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ON THE BI-EXTREMAL BI-STABILIZATION OF A COOPERATIVE

GAME IN PRODUCT SPACE N1 ×N2

M. SLIME1∗, M. EL KAMLI2, A. OULD KHAL1, §

Abstract. In this research paper, we aim to expand the scope of cooperative game
theory from its traditional domain in N to the more versatile cartesian product N1×N2.
This extension allows us to explore the intriguing possibility of players collaborating in
multiple games simultaneously. Within this context, we introduce several fundamental
concepts in game theory that apply to the cartesian product N1 ×N2, such as coalition,
cooperative games, core solution, and other essential notions. Additionally, we present
the innovative bi-extremal bi-stabilization algorithm, a powerful computational tool de-
signed to address maximization problems within the cartesian product N1 ×N2.
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1. Introduction

Game theory comprises a collection of analytical tools designed to enhance compre-
hension in situations involving interactions among decision-makers, referred to as players.
Initially conceptualized by von Neumann and Oskar Morgenstern [36], this framework ad-
dresses scenarios where players act autonomously, necessitating the management of their
interactions, which may involve cooperation, competition, or both [6, 8, 9, 18, 19, 28].
This paper specifically focuses on the first category, namely cooperative games.

Cooperation is a fundamental and natural notion in our planet. For example, during
the world wars, several countries formed coalitions to strengthen their military and po-
litical power. The researchers are collaborating to achieve strong and efficient results.
Companies may also form agreements and collaborations with each other to ensure the
production of high-quality products within an optimized timeframe [1, 21, 22, 37, 38]. A
cooperative game on N is one in which each player will seek partners whose combined
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action allows him to win more than by himself, (i.e. the players play together to achieve
a common goal without any competitive spirit). Numerous articles and books in the lit-
erature discuss cooperative games (For example: [4, 15, 17, 20, 23, 25]). In addition to its
theoretical studies explored, there are different applications of cooperative games in eco-
nomics, physics, mathematical finance, political science, computer science, mathematical
programming, etc [5, 13, 16, 24, 26, 30, 31, 32, 33].

All the preceding theoretical studies and applications have primarily focused on tra-
ditional cooperative games within the set N . However, there is untapped potential in
extending these investigations to higher dimensions, promising a novel perspective on
game theory and enhancing its utility. Notably, in the year 2000, Bilbao et al. [2] intro-
duced a groundbreaking category of cooperative games known as bi-cooperative games.
This concept serves as an expansive generalization of traditional cooperative games, en-
compassing scenarios where each player may contribute positively, negatively, or not at
all. The innovation lies in the coalition function’s definition over pairs (S, T ) of disjoint
coalitions, where members of S act as positive contributors, and those in T act as negative
contributors. Bilbao et al. departed from the convention of functions defined from 2N to
R in traditional cooperative games, opting instead for functions defined from 3N to R. In
this context, our analysis takes a distinctive approach. We explore cooperative scenarios
where players make decisions on the cartesian product of two sets, establishing our func-
tions from 2N1×N2 to R. The overarching objective is to extend the notion of cooperative
games to the cartesian product N1 × N2, presenting an expansion of cooperative game
concepts beyond the confines of the original set N . In other words, in our case, players
can make coalitions not only in one game but they can make coalitions in two games at
the same time. So, we will move from the set N to the cartesian product N1×N2 and the
goal will always be the maximization of the gains.

Mathematical programming, particularly linear programming, which constitutes a sub-
stantial portion of operational research, has evolved parallel to game theory. Both fields
were shaped by the challenges posed by economic problems, specifically those involving the
optimization of objectives, whether it be maximization or minimization [11, 12, 17, 34, 35],
and the main goal is the possibility of solving them as quickly as possible. In 2020, El
Kamli et al. [10] introduced the extremal stabilization algorithm. They first established a
first-generation algorithm which is time efficient when it succeeds, then they established
a second-generation algorithm, which always converges in the case of a non-empty core.
In this paper, we directly extend the second-generation algorithm. We use the polars of
the bi-stable cooperative game v and a fundamental function noted vC1×C2 (which is the
smallest cooperative game majorant v exact and admitting a node in C1 ×C2) for the bi-
stabilization of the algorithm (paragraphs 2.2 and 2.3), and we highlight a family of simple
inequalities necessary for the non-vacuity of the core (remark 3.2). When the cardinality
of N1 ×N2 is relatively small, all methods converge rapidly. However, as the cardinality
of N1 ×N2 grows, we encounter a challenge related to memory size. For instance, the bi-
extremal bi-stabilization algorithm occupies a memory space on the order of 2nm, whereas
the simplex method utilizes memory space at a scale of nm2nm, with |N1 ×N2| = nm.

This paper is divided into four sections. In the next section, we will define several
notions of game theory on the cartesian product N1 × N2 instead of the set N and we
will discuss some of their basic properties. In section 3, we will establish the bi-extremal
bi-stabilization algorithm that we can use to solve maximization problems in the product
space N1 ×N2. And we conclude in the last section.
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2. Results and notations

This section will introduce various concepts in game theory within N1 × N2, encom-
passing definitions of key terms like coalitions and core. Additionally, we will establish
the foundations of cooperative games, convex games, constant-sum games, and more.

2.1. Definitions.
In the forthcoming discussion, we take into account two sets, N1 and N2, each charac-

terized by cardinalities of n and m, respectively [29].

Definition 2.1. (coalition)
A ”coalition” A1 ×A2 is defined as a subset of N1 ×N2, and the set of all coalitions is

quite simply the set 2N1×N2 of cardinal 2nm.
As a convention, we may refer to the empty set as a coalition, which we will term ”the

empty coalition.” Additionally, the set N1 ×N2 is recognized as a coalition and is denoted
as ”the grand coalition”.

Definition 2.2. (cooperative game)
A ”cooperative game” on N1 ×N2 is defined by a finite set of pairs of players

N1 × N2 = {(ai; a′j); ai ∈ N1; a
′
j ∈ N2 and (i; j) ∈ {1; 2; ...;n} × {1; 2; ...;m}}, and a

real-valued v, defined on all subsets of N1 ×N2, (with v(∅) = 0).

Example: (The gloves example).
Consider two sellers, denoted as A and B. Seller A possesses a left glove, which can be
sold independently for 8 MAD (i.e. v(A1) = 8), while seller B has a right glove, valued
at 12 MAD (i.e. v(B1) = 12). When these sellers collaborate to form a pair of gloves,
their joint revenue amounts to 50 MAD (i.e. v(A1 ⊔ B1) = 50). This serves as a basic
illustration of a cooperative game within the set N .

Now, let’s extend the scenario to include another type of gloves, labeled as Type 2.
Seller A can sell the left glove Type 2 for 11 MAD, and seller B can sell the right glove
Type 2 for 10 MAD. When cooperating, they can generate a total revenue of 40 MAD. In
this expanded context, the valuations are as follows: v(A1 × A2) = 19, v(B1 × B2) = 22,
and v[(A1 × A2) ⊔ (B1 × B2)] = 90. This example illustrates a cooperative game within
the cartesian product set N1 ×N2.

Remark 2.1.
Drawing an analogy to von Neumann and Morgenstern’s work in Roth’s book [27], we

stipulate that v must be superadditive, i.e. if A1 × A2 and B1 × B2 are two disjoint
subsets of N1 × N2, then v[(A1 × A2) ⊔ (B1 × B2)] ≥ v(A1 × A2) + v(B1 × B2), where
(A1 × A2) ⊔ (B1 ×B2) designates the disjoint reunion of (A1 × A2) and (B1 ×B2). This
implies that the value of the coalition (A1 ×A2) ⊔ (B1 ×B2) is no less than the aggregate
value of its individual parts acting independently.

Definition 2.3. (dual game)
A ”dual game” of the cooperative game v is the function denoted by v× defined by:

v× : 2N1×N2 −→ R
(A1 ×A2) 7−→ v(N1 ×N2)− v[(A1 ×A2)

c]

Corollary 2.1. Let v and u be two cooperative games. We have the following properties:

(1) v is an increasing function on 2N1×N2.
(2) v× is an increasing function on 2N1×N2.
(3) ∀(A1 ×A2) ∈ 2N1×N2 , v(A1 ×A2) ≤ v×(A1 ×A2).
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(4) If v(N1 ×N2) = u(N1 ×N2), then, v ≤ u =⇒ u× ≤ v×.

Proof.
Let (A1 ×A2), (B1 ×B2) ∈ 2N1×N2 .

(1) If A1 × A2 ⊂ B1 × B2, then, B1 × B2 = (A1 × A2) ⊔ (B1 × B2 \ A1 × A2) and
(A1 ×A2) ∩ (B1 ×B2 \A1 ×A2) = ∅, [3, 14], therefore

v(B1 ×B2) = v[(A1 ×A2) ⊔ (B1 ×B2 \A1 ×A2)]

≥ v(A1 ×A2) + v(B1 ×B2 \A1 ×A2)

≥ v(A1 ×A2).

Since we have: A1 × A2 ⊂ B1 × B2 =⇒ v(A1 × A2) ≤ v(B1 × B2), then, v is an
increasing function.

(2) We suppose that A1 ×A2 ⊂ B1 ×B2.

v×(A1 ×A2) = v(N1 ×N2)− v[(A1 ×A2)
c]

≤ v(N1 ×N2)− v[(B1 ×B2)
c]

≤ v×(B1 ×B2).

Hence v× is an increasing function.
(3) For all (A1 ×A2) in 2N1×N2 , we have:

v×(A1 ×A2) = v(N1 ×N2)− v[(A1 ×A2)
c]

= v[(A1 ×A2) ⊔ (A1 ×A2)
c]− v[(A1 ×A2)

c]

≥ v(A1 ×A2) + v[(A1 ×A2)
c]− v[(A1 ×A2)

c]

≥ v(A1 ×A2).

(4) We suppose that: v(N1 ×N2) = u(N1 ×N2), and that: v ≤ u, then:

v×(A1 ×A2) = v(N1 ×N2)− v[(A1 ×A2)
c]

≥ u(N1 ×N2)− u(A1 ×A2)
c

≥ u×(A1 ×A2).

Hence the result.

Definition 2.4. Let v be a cooperative game.

(1) v is said ”constant-sum” if:

∀(A1 ×A2) ∈ 2N1×N2 , v×(A1 ×A2) = v(A1 ×A2).

(2) v is said ”bi-stable” if its dual v× is sub-additive on 2N1×N2, then, we have:

(A1 ×A2)∩ (B1 ×B2) = ∅ =⇒ v×[(A1 ×A2)⊔ (B1 ×B2)] ≤ v×(A1 ×A2) + v×(B1 ×B2).

Remark 2.2. A game v characterized by constant-sum, bistability, and cooperation can
be categorized as a probability.

Indeed, if v is a constant-sum, bi-stable, and cooperative game with the condition
v(N ×N ′) = 1, it follows that v is both superadditive and subadditive, implying that v is
additive.

(i.e. (A1×A2)∩ (B1×B2) = ∅ =⇒ v[(A1×A2)⊔ (B1×B2)] = v(A1×A2) + v(B1×B2).)

Definition 2.5. (convex game)
We said that v is ”convex” if for all parts (A1×A2) and (B1×B2) in 2N1×N2, we have:

v(A1 ×A2) + v(B1 ×B2) ≤ v[(A1 ×A2) ∪ (B1 ×B2)] + v[(A1 ×A2) ∩ (B1 ×B2)].
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Definition 2.6. (core)
The ”core” of the cooperative game v is the set Cv defined by:

Cv = {P probability : v ≤ P}.

Remark 2.3. .

(1) The elements of the core of v are the bi-stable and constant-sum majorants of v.
(2) In a convex game, the core is never empty.

Definition 2.7. We call ”bi-stabilized closure” or ”bi-stability” of v denoted by v̂, the
smallest bi-stable, cooperative game majorant of v if it exists.

2.2. Polar and bipolar of a cooperative game.
In this part, we broaden the scope of the polarity concept within the framework of

N × N ′. The inclusion of this fundamental concept is crucial for establishing the bi-
stabilization of the algorithm [7, 10].

Definition 2.8. Let v be a cooperative game and let v× its dual.

• The ”polar” of v denoted by v∗, is the sub-additive lower bound of v×, such that:
v∗ = v×.
• If v∗(N1 ×N2) = 1, the ”bipolar” of v denoted by v∗∗, is the super-additive upper

bound of v∗×, (i.e. v∗∗ = v∗×).

By recurrence we define v(2n+1)∗ and v(2n+2)∗ as following:

• For all k ≤ n, if v(2k)
∗
(N1 ×N2) = 1, then, v(2n+1)∗ := (v(2n)

∗
)∗ = v(2n)

∗×
.

• And for all k ≤ n, if v(2k+1)∗(N1 ×N2) = 1, then,

v(2n+2)∗ := (v(2n+1)∗)∗ = v(2n+1)∗× .

And since v is a cooperative game with a non-empty core, then for all probability P in
Cv, we have:

v ≤ P ≤ v×.

Lemma 2.1. Let v be a cooperative game and let v× its dual.

(1) If v is bi-stable on 2N1×N2, then, the cooperative game v has for bi-stabilized v̂ such
that, v̂ = v.
Otherwise, we have, v < v∗× ≤ P ≤ v∗ < v×.

(2) If v∗× is a super-additive function on 2N1×N2, then the cooperative game v has for
bi-stabilized, v̂ = v∗×.
Otherwise, we have, v < v∗× < v∗∗ ≤ P ≤ v∗∗× < v∗ < v×.

(3) In the same way we obtain by recurrence the following inequalities:

v < v∗∗ < ... < v(2p)
∗ ≤ P = v(2p+1)∗ < ... < v∗ < v×.

Proof.

(1) We know that: v ≤ v, so if v is bi-stable, then v̂ = v.
Otherwise, v is not bi-stable then v× is not a sub-additive function on 2N1×N2 ,
then we have: v ≤ P ≤ v∗ < v×.
Since, P ≤ v∗ =⇒ v∗× ≤ P× = P , then we have: v < v∗× ≤ P ≤ v∗ < v×.

(2) If v∗× is a super-additive function, then v̂ = v∗×, because v∗×× = v∗ and v∗ is
sub-additive.
Otherwise, we have, v < v∗× < v∗∗ ≤ P ≤ v∗ < v×, then:

v < v∗× < v∗∗ ≤ P ≤ v∗∗× < v∗ < v×.

Remark 2.4. From above, we can deduce that:
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(1) v(2p)
∗
is an increasing sequence.

(2) v(2p+1)∗ is a decreasing sequence.

Proposition 2.1. (Sufficient conditions for the non-vacuity of the core)
If the core is non-empty, then, the bi-stabilized closure of v exists and has the same core
as v.

Proof.
If the core is non-empty, then it exists an element P such that: v ≤ P ≤ v×.
Therefore, the set of bi-stable, cooperative game majorant of v is non empty, since it
contains P .
According to the previous lemma, we can deduce that the core of v is equal to the core of
v̂.

Definition 2.9. We call ”bi-stabilization” of v, the operation of calculating v(2p)
∗
until

the sequence becomes stationary. We have reached the bi-stabilized v.

The question that arises is the following: Does v(2p)
∗
always become stationary from a

certain rank? The answer to this question is the objective of the following properties.

Proposition 2.2. (Necessary conditions for the non-vacuity of the core)

(1) (NC1), v ≤ v∗ ⇐⇒ v(N1 ×N2) = v∗(N1 ×N2).
(2) (NC2), v

∗∗ ≤ v∗ ⇐⇒ v(N1 ×N2) = v∗∗(N1 ×N2).

In the same way, we obtain (CN2k−1) and (CN2k).

Proof.
=⇒) This implication is evident.
Indeed, if v ≤ v∗, then v(N1 ×N2) ≤ v∗(N1 ×N2) ≤ v×(N1 ×N2) = v(N1 ×N2).
⇐=) By contraposed, we suppose that there exists a part A1 ×A2 of N1 ×N2 such that:
v(A1×A2) > v∗(A1×A2), then, v(A1×A2)+v×[(A1×A2)

c] > v∗(A1×A2)+v×[(A1×A2)
c].

Since v(A1 ×A2) + v×[(A1 ×A2)
c] = v(N1 ×N2),

and v∗(A1 ×A2) + v×[(A1 ×A2)
c] ≥ v∗(A1 ×A2) + v∗(A1 ×A2)

c ≥ v∗(N1 ×N2), then we
have, v(N1 ×N2) > v∗(N1 ×N2). Hence the result.
In the same way, we establish the other conditions.

Remark 2.5. .

(1) If there exists an integer q such as, vq
∗
(N1 ×N2) ̸= v(N1 ×N2), then the core is

empty.
(2) In practice, we calculate the successive polars of v, as long as: v(2p)

∗ ̸= v(2p−1)∗,

with v(2p)
∗
(N1 ×N2) = v(N1 ×N2).

2.3. Nodes of a bi-stable cooperative game.

Definition 2.10. We call ”node” of a bi-stable cooperative game v any element C1 × C2

of 2N1×N2 such that: v(C1 × C2) = v×(C1 × C2).

Remark 2.6. If v is a cooperative constant-sum game, so any element C1×C2 of 2N1×N2

is a node of v.

The following lemma will be useful to deduce characteristic properties of the nodes of
a cooperative game.

Lemma 2.2.

(1) v is super-additive if and only if, for all disjoint elements A × A′ and B × B′ of

2N×N ′
, we have: v(A×A′) + v×(B ×B′) ≤ v×[(A×A′) ⊔ (B ×B′)].
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(2) v× is sub-additive if and only if, for all disjoint elements A × A′ and B × B′ of

2N×N ′
, we have: v[(A×A′) ⊔ (B ×B′)] ≤ v(A×A′) + v×(B ×B′).

Proof.

(1) We show that:
v(A1 ×A2) + v(B1 ×B2) ≤ v[(A1 ×A2) ⊔ (B1 ×B2)]

⇐⇒ v(A1×A2) + v×(B1×B2) ≤ v×[(A1×A2)⊔ (B1×B2)].
=⇒) Suppose that: v(A1 ×A2) + v(B1 ×B2) ≤ v[(A1 ×A2) ⊔ (B1 ×B2)].
We know that: v×[(A1×A2)⊔ (B1×B2)] = v(N1×N2)−v[(A1×A2)⊔ (B1×B2)]

c

and v×(B1 ×B2) = v(N1 ×N2)− v[(B1 ×B2)
c] then we have:

v×[(A1 ×A2) ⊔ (B1 ×B2)]− v(A1 ×A2)− v×(B1 ×B2)
= −{v[(A1 ×A2) ⊔ (B1 ×B2)]

c + v(A1 ×A2)}+ v[(B1 ×B2)
c]

= −{v[(A1 ×A2)
c ∩ (B1 ×B2)

c] + v(A1 ×A2)}+ v[(B1 ×B2)
c]

≥ −v{[(A1 ×A2)
c ∩ (B1 ×B2)

c] ⊔ (A1 ×A2)}+ v[(B1 ×B2)
c]

≥ −v[(B1 ×B2)
c] + v[(B1 ×B2)

c] = 0,
because (A1 ×A2) ∩ (B1 ×B2) = ∅. And consequently, we have:

v(A1 ×A2) + v×(B1 ×B2) ≤ v×[(A1 ×A2) ⊔ (B1 ×B2)].

⇐=) Reciprocally, suppose that:
v(A1 ×A2) + v×(B1 ×B2) ≤ v×[(A1 ×A2) ⊔ (B1 ×B2)], then, we have:
v[(A1 ×A2) ⊔ (B1 ×B2)]− v(A1 ×A2)− v(B1 ×B2)

= v(N1 ×N2)− v×[(A1 ×A2) ⊔ (B1 ×B2)]
c − v(A1 ×A2)− v(B1 ×B2)

= −{v×[(A1 ×A2) ⊔ (B1 ×B2)]
c + v(A1 ×A2)}+ v(N1 ×N2)− v(B1 ×B2)

≥ −v×[(B1 ×B2)
c] + v×[(B1 ×B2)

c] = 0.
Hence, we have: v(A1 ×A2) + v(B1 ×B2) ≤ v[(A1 ×A2) ⊔ (B1 ×B2)].

(2) In the same way we establish the second proposition.

Using the previous lemma, it is easy to verify the following result.

Corollary 2.2. Let v be a bi-stable cooperative game and C1×C2 an element of 2N1×N2.
Then, the following properties are equivalent:

(1) C1 × C2 is a node of v.
(2) v(C1 × C2) + v[(C1 × C2)

c] = 1.
(3) For all element A1 × A2 of 2N1×N2, if (A1 × A2) ∩ (C1 × C2) = ∅, then we have:

v[(A1 ×A2) ⊔ (C1 × C2)] = v(A1 ×A2) + v(C1 × C2).
(4) For all element A1 × A2 of 2N1×N2, if (A1 × A2) ∩ (C1 × C2) = ∅, then we have:

v×[(A1 ×A2) ⊔ (C1 × C2)] = v×(A1 ×A2) + v×(C1 × C2).

Remark 2.7. From the equivalent ”(1) ⇐⇒ (2)”, we can deduce that the complement of
a node is also a node, and any element P of the core of v must pass through the value
P (C × C ′) = v(C × C ′), and this justifies the name of the node.

Definition 2.11. Let v be a bi-stable cooperative game and C ×C ′ an element of 2N×N ′
.

Let v′ a cooperative game such that: v ≤ v′.
We say that v′ is a ”exact majorante” in C ×C ′ if, v(C ×C ′) = v′(C ×C ′). We also say
that C × C ′ is a contact point of v′ with v.

Remark 2.8. N1 ×N2 is always a contact point of v′ with v, so, we have:

v
′
(N1 ×N2) = v

′×(N1 ×N2) ≤ v×(N1 ×N2) = v(N1 ×N2).

This remark is immediate but it is important to show the following result.
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Corollary 2.3. Let v be a bi-stable cooperative game and C1×C2 an element of 2N1×N2.
We consider the function vC1×C2 defined by:

vC1×C2(A1 ×A2)

=

{
v×[(C1 × C2)

c] + v(A1 ×A2 ∩ C1 × C2) ; if (A1 ×A2) ∪ (C1 × C2) = N1 ×N2

v(A1 ×A2) ; if (A1 ×A2) ∪ (C1 × C2) ̸= N1 ×N2

vC1×C2 is the smallest cooperative game majorant v exact and admitting a node in
C1 × C2.

Proof.
First, we show that: v ≤ vC1×C2 .

Let A1 ×A2 an element of 2N1×N2 .
a) If (A1 × A2) ∪ (C1 × C2) ̸= N1 × N2, then, vC1×C2(A1 × A2) = v(A1 × A2), hence,
v(A1 ×A2) ≤ vC1×C2(A1 ×A2).
b) If (A1 ×A2) ∪ (C1 × C2) = N1 ×N2, then, (C1 × C2)

c ⊂ (A1 ×A2) [3, 14].
Hence, v(A1×A2) = v[(C1×C2)

c ⊔ (A1×A2 ∩C1×C2)], so, according to the lemma 2.2,
we have: v(A1 ×A2) ≤ v×[(C1 × C2)

c] + v(A1 ×A2 ∩ C1 × C2), then,
v(A1 ×A2) ≤ vC1×C2(A1 ×A2), therefore, v ≤ vC1×C2 .

We show that: vC1×C2 is a cooperative game.
Let, A1×A2 and B1×B2 be two elements of 2N1×N2 , such that: (A1×A2)∩(B1×B2) = ∅.
a) If (A1 ×A2) ∪ (C1 × C2) ̸= N1 ×N2 and (B1 ×B2) ∪ (C1 × C2) ̸= N1 ×N2, then,

vC1×C2(A1 ×A2) + vC1×C2(B1 ×B2) = v(A1 ×A2) + v(B1 ×B2)

≤ v(A1 ×A2 ⊔B1 ×B2), (v is super-additive)

≤ vC1×C2(A1 ×A2 ⊔B1 ×B2), (v ≤ vC1×C2)

b) We suppose that: (A1×A2)∪(C1×C2) = N1×N2 or (B1×B2)∪(C1×C2) = N1×N2.
In this case, the or (that we denote or) is exclusive, because (A1 ×A2) ∩ (B1 ×B2) = ∅.
If (A1×A2)∪ (C1×C2) = N1×N2, so, (B1×B2) ⊂ (A1×A2)

c ⊂ (C1×C2), [3, 14], then,
vC1×C2(A1 ×A2) + vC1×C2(B1 ×B2)

= v×[(C1 × C2)
c] + v(A1 ×A2 ∩ C1 × C2) + v(B1 ×B2)

≤ v×[(C1 × C2)
c] + v[(A1 ×A2 ∩ C1 × C2) ⊔B1 ×B2]

≤ v×[(C1 × C2)
c] + v[(A1 ×A2 ⊔B1 ×B2) ∩ (C1 × C2 ∪B1 ×B2)]

≤ v×[(C1 × C2)
c] + v[(A1 ×A2 ⊔B1 ×B2) ∩ C1 × C2]

≤ vC1×C2(A1 ×A2 ⊔B1 ×B2).
Therefore, vC1×C2 is a cooperative game.
Now we show that: vC1×C2 is exact in C1 × C2.

a) If C1 × C2 = N1 ×N2, then, according to the previous remark
vC1×C2(C1 × C2) = v(C1 × C2).
b) Otherwise, i.e. (C1×C2)∪ (C1×C2) ̸= N1×N2, then by definition of vC1×C2 we have:
vC1×C2(C1 × C2) = v(C1 × C2). As a result vC1×C2 is exact in C1 × C2.

Now, we show that: vC1×C2 admits a node in C1 × C2,

v×C1×C2
(C1 × C2) = vC1×C2(N1 ×N2)− vC1×C2 [(C1 × C2)

c]

= v(N1 ×N2)− v×[(C1 × C2)
c]− v[(C1 × C2)

c ∩ (C1 × C2)]

= v(N1 ×N2)− v×[(C1 × C2)
c]

= v(C1 × C2)

= vC1×C2(C1 × C2), since vC1×C2 is exact in C1 × C2.

Hence, vC1×C2 admits a node in C1 × C2.
Finally, we show that: vC1×C2 is the smallest game majoring v.

Let v′ be a cooperative game majoring v exact in C1 × C2 admitting a node in C1 × C2.
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a) If (A1×A2)∪ (C1×C2) ̸= N1×N2, then, vC1×C2(A1×A2) = v(A1×A2) ≤ v′(A1×A2).
b) If (A1 ×A2) ∪ (C1 × C2) = N1 ×N2, then,

v′(A1 ×A2) ≥ v′[(C1 × C2)
c] + v′[(A1 ×A2) ∩ (C1 × C2)]

≥ v′(N1 ×N2)− v
′×(C1 × C2) + v[(A1 ×A2) ∩ (C1 × C2)]

≥ v(N1 ×N2)− v′(C1 × C2) + v[(A1 ×A2) ∩ (C1 × C2)]

≥ v(N1 ×N2)− v(C1 × C2) + v[(A1 ×A2) ∩ (C1 × C2)]

≥ v×[(C1 × C2)
c] + v[(A1 ×A2) ∩ (C1 × C2)]

≥ vC1×C2(A1 ×A2).

Hence the result.

3. Bi-extremal bi-stabilization algorithm

In this section, we present an algorithm that involves addressing the maximization
problem in two distinct games concurrently.

3.1. Definitions and propositions.

Definition 3.1. Let C1 × C2 be an element of 2N1×N2.
C1×C2 is a ”regular point” of v if vC1×C2 stabilizes. We noted by v̂C1×C2 its bi-stabilized.

Corollary 3.1. Let v be a bi-stable, cooperative game and Nv be the set of its nodes.

(1) If C1 × C2 is a regular point for v, then, Nv ⊂ NvC1×C2
⊂ Nv̂C1×C2

.

(2) For all S1 × S2 of Nv, v(S1 × S2) = vC1×C2(S1 × S2) = v̂C1×C2(S1 × S2).

Proof.

(1) First, we show that: Nv ⊂ NvC×C′ .

Let S × S′ be an element of Nv, then: v(S × S′) = v×(S × S′).
Let us show that: S × S′ ∈ NvC×C′ .

We know that: v ≤ vC×C′ , so v×C×C′ ≤ v×, then,

∀S × S′ ∈ Nv, v
×
C×C′(S × S′) ≤ v×(S × S′) = v(S × S′) ≤ vC×C′(S × S′).

Since vC×C′ is superadditive, then, for all S × S′ ∈ Nv:

vC×C′(S × S′) ≤ v×C×C′(S × S′).

Consequently, v×C×C′(S × S′) = vC×C′(S × S′), i.e. S × S′ ∈ NvC×C′ .
Hence the result.
We follow the same process to establish NvC×C′ ⊂ Nv̂C×C′ .

(2) Now, we show that, for all S × S′ ∈ Nv:

v(S × S′) = vC×C′(S × S′) = v̂C×C′(S × S′).

Let S × S′ an element of Nv, then v(S × S′) + v[(S × S′)c] = 1,
vC×C′(S × S′) + vC×C′ [(S × S′)c] = 1 and v̂C×C′(S × S′) + v̂C×C′ [(S × S′)c] = 1.
On the other hand, we know that, v(S×S′) ≤ vC×C′(S×S′) ≤ v̂C×C′(S×S′) and
v[(S × S′)c] ≤ vC×C′ [(S × S′)c] ≤ v̂C×C′ [(S × S′)c].
Then, we have: v(S × S′) = vC×C′(S × S′) = v̂C×C′(S × S′).

Corollary 3.2. Let C×C ′ be a regular point of v, and let v̂C×C′ be the bi-stability closure
of the node C ×C ′. The core of v̂C×C′ is defined as the set of elements within the core of
v that are exact in C × C ′.
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Proof.
Let P ∈ Cv̂C×C′ , then: v ≤ v̂C×C′ ≤ P and P ∈ Cv.

In addition to this, since C × C ′ ∈ NvC×C′ ⊂ Nv̂C×C′ and according to the previous

corollary, we have: v̂C×C′(C × C ′) = P (C × C ′).
Reciprocally, if P ∈ Cv such that: v(C × C ′) = P (C × C ′), then,
v×[(C1×C2)

c] = P [(C1×C2)
c], so for all B1×B2 such that: (B1×B2)∩ (C1×C2)

c = ∅,
v(B1 ×B2) + v×[(C1 × C2)

c] = vC1×C2 [B1 ×B2 ⊔ (C1 × C2)
c]

≤ P [B1 ×B2 ⊔ (C1 × C2)
c]

≤ P (B1 ×B2) + P [(C1 × C2)
c]

and as a result: v(B1 × B2) ≤ P (B1 × B2) for all B1 × B2, hence: v ≤ v̂C1×C2 ≤ P (i.e.
P ∈ Cv̂C1×C2

).

Definition 3.2. We call ”bi-extremal element” of the core of v, all point P of Cv which
cannot be expressed as a convex combination of other points of Cv.

Remark 3.1.

(1) All the points of contact between v and a bi-extremal of the core are regular points.
(2) The progressive formation of an admissible base within the meaning of linear pro-

gramming justifies the following denomination.

Definition 3.3. We call ”admissible point” of v, all part A1 × A2 of N1 × N2 which is
linearly independent of the nodes of v.

3.2. Diagram.
Let v be a bi-stable cooperative game.

The algorithm is founded on the identification of a bi-extremal element within the core
of v, assuming it is not empty. This process involves leveraging the function vC1×C2 and
systematically constructing nodes at admissible points of v anticipated to exhibit regular
behavior. The goal is to iteratively navigate through these nodes, ultimately determining
a bi-extremal element within the core of v.

Step 1. Let C1
1 × C1

2 be an admissible point of v.
We calculate vC1

1×C1
2
and we analyze the regularity of C1

1×C1
2 by calculating the bi-stability

closure v̂C1
1×C1

2
of vC1

1×C1
2
if it exists.

We will have the following equality: v̂C1
1×C1

2
(C1

1×C1
2 ) = v(C1

1×C1
2 ) and we go to the second

stage (by replacing the cooperative game v by the cooperative game v̂C1
1×C1

2
). Otherwise,

we change the admissible point until a regular point is obtained.
Step 2. Let C2

1 × C2
2 be an admissible point of vC1

1×C1
2
.

We calculate vC2
1×C2

2
and we stabilize it if C2

1 × C2
2 is regular.

We will then have the following equality: v̂C2
1×C2

2
(Ci

1 ×Ci
2) = v(Ci

1 ×Ci
2) for all i ∈ {1; 2}

and we move on to the third stage (by replacing the cooperative game v̂C1
1×C1

2
by the

cooperative game v̂C2
1×C2

2
).

Otherwise, we change the admissible point until a regular point is obtained.
In the same way and on a recurring basis, we have:

(p+1)th step. Let C
(p+1)
1 × C

(p+1)
2 be an admissible point of vCp

1×Cp
2
.

We calculate v
C

(p+1)
1 ×C

(p+1)
2

and we stabilize it, if C
(p+1)
1 × C

(p+1)
2 is regular, even if it

means changing the admissible point.
We will have, v̂

C
(p+1)
1 ×C

(p+1)
2

(Ci
1 × Ci

2) = v(Ci
1 × Ci

2) for all i ∈ {1; 2; 3; ...; p+ 1}.
And so the sequence continues, repeating in a similar manner.
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Remark 3.2. The efficiency of the algorithm is reduced by the fact that the regular points
are only known after the bi-stabilization, it is therefore necessary to limit as much as possi-
ble the set of admissible points to be analyzed. We highlight a family of simple inequalities
necessary for the non-vacuity of the core.
Indeed, for all points C1 × C2 and D1 ×D2 and all additive P , we have:
P (C1 × C2) + P (D1 ×D2)

= P [(C1×C2∩D1×D2)∪ (A1×A2)]+P [(C1×C2∩D1×D2)∪ (B1×B2)]
for all parties A1×A2 and B1×B2 of (C1×C2)∆(D1×D2). Therefore, if the cooperative
game v bounded above by P with two points of contact C1 × C2 and D1 ×D2, we have:
v(C1 × C2) + v(D1 ×D2)

≥ v[(C1×C2∩D1×D2)∪ (A1×A2)]+ v[(C1×C2∩D1×D2)∪ (B1×B2)].
If we apply this to a cooperative game v,

a) The preceding inequalities are always checked for any pair of nodes.
b) A non-node point C1 × C2 is a point which does not satisfy these inequalities with

the node D1 ×D2 of v and an element P of node.

The admissible candidates for additional nodes must therefore verify all these inequali-
ties with any node of v. Hence the following definition.

Definition 3.4. We define a point as a candidate at contact if it satisfies the preceding
inequalities with all nodes of v.

3.3. Bi-extremal bi-stabilisation algorithm.
Beginning
B ← Base (nodes of v)
v ← v
A← {A×B} (A×B admissible for v)
while A ̸= ∅ and |B| < nm, make choose C1 × C2 from A

If vC1×C2 then stabilizes,
B ← Base (nodes of vC1×C2)
A← {A×B} [A×B admissible for v̂C1×C2 and v̂C1×C2(A×B) = v(A×B)]
v ← v̂C1×C2

Else A← A \ {C1 × C2}
End if

End while
End.

Remark 3.3.

(1) This method is an algorithm because it ends in a finite number of stages (less than
or equal to 2nm with nm = |N1 ×N2|).
Indeed, at each iteration of while, the cardinal of A decrease by at least 1 (if vC1×C2

stabilize, then C1 × C2 is no longer admissible for v̂C1×C2).
(2) The algorithm’s difficulty and efficiency hinge on selecting the appropriate base B

and choosing admissible points wisely.
(3) For the bi-stabilization of the algorithm (which is a necessary condition of non-

vacuity of the core), we used the polars of the bi-stable cooperative game v and the
fundamental function vC1×C2 which is the smallest cooperative game majorant v
exact and admitting a node in C1 × C2.

Corollary 3.3. If the algorithm gives a solution (probability) P from the core of v, then
this solution is a bi-extremal element of Cv.
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Proof.
To have a solution is to have, |B| = nm, and since, v ≤ v ≤ P , then, P is in Cv.
P is bi-extremal, since we have a base of contact points (i.e. the elements of B).

4. Conclusion

In this paper, we expanded upon various concepts in game theory by transitioning
from N to the cartesian product N1 ×N2, offering a novel perspective. Additionally, we
introduced the bi-extremal bi-stabilization algorithm, a two-dimensional extension inspired
by [10]. Drawing parallels with this previous work, we can conclude that if nm = |N1×N2|,
the algorithm of the bi-extremal bi-stabilization of a cooperative game can solve in only
2nm - instead of nm2nm for simplex - a system of the form: MaxP (N1 ×N2)

P (S1 × S2) ≤ v×(S1 × S2) S1 × S2 ∈ 2N1×N2

P ≥ 0

For minimization problems, we use the initial problem of this problem (dual): MinP (N1 ×N2)
P (S1 × S2) ≥ v(S1 × S2) S1 × S2 ∈ 2N1×N2

P ≥ 0

Consequently, we believe that the extensions of this type may have a wide application area,
and may serve as a useful reference for further studies. While our paper has primarily
focused on two-dimensional extension, further research can explore the possibilities of
higher-dimensional extension.
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[5] Daumas, M., Martin-Dorel, É., Truffert, A. and Ventou, M., (2009), A formal theory of cooperative
TU-games, In Modeling Decisions for Artificial Intelligence: 6th International Conference, MDAI 2009,
Awaji Island, Japan, November 30–December 2, 2009, Proceedings 6 Springer Berlin Heidelberg, pp.
81-91.

[6] Davis, M. D., (2012), Game theory: a nontechnical introduction, Courier Corporation.
[7] Dunford, N. and Schwartz, J. T., (1988), Linear operators, part 1: general theory, 10, John Wiley &

Sons.
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[20] Muros, F. J., (2019), Cooperative game theory tools in coalitional control networks, Springer.
[21] Nowak, M. A., (2006), Five rules for the evolution of cooperation, science, 314 (5805), pp. 1560-1563.
[22] Ohtsuki, H., Hauert, C., Lieberman, E. and Nowak, M. A., (2006), A simple rule for the evolution of

cooperation on graphs and social networks, Nature, 441 (7092), pp. 502-505.
[23] Parilina, E., Reddy, P. V. and Zaccour, G., (2022), Theory and Applications of Dynamic Games: A

Course on Noncooperative and Cooperative Games Played Over Event Trees, Springer Nature, 51.
[24] Parrachino, I., Dinar, A. and Patrone, F., (2006), Cooperative game theory and its application to

natural, environmental, and water resource, Application to Water Resources (November 2006), World
Bank Policy Research Working Paper, 3, pp. 4074.

[25] Peleg, B. and Sudhölter, P., (2007), Introduction to the theory of cooperative games, Springer Science
& Business Media, 34.

[26] Perc, M., Jordan, J. J., Rand, D. G., Wang, Z., Boccaletti, S. and Szolnoki, A., (2017), Statistical
physics of human cooperation, Physics Reports, 687, pp. 1-51.

[27] Roth, A. E. (Ed.), (1988), The Shapley value: essays in honor of Lloyd S. Shapley, Cambridge
University Press.

[28] Slime, M., El Kamli, M. and Ould Khal, A., (2023), Exploring the Benefits of Representing Multiplayer
Game Data in a Coordinate System, Journal of Applied Mathematics, 2023.

[29] Slime, M., El Kamli, M. and Ould Khal, A., (2024), Analyzing cooperative game theory solutions: core
and Shapley value in cartesian product of two sets, Frontiers in Applied Mathematics and Statistics,
10, pp. 1332352.

[30] Song, D. W. and Panayides, P. M., (2002), A conceptual application of cooperative game theory to
liner shipping strategic alliances, Maritime Policy & Management, 29 (3), pp. 285-301.

[31] Song, Z., Guo, H., Jia, D., Perc, M., Li, X. and Wang, Z., (2022), Reinforcement learning facilitates
an optimal interaction intensity for cooperation, Neurocomputing, 513, pp. 104-113.

[32] Tanimoto, J., (2015), Fundamentals of evolutionary game theory and its applications, Springer Japan.
[33] Tanimoto, J., (2019), Evolutionary games with sociophysics, Evolutionary Economics, 17.
[34] Teghem, J., (2003), Programmation linéaire, Paris.
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