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CUBIC-BSPLINE COLLOCATION METHOD FOR NUMERICAL

SOLUTIONS OF THE NONLINEAR FRACTIONAL ORDER

KLEIN–GORDON EQUATION

J. DAMIRCHI1∗, S. SHAGHOLI2, S. FOADIAN3, §

Abstract. This research paper focuses on utilizing the cubic-Bspline collocation method
to obtain numerical solutions for the time-fractional nonlinear Klein–Gordon (TFNKG)
equation. The Klein–Gordon (KG) equation, which characterizes nonlinear wave propa-
gation, is extended by replacing the time derivative in Caputo sense of order derivative
of order α, (1 < α ≤ 2). The L2 discretization formula is employed to approximate the
time-fractional derivative. The spatial variable is discretized using cubic B-spline basis
functions, and the nonlinear terms are linearized using the quasilinearization technique.
Through the proposed method, the main problem is transformed into a more computa-
tionally manageable problem. Numerical examples involving different types of nonlinear-
ities are tested to demonstrate the accuracy of the developed scheme. The simulations
confirm the high accuracy of the proposed method when compared to analytical solu-
tions, as well as other methods such as the Sinc-Chebyshev collocation method (SCCM)
and the variational iteration method (VIM). The accuracy of the developed scheme is
also evaluated using error norms L∞ and L2. The research findings of this study sub-
stantiate the efficacy and credibility of the proposed methodologies in the analysis of
fractional differential equations.

Keywords: Fractional Klein–Gordon equation, Caputo derivative, Cubic-Bspline method,
Quasilinearization.

AMS Subject Classification: 65Nxx, 74G15, 35R11

1. Introduction

Fractional-order calculus has received considerable attention in the engineering and
physical sciences over the last few decades to model several diverse phenomena in robotic
technology, bio-engineering, control theory, viscoelasticity diffusion model, relaxation pro-
cesses, and signal processing [1,22]. The order of derivatives, as well as integrals in the
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fractional-order calculus, is arbitrary. Therefore, fractional-order nonlinear partial differ-
ential equations (NPDEs) have developed a fundamental interest in generalizing integer-
order NPDEs to model complex systems in thermodynamics, engineering, fluid dynamics,
and optical physics [16]. Many considerable works on the theoretical analysis [5,32] have
been carried on. In the field of solving applied problems, there are several fractional dif-
ferential equations that have extensive applications in physics and engineering. Some of
these equations include: the fractional Hamiltonian amplitude equation, fractal-fractional
shallow water wave equation, fractional modified Kdv–Kadomtsev–Petviashvili equation,
the local fractional Bogoyavlensky–Konopelchenko model, the fractional Kdv–Zakharov–
Kuznetsov equation, and the modified fractal gas dynamics model [26–31].

There are several definitions of a fractional derivative of order α > 0 [20]. The two
most commonly used are the Riemann–Liouville and Caputo. In this paper, we will use
the Caputo fractional derivative which is

c
aD

α
t φ(t) =


1

Γ(n−α)

∫ t
a

φ(n)(τ)
(t−τ)α+1−n dτ, n− 1 < α < n,

dnφ(t)
dtn , α = n ∈ N,

where Γ(·) is the Gamma function.
The KG equation considered herein is a basic nonlinear evolution equation that arises
in relativistic quantum mechanics. It was formulated by Erwin Schrödinger for the non-
relativistic wave equation in quantum physics, while precisely studied by the famous physi-
cists Oskar Klein and Walter Gordon in 1926 [10,14]. The KG equation has an extensive
variety of applications in classical field theory [2] as well as in quantum field theory [3]. It
has also been extensively used in numerous areas of physical phenomena such as in solid-
state physics, dispersive wave phenomena, nonlinear optics, elementary particle behavior,
dislocations propagation in crystals, and different classes of soliton solutions [13]. The
classical KG equation, which is based on the assumption of homogeneous space and time,
is inadequate for explaining chargeless systems and single-particle systems at mesoscopic
and macroscopic scales. This is because, in such scales, space and time exhibit non-
homogeneous behavior that cannot be accurately described using classical calculus. To
address this limitation, the TFNKG equation has been proposed as an alternative. Hence,
in this paper, we explore a generalized form of KG by considering a Caputo fractional
time derivative of order 1 < α ≤ 2, as follows:

∂αφ

∂tα
+ a0

∂2φ

∂x2
+ b0φ+ c0φ

β = G(x, t), 0 < x < 1, 0 < t < tf , (1)

with the initial and Dirichlet boundary conditions

φ(x, 0) = f1(x),
∂φ

∂t
(x, 0) = f2(x), 0 ≤ x ≤ 1, (2)

φ(0, t) = p(t), φ(1, t) = q(t), 0 ≤ t ≤ tf , (3)

where φ = φ(x, t) represents the wave displacement at position x and time t, the pa-
rameters a0, b0, and c0 are real constants, β = 2 or β = 3, G(x, t) stands for the source

term, and f1(x), f2(x), p(t), and q(t) are analytical known functions. Also, ∂αφ
∂tα is the

time-fractional derivative the Caputo sense as follows

∂αφ(x, t)

∂tα
=


1

Γ(2−α)

∫ t
0

1
(t−τ)α−1

∂2φ(x,τ)
∂τ2

dτ, 1 < α < 2,

∂2φ(x,t)
∂t2

, α = 2.
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For α = 2, we get the classical KG equation which appears in classical relativistic and
quantum mechanics and analysis of wave propagation in linear dispersive media. The
fractional KG equation extends the classical KG equation. Additionally, this equation has
been used to model a wide range of physical phenomena, including:

• Nonlinear waves, such as shock waves and solitary waves;
• Fractal structures, such as coastlines and snowflakes;
• Anomalous diffusion, such as diffusion in disordered media.

As we know, there is no classical method to handle the nonlinear fractional partial dif-
ferential equations and provide the explicit solution due to the complexities of fractional
calculus. For this reason, we need accurate semi-analytical or numerical approaches to
find the approximate solution of such problems. Some authors studied the analytical
and numerical methods to find the analytical or approximate solutions of fractional dif-
ferential equations [9,11,12,15,21]. The fractional order KG equation is solved by the
Sinc–Chebyshev collocation method in [18]. Singh et al. [24], presented a reliable numer-
ical algorithm for the fractional KG equation. In [23], an efficient computational method
is applied to solve the time-space fractional KG equation. Ganji et al., applied clique
polynomials to solve the time-fractional KG equations [8]. In this regard, we apply the
cubic B-spline method to obtain the numerical solution of the problem (1)–(3).

The remainder of the work is arranged in the following sections. In Section 2, the
properties of the cubic B-splines collocation method are discussed. In Section 3, the
application of the cubic B-spline method to get numerical solutions of the TFNKG equation
is presented. The numerical computations and results are made in Section 4. Finally,
concluding remarks are drawn in Section 5.

2. Cubic B-spline functions

In this Section, we describe the uniform cubic B-spline on the finite interval [0, 1]. For
this purpose, we divide the interval [0, 1] into M -subintervals by the set of M + 1 nodal
points xi, 0 ≤ i ≤ M . This gives a partition π : 0 = x0 < x1 < · · · < xM−1 < xM = 1 of
[0, 1], where ∆xi = xi − xi−1, ∀ 1 ≤ i ≤ M . The cubic B-splines are constructed for the
partition

Π : x−2 < x−1 < x0 = 0 < x1 < · · · < xM = 1 < xM+1 < xM+2,

by using four fictitious nodes x−2, x−1, xM+1, xM+2.
If we assume that ∆xi = hx, ∀ − 1 ≤ i ≤ M + 2, then the uniform cubic B-splines are
defined by, [7],

Bi(x) =
∆4Fx(xi−2)

h3x
,

where

Fx(xi) = (xi − x)3+ =

{
(xi − x)3, x < xi,

0, x ≥ xi,

and ∆4Fx(xi) is the fourth forward difference with equally spaced nodes of third-degree
polynomial Fx(xi). After some simplification, we get

Bi(x) =
1

h3
x



(x− xi−2)
3, xi−2 ≤ x < xi−1,

h3
x + 3h2

x(x− xi−1) + 3hx(x− xi−1)
2 − 3(x− xi−1)

3, xi−1 ≤ x < xi,

h3
x + 3h2

x(xi+1 − x) + 3hx(xi+1 − x)2 − 3(xi+1 − x)3, xi ≤ x < xi+1,

(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,

0, otherwise.

(4)
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It can be easily see that the functions in {B−1, B0, . . . , BM , BM+1} are linearly indepen-
dent on [0, 1], ([6]). By using splines defined in (4), the values of Bi(x) and its derivatives
at the nodes xi’s are given in Table 1.

Table 1. The values of Bi(x) and its derivatives at the nodal points.

xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0

B′
i(x) 0 3

hx
0 −3

hx
0

B′′
i (x) 0 6

h2
x

−12
h2
x

6
h2
x

0

3. Description of the proposed method

In this Section, we present the application of the cubic B-spline method to get numerical
solutions to the problem (1)–(3).

3.1. Space discretization by the cubic B-spline. In this subsection, we introduce our
method based on the cubic B-spline functions for the discretization of spatial derivatives
that appeared in the TFNKG equation (1). To apply the proposed method, express φ(x, t)
by using cubic B-spline functions. Let

φ(x, tj) ∼=
M+1∑
i=−1

σj
iBi(x), (5)

be the approximate solution of the problem (1) at the j-th time level, where σj
i is unknown

time-dependent quantities to be determined.
Using approximate solution (5) and cubic B-spline (4), the approximate values at the

knots of φ(xi, tj) and its derivatives up to the second order are determined in terms of the

time parameters σj
i as

φ(xi, tj) = σj
i−1 + 4σj

i + σj
i+1, (6)

φ′(xi, tj) =
( 3

hx

)(
σj
i+1 − σj

i−1

)
, (7)

φ′′(xi, tj) =
( 6

h2x

)(
σj
i−1 − 2σj

i + σj
i+1

)
. (8)

3.2. Time discretization of the time-fractional derivative. Within this section, our
objective is to discretize the time-fractional derivatives. We employ the L2 formula to
discretize Caputo’s fractional derivative depicted in equation (1) as follows [20]:

∂αφ

∂tα
(x, tj+1) = γα

j∑
m=0

ωm

[
φ(x, tj−m+1)− 2φ(x, tj−m) + φ(x, tj−m−1)

]
, (9)

where

γα =
h−α
t

Γ(3− α)
, ωm = (m+ 1)2−α −m2−α,

where ht is the time step. In equation (1), if we use the linearization

(1− β)φβ(x, tj) + βφβ−1(x, tj)φ(x, tj+1),
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which is similar to the quasilinearization technique [4], instead of nonlinear term φβ(x, tj+1),
and set the approximation (9) in this equation, we obtain[

γα + b0 + c0βφ
β−1(x, tj)

]
φ(x, tj+1) + a0

∂2φ

∂x2
(x, tj+1)

= G(x, tj+1) + c0(β − 1)φβ(x, tj) + γα

[
2φ(x, tj)− φ(x, tj−1)

]
− γα

[
j∑

m=1

ωm

(
φ(x, tj−m+1)− 2φ(x, tj−m) + φ(x, tj−m−1)

)]
.

(10)

Now, substituting the approximate values (6) and (8) in equation (10) yield the following
equation with the variable σ

θ1σ
j+1
i−1 + θ2σ

j+1
i + θ1σ

j+1
i+1 = G(xi, tj+1) + c0(β − 1)

[
σj
i−1 + 4σj

i + σj
i+1

]β
+ γα

[
2
[
σj
i−1 + 4σj

i + σj
i+1

]
−
[
σj−1
i−1 + 4σj−1

i + σj−1
i+1

]]
(11)

−γα

[
j∑

m=1

ωm

([
σj−m+1
i−1 + 4σj−m+1

i + σj−m+1
i+1

]
− 2
[
σj−m
i−1 + 4σj−m

i + σj−m
i+1

]
+
[
σj−m−1
i−1 + 4σj−m−1

i + σj−m−1
i+1

])]
where i = 0, 1, . . . ,M , j = 0, 1, . . . , and

θ1 = R+
6a0
h2x

, θ2 = 4R− 12a0
h2x

, R = γα + b0 + c0β
(
σj
i−1 + 4σj

i + σj
i+1

)β−1
.

System (11) consists of (M+1) linear equations in (M+3) unknowns (σ−1, σ0, σ1, . . . , σM+1).
To obtain a unique solution to the resulting system two additional constraints are required.
These are obtained by imposing boundary conditions (3). Eliminating σ−1, and σM+1 the
system gets reduced to a matrix system of dimension (M + 1) × (M + 1) which is a
tridiagonal system that can be solved by Thomas algorithm [25]. Finally, we can obtain

φ(xi, tj) = σj
i−1 + 4σj

i + σj
i+1, i = 0, 1, . . . ,M, j = 1, 2, . . .

3.3. The initial vector. At a particular time level, the approximate solution φ(x, t) can
be determined repeatedly by solving the recurrence relation, once the initial vectors have
been computed from the initial conditions.
From the initial condition

φ(xi, 0) = f1(xi), i = 0, 1, . . . ,M,

we get (M + 1) equations in (M + 3) unknowns. The two unknowns σ0
−1 and σ0

M+1 can
be obtained from the relation φx(x0, 0) = f ′

1(x0) and φx(xM , 0) = f ′
1(xM ) at the knots.

It leads to a system of (M + 1) equations in (M + 1) unknowns which can be solved by
Thomas algorithm.
Also, given that φ(x, t−1) = f1(x)− htf2(x), from the initial conditions

φ(xi, 0) = f1(xi),
∂φ

∂t
(xi, 0) = f2(xi), i = 0, 1, . . . ,M,

we get (M +1) equations in (M +3) unknowns. The two unknowns σ−1
−1 and σ−1

M+1 can be

obtained from the relation φx(x0, 0) = f ′
1(x0), φx(xM , 0) = f ′

1(xM ), (∂φ∂t )x(x0, 0) = f ′
2(x0),
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and (∂φ∂t )x(xM , 0) = f ′
2(xM ) at the knots. It leads to a system of (M + 1) equations in

(M + 1) unknowns which can be solved by the Thomas algorithm.

4. Numerical computations and results

In this Section, numerical computations of the TFNKG equation (1) with the initial
and boundary conditions (2) and (3) are obtained. To gain insight into the performance
of the suggested method, two numerical examples are given in this section. The accuracy
of the proposed techniques is measured in terms of error norms L∞ and L2 for 0 < x < 1
and 0 < t ≤ tf which are defined as follows:

L∞ = ||φexact(x, t)− φapprox(x, t)||∞ = max |φexact(x, t)− φapprox(x, t)|,

L2 =

√√√√hx

M∑
i=1

(
φexact(xi, t)− φapprox(xi, t)

)2
, L2 =

√√√√ht

N+1∑
j=2

(
φexact(x, tj)− φapprox(x, tj)

)2
,

where hx = 1
M and ht =

tf
N .

For the graphical analysis as well as for the computations in this paper MATLAB (R2015b)
has been operated.

4.1. Test problems.

Example 4.1. Consider the following TFNKG equation [18]:

∂αφ

∂tα
− ∂2φ

∂x2
+ φ2 =

Γ(52)

Γ(52 − α)
(1− x)

5
2 t

3
2
−α − 15

4
(1− x)

1
2 t

3
2 + (1− x)5t3.

The analytical solution when α = 2, is φ(x, t) = (1 − x)
5
2 t

3
2 . The initial and boundary

conditions can be extracted from this analytical solution.

Example 4.2. Consider the following TFNKG equation [18]:

∂αφ

∂tα
− ∂2φ

∂x2
+ φ+

3

2
φ3 =

Γ(3 + α)

2
sin(πx)t2 + (1 + π2) sin(πx)t2+α +

3

2

[
sin(πx)t2+α

]3
.

The initial and boundary conditions can be extracted from the analytical solution

φ(x, t) = sin(πx)t2+α.

Examples 4.1 and 4.2 in [18], were solved by Nagy using the SCCM. Also, this author
has applied the VIM which is proposed in [17,19] for these problems. In Tables 2–5, we
compare our method together with the proposed method given in [18] for the absolute
errors between exact and approximate solutions for different values of α at the final time
t = 1. Given these Tables, it is clear that the presented method is more accurate in
comparison with the method given in [18]. The exact and approximate solution φ(x, t) in
the 3-dimensional graphs are shown in Figures 1 and 3. In Figures 2 and 4, we show the
L2 and L∞ errors for φ(x, t) at different space and time levels.



532 TWMS J. APP. ENG. MATH. V.15, N.3, 2025

Table 2. The absolute errors between exact and approximate solutions
for different values of α at the final time t = 1 for Example 4.1.

x
Method of [18] Proposed Method

α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 8.7105e− 04 6.2045e− 04 4.3675e− 04 1.0841e− 06 1.6188e− 05 3.2015e− 06

0.2 6.7781e− 04 3.1908e− 04 9.8359e− 05 2.1356e− 06 3.5277e− 05 5.4257e− 06

0.3 6.2089e− 04 6.5573e− 05 4.8897e− 04 3.1778e− 06 5.6940e− 05 3.3276e− 05

0.4 5.7015e− 04 1.1160e− 04 7.6534e− 04 4.2147e− 06 7.8251e− 05 8.6504e− 05

0.5 5.1476e− 04 1.9899e− 04 9.3043e− 04 5.2283e− 06 9.4359e− 05 1.7198e− 04

0.6 4.8948e− 04 1.8808e− 04 9.4248e− 04 6.1722e− 06 1.0043e− 04 2.9944e− 04

0.7 5.1671e− 04 6.4274e− 05 7.5585e− 04 6.9553e− 06 9.3563e− 05 4.7832e− 04

0.8 5.3919e− 04 1.2118e− 04 4.2006e− 04 7.3934e− 06 7.3628e− 05 6.1538e− 04

0.9 6.0660e− 04 3.7056e− 04 5.4848e− 05 7.0136e− 06 4.2861e− 05 4.5176e− 04

Table 3. The absolute errors between exact and approximate solutions
for different values of α at the final time t = 1 for Example 4.1.

α (x, t) VIM [18] SCCM [18] Proposed Method

1.4

(0.1, 0.1) 9.2852e− 03 8.4385e− 04 2.6303e− 05

(0.2, 0.2) 2.2201e− 02 1.1433e− 03 2.9192e− 05

(0.3, 0.3) 3.5651e− 02 5.3780e− 04 2.7112e− 05

(0.4, 0.4) 4.9628e− 02 1.5545e− 04 2.2942e− 05

(0.5, 0.5) 6.4449e− 02 5.3227e− 04 1.6197e− 05

(0.6, 0.6) 7.9514e− 02 1.3268e− 03 9.4255e− 06

(0.7, 0.7) 9.1443e− 02 1.9159e− 03 5.6314e− 06

(0.8, 0.8) 8.7942e− 02 2.0414e− 03 4.9154e− 06

(0.9, 0.9) 9.2321e− 02 1.8996e− 03 5.5291e− 06

1.6

(0.1, 0.1) 4.1518e− 03 1.1685e− 03 6.5452e− 05

(0.2, 0.2) 1.0319e− 02 2.5887e− 03 7.9581e− 05

(0.3, 0.3) 1.7757e− 02 2.8863e− 03 7.5557e− 05

(0.4, 0.4) 2.6987e− 02 2.3912e− 03 6.6870e− 05

(0.5, 0.5) 3.8327e− 02 1.7692e− 03 5.5072e− 05

(0.6, 0.6) 5.0993e− 02 1.4174e− 03 3.4641e− 05

(0.7, 0.7) 6.1379e− 02 1.4334e− 03 7.4212e− 06

(0.8, 0.8) 5.6577e− 02 1.6653e− 03 9.5823e− 06

(0.9, 0.9) 3.8618e− 02 1.7449e− 03 1.1689e− 05
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Figure 1. The graphs of the exact solution (left-side) and approximate
solution (right-side) for Example 4.1 in case of α = 1.5.

Figure 2. The L2 and L∞ errors of Example 4.1 at different space levels
(left-side) and time levels (right-side), when α = 1.5.

Table 4. The absolute errors between exact and approximate solutions
for different values of α at the final time t = 1 for Example 4.2.

x
Method of [18] Proposed Method

α = 1.5 α = 1.7 α = 1.9 α = 1.5 α = 1.7 α = 1.9

0.1 1.6396e− 03 1.5471e− 03 1.4380e− 03 2.5584e− 04 2.5858e− 04 1.1890e− 05

0.2 1.2808e− 03 1.1272e− 03 9.4914e− 04 4.8180e− 04 4.9042e− 04 1.9801e− 05

0.3 1.0869e− 03 8.9663e− 04 6.7913e− 04 6.5495e− 04 6.7255e− 04 2.2468e− 05

0.4 8.4196e− 04 6.3348e− 04 3.9687e− 04 7.6219e− 04 7.8831e− 04 2.1890e− 05

0.5 7.8252e− 04 5.6868e− 04 3.2651e− 04 7.9832e− 04 8.2794e− 04 2.1208e− 05

0.6 8.4196e− 04 6.3348e− 04 3.9687e− 04 7.6219e− 04 7.8831e− 04 2.1890e− 05

0.7 1.0869e− 03 8.9663e− 04 6.7913e− 04 6.5495e− 04 6.7255e− 04 2.2468e− 05

0.8 1.2808e− 03 1.1272e− 03 9.4914e− 04 4.8180e− 04 4.9042e− 04 1.9802e− 05

0.9 1.6396e− 03 1.5471e− 03 1.4380e− 03 2.5584e− 04 2.5858e− 04 1.1890e− 05
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Table 5. The absolute errors between exact and approximate solutions
for different values of α at the final time t = 1 for Example 4.2.

α (x, t) VIM [18] SCCM [18] Proposed Method

1.4

(0.1, 0.1) 3.9211e− 05 2.3809e− 05 2.8758e− 06

(0.2, 0.2) 6.1713e− 04 5.2644e− 05 2.3338e− 05

(0.3, 0.3) 2.1989e− 03 6.0187e− 06 6.0100e− 05

(0.4, 0.4) 2.5545e− 03 6.6640e− 05 7.2761e− 05

(0.5, 0.5) 5.3405e− 03 4.0011e− 05 5.0678e− 06

(0.6, 0.6) 3.1409e− 02 1.5837e− 04 2.2111e− 04

(0.7, 0.7) 8.0092e− 02 9.1922e− 04 5.4526e− 04

(0.8, 0.8) 1.3528e− 01 2.9084e− 03 8.2187e− 04

(0.9, 0.9) 1.4272e− 01 3.8732e− 03 7.6113e− 04

1.6

(0.1, 0.1) 1.0402e− 05 2.3809e− 05 5.7967e− 07

(0.2, 0.2) 1.4424e− 04 5.2644e− 05 5.4262e− 06

(0.3, 0.3) 6.7151e− 05 6.0187e− 06 1.3291e− 05

(0.4, 0.4) 3.0493e− 03 6.6640e− 05 3.9147e− 06

(0.5, 0.5) 1.6350e− 02 4.0011e− 05 6.3841e− 05

(0.6, 0.6) 4.9599e− 02 1.5837e− 04 2.2965e− 04

(0.7, 0.7) 1.0675e− 01 9.1922e− 04 4.8510e− 04

(0.8, 0.8) 1.6942e− 01 2.9084e− 03 7.1863e− 04

(0.9, 0.9) 1.7521e− 01 3.8732e− 03 6.8028e− 04

Figure 3. The graphs of the exact solution (left-side) and approximate
solution (right-side) for Example 4.2 in case of α = 1.5.
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Figure 4. The L2 and L∞ errors of Example 4.2 at different space levels
(left-side) and time levels (right-side), when α = 1.5.

5. Conclusion

In this paper, we propose a cubic-Bspline collocation method for obtaining numerical
solutions to the TFNKG equation. The TFNKG equation is an extension of the classical
KG equation that incorporates fractional derivatives, enabling a more versatile and com-
prehensive representation of wave phenomena. The cubic-Bspline collocation method is a
numerical technique that approximates the solution of the TFNKG equation using cubic
B-spline basis functions. This method offers several advantages over traditional numerical
methods. It can effectively handle complex initial conditions and boundary conditions,
ensuring a wide range of applicability. Additionally, the method exhibits high accuracy
in capturing the behavior of the solution and demonstrates computational efficiency, en-
abling efficient solution computations. To demonstrate the accuracy and applicability of
the proposed method, the technique was applied and tested on examples with different
nonlinearity terms. The numerical results unequivocally demonstrated that the cubic B-
spline collocation method exhibited the highest level of performance among the tested
methods. In general, the numerical solutions obtained using the presented method exhibit
excellent agreement with the exact solutions. This agreement between the numerical and
exact solutions is further supported by the plotted graphs, which validate the reliability
and accuracy of the proposed method. As a result, we are confident that the cubic-Bspline
collocation method has the potential to become a valuable and versatile tool for effectively
solving nonlinear fractional differential equations across various scientific disciplines. Its
ability to provide accurate solutions in a wide range of applications makes it a promising
approach for researchers and practitioners working in fields such as physics, engineering
and applied mathematics.
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