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A DISCUSSION ON CONTROLLABILITY OF SEMILINEAR

IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS OF

SECOND ORDER

K. KUMAR1, R. KUMAR2∗, §

Abstract. The study of controllability results ensure the essential conditions required
for a solution. Keeping the importance of the study, we discuss the controllability of
semilinear impulsive functional-differential equations (SIFDE) of second order. For this
purpose we use the idea of strongly continuous cosine families (SCCF) of linear operators
and Banach Contraction principle. Lastly, an example is set to explain the abstract the-
ory. The achieved results reveal that the proposed method is systematic and appropriate
for dealing with the semilinear impulsive functional-differential problem that arises in
engineering and physics.

Keywords: Functional-differential equation; Second order; Impulsive condition; Banach
contraction principle; Cosine family.
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1. Introduction

The idea of controllability is pivotal notions in mathematical control theory. Various
significant problems of control theory like optimal control, stabilization of unstable system
by feedback, structural decomposition, observer design and structural engineering, can be
explained by assuming that the system is controllable. Roughly, controllability means by
using the set of admissible control move a system to any initial state to final desired state.

The concept of controllability is also applied in many real world phenomena, see for
instance, controlling sugar level in the blood, missile and anti-missile problems, rocket
launching problems for satellite, reactor control, quantum system control etc. Due to the
wide applications, the problem of controllability of different system such as integrodif-
ferential system, impulsive system, fractional system and stochastic system is studied by
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many authors ([4], [14], [26], [27]). Ma et.al. [17] studied the sufficient condition for ap-
proximate controllability of Hilfer fractional inclusion system in Hilbert space by applying
Bohnenblust- Karlin’s fixed point theorem. By employing fixed point theorem, multival-
ued analysis, fractional calculus, and semi-group theories the approximate controllability
is studied for Atangana-Baleanu nonlocal fractional neutral integrodifferential stochastic
systems with infinite delay in [18]. Klamka ( [12], [13]) investigated the controllability of
linear system with delays in control.

To express instant changes in the functioning of the system, the impulses in differential
equations are implemented. It is known fact in literature that a lot of real word occur-
rences like population dynamics [23], control theory [11], drug resistance model in biology
and medicine ([6], [20], [29]) etc. demonstrate the impulse effect and modeled in the form
of impulsive differential equation. The importance of nonlocal conditions is exhibited in
diffusion process by the author [7]. So, the use of nonlocal condition in impulsive differ-
ential system is very interesting field of research. For example, incorporating the nonlocal
and impulsive condition both in the phenomena of traveling of sound wave through a
non-uniform rod is very useful to model such type of system.

On the other hand, a variety of physical phenomena modeled in second order equations
and it can be seen in ([2], [9], [19]). Therefore, it is quite relevant to analyze the controlla-
bility for such kinds of system in Banach space. Several times it is very useful to explore
the abstract differential system of second order without transforming it into first order
system see ([2], [9]). Idea of SCCF of operators is very helpful apparatus for the analysis
of various kinds of abstract second order system, see ([30], [31]).

Many researchers ([3], [21], [33]) have paid their attention for the examination of con-
trollability of second order differential systems with or without impulse in recent years.
Arthi et al. [1] analyzed the controllability of damped integrodifferential system and neu-
tral system with impulsive condition in Banach space by employing the Banach fixed point
thorem. The approximate controllability of various kinds of differential and integrodiffer-
ential systems is derived in the works ([16], [22], [28]).

Author develop appropriate criteria for the controllability of ISFDE of second order
with nonlocal condition evolved from the above mentioned literature survey and inspired
due to the fact that no work has been carried out to the best of our understating. We
shall apply the fixed point technique and SCCF of linear operators to find the required
outcome.

2. Preliminaries

Consider the semilinear impulsive functional-differential control system as follows:
v′′(ξ) = Av(ξ) +K

(
ξ, v(ξ), v(γ1(ξ)), ..., v(γq(ξ)), v

′(ξ)

)
+Gy(ξ), ξ ∈ [0, b] = H

v(0) = v0,

v′(0) + h(v) = v1,

∆v(ςi) = ℓi
(
v(ςi)

)
,∆v′(ςi) = ℓ̄i

(
v′(ς+i )

)
, ξ ̸= ςi, i = 1, 2, ..,m,

(1)

where the functions γi : H → H(i = 1, 2, ..., q), and q ∈ N. The functions K : H×W q+2 →
W, ℓi, ℓ̄i : W → W and h : PC(H,W ) → PC(H,W ) are continuous functions to be
specified later. Furthermore, ∆v(ςi) = v(ςi+0)− v(ςi− 0),∆v′(ςi) = v′(ςi+0)− v′(ςi− 0),
where the character v(ςi + 0) and v(ςi − 0) describe the right and left limits of v at ςi
respectively for 0 = ς0 < ς1 < ς2 < ... < ςm < ςm+1 = b,m ∈ N. Let W be the Banach
space with the supremum norm ∥.∥. Considering the symbol in ([10], [15]), PC(H,W ) =



592 TWMS J. APP. ENG. MATH. V.15, N.3, 2025{
v : v is a function from H to W in such a manner that v(ξ) is continuous at ξ ̸= ςi, left

continuous at ξ = ςi, and the right limit v(ςi+0) exists for i = 1, 2, ....,m
}
. It is noted that

PC1(H,W ) is a Banach space with the supremum norm ∥v∥1 = sup
{
∥v(ξ)∥ + ∥v′(ξ)∥ :

ξ ∈ H
}
, see [5]. Here A be the infinitesimal generator of a SCCF of linear operators

{S1(ξ) : ξ ∈ R} on W . Moreover, the bounded linear operator G : U → W and the control
function y(.) is specified in L2(H,U), i.e., a Banach space of admissible control functions.
Here the interval H = [0, b] and U be a Banach space.

Moreover, we state some results and notations which concerned with the theory of cosine
functions of operators. This theory is required to establish our outcome.

Definition 2.1. The family {S1(ξ) : ξ ∈ R} is termed as SCCF if it holds the following

(i) S1(0) = I.
(ii) S1(ξ + ζ) + S1(ξ − ζ) = 2S1(ξ)S1(ζ), ∀ ξ, ζ ∈ R.
(iii) for all v ∈ W , the map ξ → S1(ξ)v is strongly continuous.

The infinitesimal generator A : W → W of the cosine family {S1(ξ) : ξ ∈ R} is given

by Av = d2

dξ2
S1(ξ)v

∣∣
ξ=0

, v ∈ dom(A), where dom(A) = {v ∈ W : S1(.)v is of class C2 with

respect to ξ}. Define V = {v ∈ W : S1(ξ)v is of class C1 with respect to ξ}.
Moreover, the sine family {S2(ξ) : ξ ∈ R} is expressed by S2(ξ)v =

∫ ξ
0 S1(Φ)vdΦ, for

ξ ∈ R, v ∈ W , which is related to the {S1(ξ) : ξ ∈ R}. For detailed information, see for
instance Travis and Webb [30] and Fattorini [8].

Proposition 2.1. [32] Let {S1(ξ) : ξ ∈ R} be SCCF with infinitesimal generator A and
associated sine family S2(ξ), ξ ∈ R. The following are true.

(i) If v ∈ W,S2(ξ)v ∈ V .
(ii) If v ∈ V, S1(ξ)v ∈ V .
(iii) If v ∈ V, S2(ξ)v ∈ dom(A) and d

dξS1(ξ)v = AS2(ξ)v.

(iv) If v ∈ V, S2(ξ)v ∈ dom(A), then
d
dξS1(ξ)v = AS2(ξ)v and d2

dξ2
S2(ξ)v = AS2(ξ)v.

(v) If v ∈ dom(A), S1(ξ)v ∈ dom(A), then
d2

dξ2
S1(ξ)v = AS1(ξ)v = S1(ξ)Av.

(vi) If v ∈ V, S2(ξ)v ∈ dom(A) and d2

dξ2
S2(ξ)v = AS2(ξ)v.

Definition 2.2. [10] A function v(ξ) ∈ PC1(H,W ) is stated as a mild solution of equation
(1) if it satisfies

v(ξ) = S1(ξ)v0 + S2(ξ)v1 − S2(ξ)h(v) +

∫ ξ

0
S2(ξ − Φ)×

K

(
Φ, v(Φ), v

(
γ1(Φ)

)
, ..., v

(
γq(Φ)

)
, v′(Φ)

)
dΦ+

∫ ξ

0
S2(ξ − Φ)Gy(Φ)dΦ

+
∑

0<ςi<ξ

S1(ξ − ςi)ℓi
(
v(ςi)

)
+

∑
0<ςi<ξ

S2(ξ − ςi)ℓ̄i
(
v′(ς+i )

)
, ∀ ξ ∈ [0, b] = H. (2)

Now, we state the following assumptions:
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(A1) The function γi : H → H is continuous on H. Let K : H × W q+2 → W be
continuous function in such a way that there exists F0 > 0 such that

∥K(ξ, x1, x2, ..., xq+2)−K(ξ, x̄1, x̄2, ..., x̄q+2) ≤ F0

q+2∑
i=1

∥xi − x̄i∥

for ξ ∈ H,xi, x̄i ∈ W, i = 1, 2, ..., q + 2.
(A2) Let ℓi and ℓ̄i be continuous function in such a manner that there exist Fi > 0 and

F̄i > 0, so that

∥ℓi(x)− ℓi(u)∥ ≤ Fi∥x− u∥, ∥ℓ̄i(x)− ℓ̄i(u)∥ ≤ F̄i∥x− u∥,
for all x, u ∈ W .

(A3) Let h : PC(H,W ) → PC(H,W ) be a continuous function in such a way that there
exists L0 > 0, so that

∥h(x)− h(u)∥ ≤ L0∥x− u∥; for all x, u ∈ W .

Also,

F ∗
i = max{Fi, F̄i}.

(A4) G : U → W is a continuous operator. Also, the linear operator Q : L2(H,U) → W ,
stated by

Qy =
∫ b
0 S2(b− Φ)Gy(Φ)dΦ

has an induced inverse operator Q̃−1, which takes values in L2(H,U)/KerQ and

there exists F1 > 0 such that ∥GQ̃−1∥ ≤ F1.
(A5) 2M(1 +MF1b)[L0 + (q + 1)F0b+ 2F ∗

i ] < 1,
where

M = sup
{
∥S′

1(ξ)∥+ ∥S1(ξ)∥+ ∥S2(ξ)∥+ ∥S′
2(ξ)∥

}
, ξ ∈ (0, b].

Definition 2.3. The ISFDE of second order evolution equations (1) is called as control-
lable on H, if v0 ∈ V and v1, vb ∈ W then we have a control y ∈ L2(H,U) in such a
manner that the solution v(.) of equation (1) fulfils v(b) = vb.

3. Main Result

Theorem 3.1. If assumptions (A1)− (A5) hold. Then system (1) are controllable on H.

Proof. By referring (A4), for any arbitrary function v(.), we describe the control formally
as

y(ξ) = Q̃−1

[
vb − S1(b)v0 − S2(b)v1 + S2(b)h(v)−

∫ b

0
S2(b− Φ)K

(
Φ, v(Φ), v

(
γ1(Φ)

)
, ..., v

(
γq(Φ)

)
, v′(Φ)

)
dΦ−

∑
0<ςi<b

S1(b− ςi)ℓi
(
v(ςi)

)
−

∑
0<ςi<b

S2(b− ςi)ℓ̄i
(
v′(ς+i )

)]
(ξ).

Then, we must now demonstrate that when applying this control, the operator Θ :
PC1(H,W ) → PC1(H,W ) expressed as

(Θv)(ξ) = S1(ξ)v0 + S2(ξ)v1 − S2(ξ)h(v) +

∫ ξ

0
S2(ξ − Φ)K

(
Φ, v(Φ), v

(
γ1(Φ)

)
, ...,

v
(
γq(Φ)

)
, v′(Φ)

)
dΦ+

∑
0<ςi<ξ

S1(ξ − ςi)ℓi
(
v(ςi)

)
+

∑
0<ςi<ξ

S2(ξ − ςi)ℓ̄i
(
v′(ς+i )

)
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+

∫ ξ

0
S2(ξ − Φ)GQ̃−1

[
vb − S1(b)v0 − S2(b)v1 + S2(b)h(v)−

∫ b

0
S2(b− ℘)×

K

(
℘, v(℘), v

(
γ1(℘)

)
, ..., v

(
γq(℘)

)
, v′(℘)

)
d℘−

∑
0<ςi<b

S1(b− ςi)ℓi
(
v(ςi)

)

−
∑

0<ςi<b

S2(b− ςi)ℓ̄i
(
v′(ς+i )

)]
(Φ)dΦ, ξ ∈ H, (3)

has a fixed point. Obviously, this fixed point v(.) is then a solution of (2).
Noticeably, (Θv)(b) = vb, which implies that the control y steers the system from the

initial function v0 to vb in time b, yielded that the nonlinear operator Θ admits a fixed
point.

Further, it is mentioned that PC1(H,W ) is a Banach space with the norm ∥v∥1 =
sup{∥v(ξ)∥+ ∥v′(ξ)∥ : ξ ∈ H}. Now, we shall show that Θ is a contraction on the Banach
space PC1(H,W ) together the norm ∥v∥1. Consider

∥(Θv)(ξ)− (Θv∗)(ξ)∥ =

∥∥∥∥S2(ξ)
(
h(v)− h(v∗)

)
+

∫ ξ

0
S2(ξ − Φ)

[
K

(
Φ, v(Φ), v

(
γ1(Φ)

)
, ..., v

(
γq(Φ)

)
, v′(Φ)

)
−K

(
Φ, v∗(Φ), v∗

(
γ1(Φ)

)
, ..., v∗

(
γq(Φ)

)
, v∗

′
(Φ)

)]
dΦ

+
∑

0<ςi<ξ

S1(ξ − ςi)

(
ℓi
(
v(ςi)

)
− ℓi

(
v∗(ςi)

))
+

∑
0<ςi<ξ

S2(ξ − ςi)

(
ℓ̄i
(
v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

))

+

∫ ξ

0
S2(ξ − Φ)GQ̃−1

[
S2(b)

(
h(v)− h(v∗)

)
−
∫ b

0
S2(b− ℘)

{
K

(
℘, v(℘), v

(
γ1(℘)

)
, ...,

v
(
γq(℘)

)
, v′(℘)

)
−K

(
℘, v∗(℘), v∗

(
γ1(℘)

)
, ..., v∗

(
γq(℘)

)
, v∗

′
(℘)

)}
d℘−

∑
0<ςi<b

S1(b− ςi)

(
ℓi
(
v(ςi)

)
− ℓi

(
v∗(ςi)

))
−

∑
0<ςi<b

S2(b− ςi)

(
ℓ̄i
(
v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

))]
(Φ)dΦ

∥∥∥∥
≤ ML0∥v − v∗∥1 +

∫ ξ

0
∥S2(ξ − Φ)∥F0

(
∥v(Φ)− v∗(Φ)∥+ ∥v(γ1(Φ))− v∗(γ1(Φ))∥+ ...

+∥v(γq(Φ))− v∗(γq(Φ))∥+ ∥v′(Φ)− v∗
′
(Φ)∥

)
dΦ

+
∑

0<ςi<ξ

∥S1(ξ − ςi)∥
∥∥ℓi(v(ςi))− ℓi

(
v∗(ςi)

)∥∥+
∑

0<ςi<ξ

∥S2(ξ − ςi)∥
∥∥ℓ̄i(v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

)∥∥
+

∫ ξ

0
∥S2(ξ − Φ)∥F1

[
ML0∥v − v∗∥1 +

∫ b

0
∥S2(b− ℘)∥F0

(
∥v(℘)− v∗(℘)∥+ ∥v(γ1(℘))

−v∗(γ1(℘))∥+ ...+ ∥v(γq(℘))− v∗(γq(℘))∥+ ∥v′(℘)− v∗
′
(℘)∥

)
d℘
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+
∑

0<ςi<b

∥S1(b− ςi)∥
∥∥ℓi(v(ςi))− ℓi

(
v∗(ςi)

)∥∥
+

∑
0<ςi<b

∥S2(b− ςi)∥
∥∥ℓ̄i(v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

)∥∥]dΦ
≤ ML0∥v − v∗∥1 +MF0

∫ ξ

0
(q + 1)∥v(Φ)− v∗(Φ)∥1dΦ+

∑
0<ςi<ξ

MFi

∥∥v(ςi)− v∗(ςi)
∥∥

+
∑

0<ςi<ξ

MF̄i

∥∥v′(ς+i )− v∗
′
(ς+i )

∥∥+

∫ ξ

0
MF1

[
ML0∥v − v∗∥1 +

∫ b

0
M(q + 1)F0∥v − v∗∥d℘

+
∑

0<ςi<b

MFi

∥∥v(ςi)− v∗(ςi)
∥∥+

∑
0<ςi<b

MF̄i

∥∥v′(ς+i )− v∗
′
(ς+i )

∥∥]dΦ
≤ ML0∥v − v∗∥1 + (q + 1)bMF0∥v − v∗∥1 +MF ∗

i ∥v − v∗∥1 +MF ∗
i ∥v − v∗∥1

+MF1b
(
ML0∥v − v∗∥1 + (q + 1)bMF0∥v − v∗∥1 +MF ∗

i ∥v − v∗∥1 +MF ∗
i ∥v − v∗∥1

)
≤

[{
ML0 + (q + 1)bMF0 + 2MF ∗

i

}
+MF1b

{
ML0 + (q + 1)bMF0 + 2MF ∗

i

}]
∥v − v∗∥1

≤
[
ML0 + (q + 1)bMF0 + 2MF ∗

i

]
(1 +MF1b)∥v − v∗∥1

Now,

∥(Θv)′(ξ)− (Θv∗)′(ξ)∥ =

∥∥∥∥S′
2(ξ)

(
h(v)− h(v∗)

)
+

∫ ξ

0
S1(ξ − Φ)

[
K

(
Φ, v(Φ),

v
(
γ1(Φ)

)
, ..., v

(
γq(Φ)

)
, v′(Φ)

)
−K

(
Φ, v∗(Φ), v∗

(
γ1(Φ)

)
, ..., v∗

(
γq(Φ)

)
, v∗

′
(Φ)

)]
dΦ

+
∑

0<ςi<ξ

S′
1(ξ − ςi)

(
ℓi
(
v(ςi)

)
− ℓi

(
v∗(ςi)

))
+

∑
0<ςi<ξ

S1(ξ − ςi)

(
ℓ̄i
(
v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

))

+

∫ ξ

0
S1(ξ − Φ)GQ̃−1

[
S2(b)

(
h(v)− h(v∗)

)
−
∫ b

0
S2(b− ℘)

{
K

(
℘, v(℘), v

(
γ1(℘)

)
, ...,

v
(
γq(℘)

)
, v′(℘)

)
−K

(
℘, v∗(℘), v∗

(
γ1(℘)

)
, ..., v∗

(
γq(℘)

)
, v∗

′
(℘)

)}
d℘

−
∑

0<ςi<b

S1(b− ςi)

(
ℓi
(
v(ςi)

)
− ℓi

(
v∗(ςi)

))

−
∑

0<ςi<b

S2(b− ςi)

(
ℓ̄i
(
v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

))]
(Φ)dΦ

∥∥∥∥
≤ ML0∥v − v∗∥1 +

∫ ξ

0
∥S1(ξ − Φ)∥F0

(
∥v(Φ)− v∗(Φ)∥+ ∥v(γ1(Φ))− v∗(γ1(Φ))∥+ ...
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+∥v(γq(Φ))− v∗(γq(Φ))∥+ ∥v′(Φ)− v∗
′
(Φ)∥

)
dΦ

+
∑

0<ςi<ξ

∥S′
1(ξ − ςi)∥∥ℓi(v(ςi))− ℓi(v

∗(ςi))∥

+
∑

0<ςi<ξ

∥S1(ξ − ςi)∥
∥∥ℓ̄i(v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

)∥∥+

∫ ξ

0
∥S1(ξ − Φ)∥F1

[
ML0∥v − v∗∥1

+

∫ b

0
∥S2(b− ℘)∥F0

(
∥v(℘)− v∗(℘)∥+ ∥v(γ1(℘))− v∗(γ1(℘))∥+ ...+ ∥v(γq(℘))

−v∗(γq(℘))∥+ ∥v′(℘)− v∗
′
(℘)∥

)
d℘+

∑
0<ςi<b

∥S1(b− ςi)∥
∥∥ℓi(v(ςi))− ℓi

(
v∗(ςi)

)∥∥

+
∑

0<ςi<b

∥S2(b− ςi)∥
∥∥ℓ̄i(v′(ς+i )

)
− ℓ̄i

(
v∗

′
(ς+i )

)∥∥]dΦ

≤ ML0∥v − v∗∥1 +MF0

∫ ξ

0
(q + 1)∥v − v∗∥1dΦ+

∑
0<ςi<ξ

MFi∥v(ςi)− v∗(ςi)∥

+
∑

0<ςi<ξ

MF̄i

∥∥ℓ̄i(v′(ς+i )
)
− ℓ̄i

(
v∗

′
(ς+i )

)∥∥+

∫ ξ

0
MF1

{
ML0∥v − v∗∥1 +

∫ b

0
M(q + 1)

×F0∥v − v∗∥d℘+
∑

0<ςi<b

MFi∥v(ςi)− v∗(ςi)∥+
∑

0<ςi<b

MF̄i∥v′(ς+i )− v∗
′
(ς+i )∥

}
dΦ

≤ ML0∥v − v∗∥1 +MF0(q + 1)b∥v − v∗∥1 +MF ∗
i ∥v − v∗∥1 +MF ∗

i ∥v − v∗∥1 +MF1b

{
ML0∥v − v∗∥1 +MF0(q + 1)b∥v − v∗∥1 +MF ∗

i ∥v − v∗∥1 +MF ∗
i ∥v − v∗∥1

}
≤ M(1 +MF1b)[L0 + (q + 1)F0b+ 2F ∗

i ]∥v − v∗∥1, ξ ∈ H.

Consequently,

∥Θv −Θv∗∥1 ≤ 2M(1 +MF1b)[L0 + (q + 1)F0b+ 2F ∗
i ]∥v − v∗∥1,

for v, v∗ ∈ PC1(H,W ).
Thus, in space PC1(H,W ),Θ is a contraction. Therefore, with the use of Banach

contraction principle, only one fixed point of Θ is present there and this fixed point is
the mild solution of ISFDE of second order (1) on H. Consequently, the system (1) is
controllable on H. □
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4. Example

To demonstrate our abstract theory, we take semilinear partial second order functional-
differential equations of the following type:

∂
∂ξ

(
∂u(ξ,w)

∂ξ

)
= ∂2u(ξ,w)

∂w2 + η(ξ, w)

+C
(
ξ, u(ξ, w), u(α1(ξ), w), ..., u(αq(ξ), w),

∂u(ξ,w)
∂ξ

)
;w ∈ [0, π], ξ ∈ H,

(4)

subject to the conditions

u(ξ, 0) = u(ξ, π) = 0, ξ ∈ H, (5)

u(0, w) = u0(w), (6)

∂u(0, w)

∂ξ
+

q∑
i=0

u(ξi, w) = u0(w), 0 < ξ1 < ... < ξq ≤ b, w ∈ [0, π], (7)

∆u(ξi)(w) =

∫ ξi

0
ai(ξi − Φ)u(Φ, w)dΦ, (8)

∆u′(ξi)(w) =

∫ ξi

0
āi(ξi − Φ)u(Φ, w)dΦ, (9)

where η(ξ, w) : H × [0, π] → [0, π] is continuous on 0 ≤ w ≤ π, ξ ∈ H.
Let W = L2[0, π] and let A : W → W be expressed by Au = u′′, u ∈ dom(A). Here

dom(A) =
{
u ∈ W : u, u′ are absolutely continuous, u′′ ∈ W,u(0) = u(π) = 0

}
.

Subsequently Au =
∑∞

n=1−p2(u, up)up, u ∈ dom(A), where up(Φ) =
√

2
π sin pΦ, p =

1, 2, ... is the orthogonal set of eigenvalues of A. Explicitly, it is well known that A is the
infinitesimal generator of cosine family S1(ξ), ξ ∈ H, in W and it can be presented as

S1(ξ)u =
∞∑
n=1

cos pξ(u, up)up, u ∈ W.

The sine family that is associated to it, is presented by

S2(ξ)u =

∞∑
n=1

1

p
sin pξ(u, up)up, u ∈ W.

Define the operator K : H ×W q+2 → W by

K

(
Φ, v(Φ), v

(
γ1(Φ)

)
, ..., v

(
γq(Φ)

)
, v′(Φ)

)
= C

(
ξ, u(ξ, w), u(α1(ξ), w), ..., u(αq(ξ), w),

∂u(ξ, w)

∂ξ

)
Also, define the map ℓ1, ℓ̄i and G by

ℓi(u)(w) =

∫ π

0
ai(Φ)u(Φ, w)dΦ,

ℓ̄i(u)(w) =

∫ π

0
āi(Φ)u(Φ, w)dΦ.

and satisfy the condition (A1) and (A2). Let G : U ⊂ H → W be expressed by
(Gy)(ξ)(w) = η(ξ, w), w ∈ (0, π) such that it satisfies condition (A4). Then the above
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problem (4) – (9) can be formulated as (1). Then, all the assumptions presented in above
theorem are fulfilled. So, the control system (4) – (9) is controllable on H.

In particular, we take W = R+, ξ ∈ [0, 1] and so b = 1. Set

K(ξ, v(ξ), v(γ1(ξ)), ..., v(γq(ξ)), v
′(ξ)) =

e−ξ(v(ξ) + v′(ξ))

(8 + eξ)(1 + v(ξ) + v′(ξ))
,

h(v) =
v

5 + v
, γi(ξ) = ξ, i = 1, 2, ..., q

ℓi(v) =
v

6 + v
, ℓ̄i(v

′) =
v′

6 + v′
,

Let v, r ∈ PC1(H,W ). Then, we have

∥K(ξ, v(ξ), v(γ1(ξ)), ..., v(γq(ξ))v
′(ξ))−K(ξ, r(ξ), r(γ1(ξ)), ..., r(γq(ξ))r

′(ξ))∥

≤
∣∣∣ e−ξ

(8 + eξ)

∣∣∣∥∥∥ v(ξ) + v′(ξ)

(1 + v(ξ) + v′(ξ))
− r(ξ) + r′(ξ)

(1 + r(ξ) + r′(ξ))

∥∥∥,
≤ 1

9

∥∥∥ v(ξ) + v′(ξ)− (r(ξ) + r′(ξ))

(1 + v(ξ) + v′(ξ))(1 + r(ξ) + r′(ξ))

∥∥∥,
≤ 1

9
∥[v(ξ)− r(ξ)] + [v′(ξ)− r′(ξ)]∥,

≤ 1

9

[
∥v(ξ)− r(ξ)∥+ ∥v′(ξ)− r′(ξ)∥

]
.

Hence, the assumption (A1) holds with F0 =
1
9 .

Now,

∥h(v)− h(r)∥ =
∥∥∥ v

5 + v
− r

5 + r

∥∥∥ =
∥∥∥ 5v − 5r

(5 + v)(5 + r)

∥∥∥ ≤ 1

5
∥v − r∥.

Hence, the assumption (A3) holds with L0 =
1
5 .

Further,

∥ℓi(v)− ℓi(r)∥ =
∥∥∥ v

6 + v
− r

6 + r

∥∥∥ =
∥∥∥ 6v − 6r

(6 + v)(6 + r)

∥∥∥ ≤ 1

6
∥v − r∥.

and

∥ℓ̄i(v)− ℓ̄i(r)∥ =
∥∥∥ v

6 + v
− r

6 + r

∥∥∥ =
∥∥∥ 6v − 6r

(6 + v)(6 + r)

∥∥∥ ≤ 1

6
∥v − r∥.

Hence, the assumption (A2) holds with Fi = F̄i =
1
6 .

Consider that the linear operator Q : L2(H,U) → W defined by

Qy =

∫ b

0
S2(b− Φ)Gy(Φ)dΦ.

has an induced inverse operator Q̃−1, which takes values in L2(H,U)/KerQ. Taking
F0 = 1

9 , L0 = 1
5 , F1 = 1, Fi = F̄i =

1
6 and by the choice of q, where q ∈ N and M , the

inequality 2M(1+MF1b)[L0+(q+1)F0b+2F ∗
i ] < 1 can be satisfied. Thus the assumption

(A5) holds. Hence, all the assumptions of Theorem 3.1 are fulfilled. Therefore, the control
system (1) is controllable on H.
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5. Conclusions

We thus investigated the sufficient conditions for controllability of ISFDE of second
order along with nonlocal condition in Banach spaces. To establish the result, we have
implemented the Banach contraction principle and the concept of SCCF of linear opera-
tors. At last, we are presented an example to exhibit our abstract outcome and verify all
the assumptions by taking a particular case. Moreover, the result which is derived in this
manuscript is only theoretical. In future, numerical solution of equation (1) and (4) - (9)
may also be derived. Moreover, the theory which is presented in this paper can be applied
for second order fractional differential systems as well as for second order fractional delay
differential systems with impulsive condition.

Acknowledgement. The authors would like to extend their gratitude to anonymous
referees for their valuable comments and suggestions.
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