

16
(1 − v1 − v2 + v3 − v4 + v1v2 + v1v3 − v1v4 + v2v3 − v2v4 − v3v4 + v1v2v3 − v1v2v4 + v1v3v4 + v2v3v4 − v1v2v3v4) ,

ϖ8 =
1

16
(1 + v1 + v2 + v3 + v4 + v1v2 + v1v3 + v1v4 − v2v3 − v2v4 − v3v4 − v1v2v3 − v1v2v4 − v1v3v4 − v2v3v4 − v1v2v3v4) ,

ϖ9 =
1

16
(1 − v1 + v2 − v3 + v4 − v1v2 + v1v3 − v1v4 − v2v3 + v2v4 − v3v4 + v1v2v3 − v1v2v4 + v1v3v4 − v2v3v4 + v1v2v3v4) ,

ϖ10 =
1

16
(1 + v1 − v2 − v3 + v4 + v1v2 − v1v3 − v1v4 − v2v3 − v2v4 + v3v4 + v1v2v3 − v1v2v4 − v1v3v4 + v2v3v4 + v1v2v3v4) ,

ϖ11 =
1

16
(1 − v1 − v2 + v3 + v4 − v1v2 − v1v3 + v1v4 − v2v3 + v2v4 + v3v4 − v1v2v3 − v1v2v4 + v1v3v4 + v2v3v4 − v1v2v3v4) ,

ϖ12 =
1

16
(1 + v1 + v2 + v3 − v4 − v1v2 − v1v3 − v1v4 − v2v3 − v2v4 − v3v4 − v1v2v3 + v1v2v4 + v1v3v4 + v2v3v4 + v1v2v3v4) ,

ϖ13 =
1

16
(1 − v1 + v2 − v3 − v4 + v1v2 − v1v3 + v1v4 − v2v3 + v2v4 − v3v4 + v1v2v3 + v1v2v4 − v1v3v4 + v2v3v4 − v1v2v3v4) ,

ϖ14 =
1

16
(1 + v1 − v2 − v3 − v4 − v1v2 + v1v3 + v1v4 − v2v3 − v2v4 + v3v4 + v1v2v3 + v1v2v4 + v1v3v4 − v2v3v4 − v1v2v3v4) ,

ϖ15 =
1

16
(1 − v1 − v2 + v3 − v4 + v1v2 + v1v3 − v1v4 − v2v3 + v2v4 + v3v4 − v1v2v3 + v1v2v4 − v1v3v4 − v2v3v4 + v1v2v3v4) .

Consider a linear code denoted as C, with a length n, defined over Rp. Additionally,
let Ci represent linear codes of length n over Fp, for 0 ≤ i ≤ 2τ − 1.

Then, C0 = {c0 + (
τ∑

i1=1
ci11 ) + (

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 ) + . . . + c2τ−1,∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈

Fp,∀c ∈ C},

C1 = {c0+(−1)i1(
τ∑

i1=1
ci11 )+(−1)i2(

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 )+. . .−c2τ−1, ∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈

Fp,∀c ∈ C},
...
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C2τ−1 = {c0+(
τ∑

i1=1
ci11 )−(

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 )+. . .−c2τ−1,∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈ Fp, ∀c ∈

C}.

Definition 4.1. Linear codes C of length n over Rp, can be uniquely expressed as

C =
2τ−1⊕
i=0

ϖiCi. (13)

This description of C outlines a number of outcomes, among them the subsequent ones.

Theorem 4.1. Let C be a linear code of length n over Rp, then

Φ(C) =
2τ−1⊗
i=0

Ci and |C| = |C0||C1| . . . |C2τ−1|. (14)

Proof. Applying the definition provided in Equation 4.1 along with the insights from
Theorem 3.1. □

Corollary 4.1. Let C be a linear code of length n over Rp, then Φ(C⊥) = [Φ(C)]⊥.
Further, C is a self-dual code if and only if Φ(C) is a self-dual code.

Proof. Considering an element c from C and c
′
from C⊥, it follows that c · c′ = 0. This

conclusion is based on the insights provided by Theorem 3.2. Consequently, we arrive at
the outcome that Φ(c) · Φ(c′) = 0. This leads us to the relation

Φ(C⊥) ⊆ [Φ(C)]⊥ , (15)

With reference to Theorem 3.1, we deduce the following relationship

|Φ(C⊥)| = | [Φ(C)]⊥ |, (16)

By combining Equations (15) and (16), we arrive at the conclusion Φ(C⊥) = [Φ(C)]⊥ .
The demonstration for the second aspect is evidently straightforward. □

Theorem 4.2. Let C =
2τ−1⊕
i=0

ϖiCi be a linear code of length n over Rp, then C⊥ =

2τ−1⊕
i=0

ϖiC
⊥
i . Further, C is self-dual if and only if Ci, for 0 ≤ i ≤ 2τ − 1 are self-duals.

Proof. Let C⊥ be a linear code over Rp. If,

C0 = {c0 + (
τ∑

i1=1
ci11 ) + (

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 ) + . . .+ c2τ−1,∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈ Fp, ∀c ∈

C⊥},

C1 = {c0+(−1)i1(
τ∑

i1=1
ci11 )+(−1)i2(

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 )+. . .−c2τ−1,∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈

Fp,∀c ∈ C⊥},
...

C2τ−1 = {c0+(
τ∑

i1=1
ci11 )−(

τ−1∑
i1=1

τ∑
i2=i1+1

ci1i22 )+. . .−c2τ−1,∃c0, ci11 , c
i1i2
2 , . . . , c2τ−1 ∈ Fp, ∀c ∈

C⊥},

Considering the definition of c in Equation (11), it follows that C⊥ =
2τ−1⊕
i=0

ϖiCi. It is

evident that Ci ⊆ C⊥
i , for 0 ≤ i ≤ 2τ − 1. Furthermore, if we select an element c from
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C⊥
i , for 0 ≤ i ≤ 2τ − 1, this implies that c · y = 0 holds for all y in Ci. For an element x

belonging to C, the following holds

1

2τ

(
1 +

(
τ∑

i1=1

vi1

)
+

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
+ . . .+

(
τ∏

k=1

vk

))
c · x = 0

so,

1

2τ

(
1 +

(
τ∑

i1=1

vi1

)
+

(
τ−1∑
i1=1

vi1

τ∑
i2=i1+1

vi2

)
+ . . .+

(
τ∏

k=1

vk

))
c = 0.

However, the uniqueness of the code C⊥ becomes apparent. As a result, it follows that
c ∈ Ci, for 0 ≤ i ≤ 2τ − 1. Ultimately, we deduce that Ci = C⊥

i holds for 0 ≤ i ≤ 2τ − 1,
and we arrive at the expression

C⊥ =

2τ−1⊕
i=0

ϖiC
⊥
i .

Exploiting the self-duality property of the code C and taking into account Theorem 4.1,
we derive the following equivalences

C⊥ = C ⇔ Φ
(
C⊥) = Φ(C)

⇔
2τ−1⊗
i=0

C⊥
i =

2τ−1⊗
i=0

Ci

⇔ C⊥
i = Ci, for 0 ≤ i ≤ 2τ − 1.

Consequently, we can ascertain that Ci, for 0 ≤ i ≤ 2τ − 1, are inherently self-dual
codes. □

Theorem 4.3. If Gi, for 0 ≤ i ≤ 2τ − 1 are generator matrices of Ci, for 0 ≤ i ≤ 2τ − 1
then the generator matrix of C is

G =
1

2τ
[H2τ ] ·


1
v1
...(

τ∏
k=1

vk

)
 ·


G0

G1
...

G2τ−1


⊤

. (17)

Through the application of the Gray map Φ, the subsequent outcome can be readily
derived.

Theorem 4.4. If C is a linear code of length n over Rp with generator matrix G, then

Φ(G) =


G0 G0 G0 . . . G0

G1 −G1 G1 . . . −G1
...

...
...

...
...

G2τ−1 −G2τ−1 −G2τ−1 . . . −G2τ−1

 . (18)

Proof. The result can be acquired using the matrix provided below

Φ(G) =


Φ (ϖ0G0)
Φ (ϖ1G1)

...
Φ (ϖ2τ−1G2τ−1)

 .

□
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Example 4.2. In the context of R4 = F4 + v1F4 + v2F4 + v1v2F4, given the generator

matrices Gi =

[
1 w
w 1

]
for Ci, where 0 ≤ i ≤ 3, the resulting code Φ(C) generated by

Φ(G) =



1 w
w 1

1 w
w 1

1 w
w 1

1 w
w 1

1 w
w 1

w2 + w w2 + 1
w2 + 1 w2 + w

1 w
w 1

w2 + w w2 + 1
w2 + 1 w2 + w

1 w
w 1

1 w
w 1

w2 + w w2 + 1
w2 + 1 w2 + w

w2 + w w2 + 1
w2 + 1 w2 + w

1 w
w 1

w2 + w w2 + 1
w2 + 1 w2 + w

w2 + w w2 + 1
w2 + 1 w2 + w

1 w
w 1


.

5. Skew Cyclic Codes over Rp

The following section delves into the realm of skew cyclic codes over Rp. This investi-
gation revolves around the intricate study of codes with distinctive properties, specifically
within the algebraic structure of the ring Rp. Skew cyclic codes, an essential subset of
linear codes, possess remarkable characteristics that stem from their cyclic nature. In
this section, we explore the fundamental concepts, properties, and encoding techniques
associated with skew cyclic codes over the ring Rp. By delving into the intricacies of this
coding theory, we aim to illuminate the potential applications and significance of skew
cyclic codes within the context of Rp.

Theorem 5.1. Let C =
2τ−1⊕
i=0

ϖiCi be a linear code over Rp of length n where Ci, for

0 ≤ i ≤ 2τ − 1 are linear codes of length n over Fp. Then C is a skew cyclic code over
Rp if and only if Ci, for 0 ≤ i ≤ 2τ − 1 are skew cyclic codes over Fp, with respect to the
automorphism θ.

Proof. Considering an element c = (c0, c1, . . . , cn−1) within the set C, it follows that ck

can be expressed as
2τ−1∑
i=0

ϖic
k
i , where 0 ≤ k ≤ n − 1. This relationship elucidates the

manner in which

c0 = (c00, c
1
0, . . . , c

n−1
0 ) ∈ C0,

c1 = (c01, c
1
1, . . . , c

n−1
1 ) ∈ C1,

...

c2τ−1 = (c02τ−1, c
1
2τ−1, . . . , c

n−1
2τ−1) ∈ C2τ−1.

Given that Ci, where 0 ≤ i ≤ 2τ −1, represents a collection of skew cyclic codes, it follows
that σ(ci) belongs to Ci for each value of i within the specified range. Furthermore,
assuming the equation

θ(ck) =

2τ−1∑
i=0

ϖiθ(c
k
i ), for 0 ≤ k ≤ n− 1,

we can then proceed to derive the expression

σ(c) = (θ(cn−1), θ(c0), θ(c1), . . . , θ(cn−2))

= σ(c0) +

(
τ∑

i1=1

vi1

)
σ(ci11 ) +

(
τ−1∑
i1=1

τ∑
i2=i1+1

vi1vi2

)
σ(ci1i22 )

+ . . .+

(
τ∏

k=1

vk

)
σ(c2τ−1) ∈ C,
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This implication leads us to conclude that σ(c) ∈ C, thereby establishing that the code C
is skew cyclic over Rp. Similar reasoning applies for the converse implication. □

Corollary 5.1. The dual code C⊥ is a skew cyclic code over Rp, if C is a skew cyclic
code over Rp.

Proof. In the event that C is formed as the direct sum
2τ−1⊕
i=0

ϖiCi, establishing it as a skew

cyclic code over Rp, Theorem 5.1 comes into play. According to this theorem, it can be
deduced that Ci, for 0 ≤ i ≤ 2τ − 1, stands as skew cyclic codes over Fp. Furthermore,

drawing insights from [3], it follows that C⊥
i , considering the same range for i, also hold

the status of skew cyclic codes over Fp. By leveraging the theorems outlined in 4.2 and

5.1, it becomes apparent that a compelling deduction can be made: C⊥ emerges as a skew
cyclic code over Rp. □

This culminates in a clear corollary which, in turn, leads to the realization of the
following set of outcomes.

Corollary 5.2. The code C is a self-dual skew cyclic code over Rp if and only if Ci, for
0 ≤ i ≤ 2τ − 1 are self-dual skew cyclic codes over Fp.

Proof. To establish the validity of this proposition, it is adequate to utilize Theorems 4.2
and 5.1. □

Theorem 5.2. Let C =
2τ−1⊕
i=0

ϖiCi be a skew cyclic code of length n over Rp. Assume that

gi(x), is a generator polynomial of Ci, for 0 ≤ i ≤ 2τ − 1, then |C| = p
2τn−

2τ−1∑
i=0

(deg gi(x))

and C = ⟨ϖ0g0(x), ϖ1g1(x), . . . , ϖ2τ−1g2τ−1(x)⟩.

Proof. According to Theorem 4.1 the equality below is satisfied

|C| = |C0||C1| . . . |C2τ−1| = p
2τn−

2τ−1∑
i=0

(deg gi(x))
.

Let Ci = ⟨gi(x)⟩, for 0 ≤ i ≤ 2τ − 1 and C =
2τ−1⊕
i=0

ϖiCi this assumption allows us to write

C in the form C = {c(x) =
2τ−1∑
i=0

ϖifi(x)gi(x), ∀fi(x) ∈ Fp[x, θ], for 0 ≤ i ≤ 2τ − 1}, so

C ⊆ ⟨ϖ0g0(x), ϖ1g1(x), . . . , ϖ2τ−1g2τ−1(x)⟩.

On the other hand, we have
2τ−1∑
i=0

ϖihi(x)gi(x) ∈ ⟨ϖ0g0(x), ϖ1g1(x), . . . , ϖ2τ−1g2τ−1(x)⟩,

but hi(x) ∈ Rp[x, θ]/(x
n− 1), for 0 ≤ i ≤ 2τ − 1, thus there exists fi(x) ∈ Fp[x, θ], such as

ϖihi(x) = ϖifi(x), for 0 ≤ i ≤ 2τ−1, so that ⟨ϖ0g0(x), ϖ1g1(x), . . . , ϖ2τ−1g2τ−1(x)⟩ ⊆ C,
we find C = ⟨ϖ0g0(x), ϖ1g1(x), . . . , ϖ2τ−1g2τ−1(x)⟩. □

Theorem 5.3. If Ci, for 0 ≤ i ≤ 2τ − 1 be skew cyclic codes over Fp and gi(x), for
0 ≤ i ≤ 2τ−1 be the generator polynomials of these codes, then there is a unique polynomial
g(x) ∈ Rp[x, θ] such that C = ⟨g(x)⟩ and g(x) is a right divisor of xn − 1, where g(x) =
2τ−1∑
i=0

ϖigi(x).

Proof. Utilizing Theorem 4.6 from [16], one can make analogous arguments. □
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Corollary 5.3. Let Ci, for 0 ≤ i ≤ 2τ − 1 be skew cyclic codes over Fp and gi(x), for
0 ≤ i ≤ 2τ − 1 their generator polynomials, such that xn − 1 = hi(x)gi(x) in Fp[x, θ]. If

C is a skew cyclic code over Rp, then C⊥ =
2τ−1∑
i=0

ϖihi(x), where hi(x) are the reciprocal

polynomials of hi(x) and hi(x) = xdeg(gi(x))gi(x
−1), for 0 ≤ i ≤ 2τ − 1. Furthermore,

|C⊥| = p

2τ−1∑
i=0

(deg gi(x))
.

Proof. The proof closely parallels the one provided for Theorem 5.2. □

Example 5.1. Let q = 2, τ = 3, s = 6 and F64 = F2[α], where α6 = α3 + 1 assume
that θ(α) = α8 and n = 9, then x9 − 1 = (x + 1)(x6 + x3 + 1)(x2 + x + 1). Note that
Ci = C⊥

i = ⟨fi(x) = f∗
i (x) = x6 + x3 + 1⟩ , for 0 ≤ i ≤ 7 are self-dual skew cyclic codes

over F64. Then, C = C⊥ = ⟨ϖ0(x
6 + x3 + 1), ϖ1(x

6 + x3 + 1), ϖ2(x
6 + x3 + 1), ϖ3(x

6 +
x3+1)(x), ϖ4(x

6+x3+1), ϖ5(x
6+x3+1), ϖ6(x

6+x3+1), ϖ7(x
6+x3+1)⟩ is a self-dual

skew cyclic code over Rp.

5.1. Certain Properties of Skew Cyclic Codes over Rp. In the preceding section,
our investigation revolved around analyzing the structural characteristics of skew cyclic
codes over the ring Rp. We achieved this by delving into a decomposition theorem. In
the current section, we are furthering our exploration by demonstrating their idempotent
generators.

The basis for our current approach is grounded in a result presented in [9]. This result
asserts that, under the conditions where gcd(n, s

m) = 1 and gcd(n, p) = 1 hold, if we have
a monic right divisor, denoted as f(x), of xn − 1 within the algebraic structure Fp[x, θ],
then it is guaranteed that f(x) also belongs to Fp[x].

Theorem 5.4. [9] Let f(x) ∈ Fp[x, θ] be a monic right divisor of (xn−1) and C = ⟨f(x)⟩.
If gcd(n,

s

m
) = 1 and gcd(n, p) = 1 then, there exists an idempotent polynomial e(x) ∈

Rp[x, θ] such that C = ⟨e(x)⟩.

Corollary 5.4. Let gcd(n,
s

m
) = 1 and gcd(n, p) = 1, if C =

2τ−1⊕
i=0

ϖiCi is a skew cyclic

code of length n over Rp. Then, C has an idempotent generator e(x) in Rp[x, θ].

Proof. By applying Theorem 5.4, we establish the existence of idempotent generators,
denoted as ei(x), for each Ci within the algebraic structure Fp[x, θ]. Additionally the code
Ci is generated by ei(x), for 0 ≤ i ≤ 2τ − 1.

Furthermore, as outlined in Theorem 5.3, it is affirmed that the idempotent generator

e(x) can be expressed as e(x) =
2τ−1∑
i=0

ϖiei(x) for C, where ϖi is a coefficient. This theorem

offers a comprehensive understanding of how e(x) can be constructed as a combination of
the idempotent generators ei(x) for the entire code. □

Theorem 5.5. Let gcd(n,
s

m
) = 1 and gcd(n, p) = 1, if C =

2τ−1⊕
i=0

ϖiCi is a skew cyclic

code of length n over Rp, then C⊥ has an idempotent generator e
′
(x) = 1 − e(x−1) in

Rp[x, θ].

Proof. Suppose that we have idempotent generators ei(x) for the subgroups Ci in Fp[x, θ],

for 0 ≤ i ≤ 2τ − 1. As detailed in [10], each corresponding dual code C⊥
i possesses an
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idempotent generator denoted as e
′
i(x), which can be expressed as e

′
i(x) = 1− ei(x

−1), for
0 ≤ i ≤ 2τ − 1.

Now, drawing upon Theorem 5.3, we can deduce that the overall dual code C⊥ is
equipped with an idempotent generator denoted as e

′
(x). This generator is given by the

expression e
′
(x) = 1− e(x−1) =

2τ−1∑
i=0

ϖie
′
i(x). □

Additionally, as per the information presented in [8], when the conditions gcd(n, s
m) = 1

are met, and C is a skew cyclic code with a length of n over the ring Rp, it follows that
C also qualifies as a cyclic code with the same length n over the same ring Rp. This
realization leads us directly to the following result.

Theorem 5.6. Let xn − 1 =
l∏

j=1
f
lj
j (x) and gcd(n,

s

m
) = 1 where, fj(x) ∈ Fp[x, θ] is

irreducible. Then, the number of skew cyclic codes of length n over Rp is
l∏

j=1
(lj + 1)8.

Proof. When the conditions gcd(n, s
m) = 1 and fj(x) ∈ Fp[x] are satisfied, the count of

skew cyclic codes with a length of n over Fp equals
l∏

j=1
(lj + 1).

Moreover, we can extend this concept to skew cyclic codes with a length of n over Rp,
where the number of such codes is equivalent to the count of ideals in Rp[x, θ] modulo
the factor (xn − 1). By referencing Definition 4.1, it is established that the count of skew

cyclic codes of length n over Rp is
l∏

j=1
(lj + 1)8. □

5.2. Gray Images of Skew Cyclic Codes with Good Parameters. According to
the reference provided in [15], a linear code over a finite field is considered to have good
parameters if it satisfies certain bounds, such as those defined by Singleton, Griesmer,
or Gilbert-Varshamov. These bounds are articulated through the following expressions:

d ≤ n − k + 1, n ≥
k−1∑
i=0

dH
qi

and Aq(n, d) ≥
qn

d−1∑
i=0

Ci
n(q − 1)i

respectively. In the provided

context, Aq(n, d) represents the maximum size of a q-ary code with a block length of n
and a minimum distance of d. Within the scope of our research, a primary objective is
to construct codes with good parameters over the finite field Fp, originating from the rich
structure of skew cyclic codes over the ring Rp. This goal is motivated by the practical
necessity of implementing error-correcting codes in finite field settings, frequently encoun-
tered in digital communication systems, cryptography, and other information processing
applications. Through a computer search conducted using Magma, Sage, and the database
(http://www.codetables.de), we have identified several codes exhibiting optimal or nearly
optimal parameters. Presented below is a selection of these codes for reference.

Example 5.2. Consider R7 = F7 + v1F7 + v2F7 + v1v2F7, the factorization of x20 − 1 =
(x+1)(x+6)(x2+1)(x4+x3+x2+x+1)(x4+3x3+4x2+4x+1)(x4+4x3+4x2+3x+
1)(x4 +6x3 + x2 +6x+1). Note that for 0 ≤ i ≤ 7, Ci denotes a skew cyclic code over F7

defined by the generator polynomial ⟨x4+x3+x2+x+1⟩, and C is a code characterized by
the parameters [20, 16, 4]. In accordance with Lemma 3.1, Theorems 4.4, and 5.3, it can
be concluded that Φ(C)[80, 64, 8] forms a skew cyclic code over F7 with good parameters.



K. CHATOUH: SKEW-CYCLIC LINEAR CODES OVER THE RING RP AN IN-DEPTH... 523

Example 5.3. Consider R5, for τ = 3 the factorization of x16 − 1 = (x+ 1)(x+ 2)(x+
3)(x + 4)(x2 + 2)(x2 + 3)(x4 + 2)(x4 + 3). Note that for 0 ≤ i ≤ 7, Ci denotes a skew
cyclic code over F5 defined by the generator polynomial ⟨x8 + x6 + 2x2 + 1⟩, and C is a
code characterized by the parameters [16, 8, 8], admitting a generator matrix G given by:

G =



1000000010100020
0100000001010002
0010000030401010
0001000003040101
0000100040204040
0000010004020404
0000001010002010
0000000101000201


. (19)

According to Lemma 3.1, Theorems 4.4, and 5.3, it can be concluded that Φ(C)[128, 64, 32]
forms a skew cyclic code over F5 with good parameters.

Example 5.4. Consider R11, for τ = 4 the factorization of x48−1 = (x+1)(x+10)(x2+
1)(x2+3x+10)(x2+8x+10)(x4+3x2+10)(x4+8x2+10)(x8+3x4+10)(x8+8x4+10)(x16+
3x8+10)(x16+8x8+10)(x32+3x16+10)(x32+8x16+10)(x64+3x32+10)(x64+8x32+10).
Note that for 0 ≤ i ≤ 7, Ci denotes a skew cyclic code over F11 defined by the generator
polynomial ⟨x16 + 5x14 + 10x12 + 3x10 + 4x8 + 8x6 + 10x4 + 6x2 + 1⟩, and C is a code
characterized by the parameters [48, 32, 8]. In accordance with Lemma 3.1, Theorems 4.4,
and 5.3, it can be concluded that Φ(C)[768, 512, 64] forms a skew cyclic code over F11 with
good parameters.

Some optimal linear skew cyclic codes, obtained through the Gray map Φ, are detailed
in the table below,

Table 1. Linear skew cyclic codes Φ(C) with good parameters

τ p C[n, k, d] Ci = ⟨gi(x)⟩, 0 ≤ i ≤ 7 Φ(C)[2τn, 2τk, d
′
] O

5 3 [40, 30, 8]
(
x10 + 2x9 + x8 + 2x7 + x6 + x3 + x+ 1

)
[1280, 960, 128] yes

4 5 [28, 12, 12]

(
x16 + 3x15 + 2x14 + x9 + 3x8 + 2x7

+3x2 + 4x+ 1

)
[448, 192, 96] yes

6 7 [36, 24, 10]

(
x12 + 2x11 + 4x10 + 3x9 + 4x8 + x7

+4x6 + 4x5 + x4 + 6x3 + x2 + 2x+ 4

)
[2304, 1536, 320] yes

3 11 [18, 8, 4]

(
x10 + x8 + x7 + x6 + x5 + x4

+x3 + x2 + 1

)
[144, 64, 16] yes

3 13 [32, 24, 4]

(
x8 + 7x7 + 10x6 + 9x5 + 4x4

+9x3 + 11x2 + 6x+ 8

)
[256, 192, 16] yes

2 17 [24, 7, 18]


x17 + 12x16 + 8x15 + 15x14 + 11x13

+8x12 + 15x11 + 11x10 + 9x9 + 10x8

+2x7 + 6x6 + 9x5 + 2x4 + 6x3

+9x2 + 3x+ 1

 [96, 28, 36] yes

6. Skew Cyclic LCD Codes over Rp

In this section of the article, we delve into the intriguing realm of skew cyclic Linear-
Complementary-Dual (LCD) codes over the ring Rp. These codes represent a vital and
mathematically fascinating area of study in coding theory and information theory, offering
unique properties and applications that set them apart from traditional linear codes. Skew
cyclic LCD codes are particularly noteworthy due to their robust error correction capabil-
ities, efficient encoding and decoding procedures, and their relevance in various practical
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scenarios, such as data transmission, cryptography, and storage systems. Our exploration
in this section will shed light on the fundamental concepts, structural properties, and en-
coding techniques associated with skew cyclic LCD codes over the ring Rp.

Drawing inspiration from the concepts presented in [14], we arrive at the subsequent
findings.

Theorem 6.1. Let C =
2τ−1⊕
i=0

ϖiCi be a skew cyclic LCD code over Rp if and only if Ci,

for 0 ≤ i ≤ 2τ − 1 are skew cyclic LCD codes over Fp.

Proof. By making use of Definition 4.1 in conjunction with Theorems 4.2 and 5.1, we
obtain the following

C ∩ C⊥ = {0Rp} ⇔
(

2τ−1⊕
i=0

ϖiCi

)
∩
(

2τ−1⊕
i=0

ϖiC
⊥
i

)
= {0Rp}

⇔
2τ−1⊕
i=0

ϖi

(
Ci ∩ C⊥

i

)
= {0Rp}

⇔ Ci ∩ C⊥
i = {0Fp}, for 0 ≤ i ≤ 2τ − 1.

□

Theorem 6.2. If C =
2τ−1⊕
i=0

ϖiCi be a skew cyclic LCD code over Rp, then C⊥ =

2τ−1⊕
i=0

ϖiC
⊥
i is a skew cyclic LCD code.

Proof. Consider the skew cyclic LCD code C over Rp, which can be expressed as C =
2τ−1⊕
i=0

ϖiCi. According to Theorem 6.1, when we obtained Ci, for 0 ≤ i ≤ 2τ − 1, these

codes are skew cyclic LCD codes over Fp. Consequently, we can assert that

(Ci)
⊥ ∩

(
(Ci)

⊥
)⊥

= (Ci)
⊥ ∩ Ci = {0Fp}.

This implies that the dual code C⊥, defined as C⊥ =
2τ−1⊕
i=0

ϖiC
⊥
i , is also a skew cyclic LCD

code over Rp. □

Theorem 6.3. Let C =
2τ−1⊕
i=0

ϖiCi is a skew cyclic LCD code over Rp, then Φ(C) is a

skew cyclic LCD code over Fp.

Proof. Applying Theorems 4.1 and 6.1, we derive the following result

Φ(C) ∩ (Φ(C))⊥ =

(
2τ−1⊗
i=0

Ci

)
∩

(
2τ−1⊗
i=0

C⊥
i

)
=

2τ−1⊗
i=0

(
Ci ∩ C⊥

i

)
= {0Fp}.

□

7. Conclusion

Overall, this article contributes to the advancement of coding theory by investigating
the intricacies of linear codes, skew cyclic codes, and skew cyclic LCD codes over Rp. The
New Gray map serves as a valuable tool for visualizing code structures, aiding researchers
in better understanding the underlying principles. The insights into the properties and
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applications of these codes have the potential to impact various fields, ranging from com-
munication systems to error correction techniques, ultimately leading to improved data
reliability and transmission efficiency in practical settings.

References

[1] Aleams, B., Muchtadi, I.M., and Muchlis, A., (2018), Skew-cyclic codes over Bk, J. Appl. Math.
Comput., (57), 69-84.

[2] Barra, I.A., Dougherty, S.T., Muchlis, A., Muchtadi-Alamsyah, I., Solé, P., Suprijanto, D., and Yemen,
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