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REGIME SWITCHING OF MIXTURE AUTOREGRESSIVE PROCESS

FOR DISCRETIZED TIME EVENTS

R. O. OLANREWAJU1∗, S. A. OLANREWAJU2, §

Abstract. This paper establishes the need for Poisson random noise for mixture autore-
gressive process for strictly discretized time events (count series), and as well possessed
traits of regime switching, and multimodalities that are usually caused by jumps, fluc-
tuations, and outliers. Consequently, a Poisson mixture autoregressive (PMAR) model
with k -regimes, denoted by PMAR(k : p1, p2, . . . , pk) was established and developed,
such that, the embedded associated k -regime autoregressive and Poisson coefficients were
estimated via Expectation-Maximization (EM) algorithm. The limiting distribution (as-
ymptotic property) of the PMAR(k : p1, p2, . . . , pk) process was ascertained via the
Central Limit Theorem (CLT) as well as the lower bound variance estimator of the
PMAR process. The model was applied to the significant wave height of the Belmullet
Inner (Berth B) and Belmullet Outer (Berth A) of the Atlantic Ocean. The discretized
time events of the berths gave a realization of two regimes switching for Berth A and
B respectively. The second regime produced a minimum Mean Square Error (MSE) of
12.02 compared to 12.32 produced by first regime.

Keywords: Expectation-Maximization, Limiting Distribution, Multimodalities, Regime-
Switching, Poisson.
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1. Introduction

Linear time series processes, such as Autoregressive (AR), Moving Average (MA),
and Autoregressive Moving Average (ARMA) processes were developed to generalize
both uniformly and non-uniformly time-variant events, and timely stochastic processes,
but vast majority of these processes lacked the ability to capture traits, such as condi-
tional distributions with time-varying dependency variance (volatility), tenure-changing
traits, multimodalities ([4], [12], [14]). However, some non-linear time-variant processes,
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such as Threshold Auto-Regressive (TAR), Self-Exciting Threshold Autoregressive (SE-
TAR), Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and its vari-
ants (such as EGARCH, APARCH, GJR-GARCH); and fractional integrated processes
were able to bridge the time-varying dependency variance (volatility) with conditional
distributions ([3], [22]).
By and large, the mentioned non-linearity processes still left out stylized traits, traits
like change points like behavior, regime-switching (ability to handle cycles), time-varying
volatilities (conditional variances), time-varying mixing weights (transitional weights), and
full range of shape changing predictive distributions (otherwise known as multimodalities)
([21], [20], [13]). Ref.[19] proposed a regime-switching model called Mixture Autoregressive
(MAR) MAR(k : p1, p2, . . . , pk) process that relaxes all the left-out stylized properties.
Consequently, each of the regime has its own marginal conditional distribution (ft) which
is a replica of the immediate past distribution, such that, the conditional mean and vari-
ance in each regime (component) depends on the immediate past time.
Moreover, no effort has been made about the time-varying stylized regime switching in ac-
commodating and capturing discretized (count) time events that are affected by large fluc-
tuations (outliers). In advancement of the MAR model with Gaussian random noise, this
article will be proposing and developing a Poisson mixture autoregressive (PMAR) pro-
cess, mathematically denoted by PMAR(k : p1, p2, . . . , pk). The PMAR(k : p1, p2, . . . , pk)
process will be in terms of the Poisson random noise distributional form of the MAR pro-
cess. In line with this scope, the novelty of the PMAR(k : p1, p2, . . . , pk) process will be
developed with its associated k -regime-switching, pk (optimal lag) and transitional weight
per each regime, such that the Expectation-Maximization (EM) algorithm will be adopted
in estimating these mentioned parameters [22].

2. Literature Review

Ref.[20] unfolded that multiple steps conditional distribution of estimates of futuristic
observations from MAR processes were tractable analytically. They claimed that MAR
process was autoregressive processes of changing tenures/states of chronological succes-
sions of unobserved variables (otherwise called latent variable) that will be used to select
varying states or components. However, they found out that if stationary process (es)
was/were mixed with non-stationary process (es), the overall process becomes stationary.
The problem of ascertaining associated number of components (transitional weights) in
MAR and model selection criteria (AIC, BIC, etc.) was worked upon by [9]. Ref.[9] noted
that the AIC and its variants were inadequate for the objective function because of their
likelihood of overestimating the number of the transitional weights, which usually arise
to unreliable estimable coefficients for retention of the MAR model. Due to this lacuna,
they formulated a newfangled process performance criterion known as mixture regres-
sion criterion (MRC), such that its parameter estimation was based on quasi-likelihood
with extended pertinence to non-normal processes, dependent observations, and count ex-
planatory time events. They further proved the efficiency of the limiting distribution of
the MRC and showed that it could be performed using MCMC inspections for one or more
responses throughout components with unequal or equal sample sizes.
Moreover, Ref.[2] introduced a point mixture model called Location-Mixture Autoregres-
sive (LMAR) process, which captured multiple steps conditional densities. The parameter
estimation technique adopted was the Expectation-Maximization (EM) algorithm and pre-
cise multiple steps ahead predictions were forecast. They reported that the LMAR model
outperformed related and similar models regarding out-of-sample forecasting accuracy.
The LMAR model was reported to be superior in predictive performances of real-time
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computation when streamlined to location (mean-cluster) parameter estimation alone.
Ref.[7] propounded a supposition and verifiable study of chance illation for AR processes
with limited (m-mixing weights) mixture of Scale Mixtures of Normal (SMN) innovation.
The process involved AR processes with overall mean and mixture-mingling proportions’
innovation. They adopted the EM parameter estimation technique, and reported that the
derivations needed for Hessian matrix were also developed when preparing the algorithm.
Ref.[6] improved and examined Finite Mixture (FM) model, accompanied with flexibility
of classification of two parts of distributions based on scale mixtures of normal (TP-SMN)
constitutive members. They claimed that the family makes room for robust estimation
of FM models development with the ability to capture and absolve asymmetric and sym-
metric, and heavy and fat-tailed distributions. They further maintained that TP-SMN
provides an alternative family member to scale mingling skewed normal (SMSN) family
and vital traits of well-hierarchical expression of the family to obtain ML estimates of the
model coefficients via an EM parameter estimation technique.
Ref.[16] theoretically assorted autoregressive random processes via a special type of dis-
tributional error term, transmuted Gamma distributed noise. After ascertaining that the
transmuted Gamma distribution is a proper distribution function (pdf), they theoretically
re-parameterized the Gamma parameters in terms of µ and σ2 into the autoregressive ran-
dom processes. The mean and variance of the mingling transmuted Gamma autoregressive
process was ascertained coupled with its first and second-order stationarity. However, the
ingrained k -components’ of the mingling transmuted Gamma autoregressive coefficients
were estimated via Expectation-Maximization (EM) algorithm, such that the Levinson-
Durbin recursive technique was used to derive some step ahead predictions as well as the
model sub-setting estimation. Ref.[15] described cyclical-like tenure changing of number of
the stocks sold via mingling autoregressive random processes with Poisson and Extreme-
Value-Distributions (Fréchet, Gumbel, and Weibull) error terms. They expounded the
periodical market behavioral demand and transitory of the stock returns via the associ-
ated Markov transitional mixing weights, autoregressive processes, and multimodalities
that usually cause the large fluctuations and long-memory. Application wise, it was de-
duced that Gumbel distributional error outstripped the Poisson and other Extreme-Value-
Distributional stochastic errors to give a fitted generalization of Gumbel-MAR (2:1, 1). In
extension, Ref.[12] subjected the Poisson and Extreme-Value-Distributions autoregressive
random processes to Kullback-Leibler divergence measure in order to ascertain the prox-
imity between the finite/delimited and infinite mixture density of each of the mingling
processes.
[17] provided a flexible way to model MAR via a predictive distribution that depends on
the history of the process, which accommodate asymmetry and multimodality with the
use of Bayesian method. The merit of process was that it incorporates the uncertainty in
the estimated processes into the prediction such that all the parameters were cover in the
parameter space introduced. Unlike the known approaches, the MCMC approach adopted
also introduced a re-labelling algorithm that deals with a posteriori label switching. Rela-
tively, [18] extended the Gaussian Mixture Autoregressive (GMAR) to Fisher’s z Mixture
Autoregressive (ZMAR) process via the introduction of a four parameter Fisher’s z ran-
dom noise and adopted Bayesian paradigm as a way of quantifying the uncertainty in the
modified process. The process extension was based on the mode as a stable location pa-
rameter of mixture of k -component Fisher’s z autoregressive models with mixing weights
that changes overtime. Markov Chain Monte Carlo (MCMC) algorithm was adopted as
the parameter estimation technique such that, the process’s model evaluation was juxta-
posed with GMAR model and Student-t Mixture Autoregressive (TMAR) model.
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[11] applied the full-scale real-time observations of the wave climate significant wave height
(in metre), peak wave (in 0C) and sea temperature (in 0C) of the latitude and longitude
of the wave buoys’ Belmullets of the Atlantic Ocean to wave-signal-amplitude cosine and
sine regression as an extension to wave signal Fourier function and Wave-Shape Function
(WSF) model. The associated regression coefficients were estimated via the Ordinary
Least Square (OLS) technique, such that, the model wave signal, frequency, and phase
were carved-out in order to ascertain the directional of the wave signal, time in seconds
to complete a wave cycle, and its phase respectively.
Based on the review, it was obvious that MAR(k : p1, p2, . . . , pk) has not been treated for
strictly uniformly count (discretized) time observations. In support of the need to subject
the MAR process to Poisson random noise for one of the candidates of discretized distri-
butions, the mean and variance of the PMAR(k : p1, p2, . . . , pk) process for k -changing
tenures (multimodalities) will be ascertained. Additionally, the parameter estimation of
the PMAR(k : p1, p2, . . . , pk) process will be via the EM-algorithm, and the limiting dis-
tribution (asymptotic property) of the process will be put to check via the Central Limit
Theorem (CLT).
Contributively, no effort about time varying MAR process to accommodate, combine, and
capture distributional fluctuations, flat stretches, jumps, fluctuations, and full range shape
changing predictive distributions (multimodalities) that arises from rare events, specifi-
cally series emanated from count (discrete) series has been made. Similarly to the idea of
Poisson regression model that was designed to cater for count regressors and dependent
variable in order to avoid wasteful and unmatched random noise, the modification of the
MAR process towards capturing and accommodating strictly discretized uniformly jump
time series was contributively proposed to nullify the possibility of unmatched random
noise (that is nullifying the possibility of adopting non-count random noise).
Significantly, the discretized MAR process with Poisson random noise will be applied to
count series of the significant wave height observations (in metric) of the Belmullet Inner
(Berth B) and Belmullet Outer (Berth A) of the Atlantic Ocean to approximately deduce
the number of regimes associated to the 10-years recorded data from May 2012 to April
2021. The associated transitional weight per each regime will not only be deduced, but
also how skewedness affected each regime via regime switching lambda will be ascertained
for inferential deductions that will be of benefit to Sustainable Energy Authority of Ireland
(SEAI). The inferential deduction will make it possible for SEAI to further study other
influential climatic factors that must have drove significant wave height observations of
the Belmullet Inner (Berth B) and Belmullet Outer (Berth A) of the Atlantic Ocean over
the years of study.

3. Specification of Poisson mixture autoregressive (PMA) model

Ref.[5] & Ref.[10] introduced mixture transition distribution as finite (countable) mix-
ture of transition probability with hidden Markov traits as

f(x) = η1g1(x) + η2g2(x) + · · ·+ ηkgk(x) (1)

Where f(x) is the whole mixture model function and gi(x) (i = 1, . . . , k) are the uniform
probability distributions which rely on embedded coefficients; weighted transition prob-
ability of ηi > 0; η1 + η2 + · · · + ηk ≈ 1 for i = 1, . . . , k. Ref.[1] & Ref.[8] defined a
k -component of Mixture Autoregressive (MAR) model of MAR(k : p1, . . . , pk) to be.
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Extending the k -component of MAR model in equation (2) to Poisson Mixture Autore-
gressive PMAR(k : p1, p2, . . . , pk) gives

Xt=
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Where,
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(k)
t

ε
(k)
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µk, t = ϕk,0 + ϕk,1xt−1 + · · ·+ ϕk,pkxt−pk

Alternatively,
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t with transitional weight η1 & λ1
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...
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+
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(4)

Where, ϕpk ranges from [0, 1], for k = 1, . . . ,K, pk ≥ 1. For mixing weights
η1 + . . .+ ηk ≈ 1, ηi > 0; for k = 1 · · ·K; Φ(.) is the Cumulative Distribution
Function (CDF) of the Poisson distribution, where

ε
(k)
t & Xt ≈ g (xt; λ) =

λxte−λ

xt!
; xt = 0, 1, 2, 3, · · · ,

with mean and variance λ, where ! is the factorial symbol.

3.1. Parameter Estimation for PMA via EM Algorithm. .
Let Xt = {X1, X2, · · · , Xn}; λk = {λ0, λ1, · · · , λk}T ;ϕk = {ϕk0, ϕk1, · · · , ϕk pk}

T ;

ηk = {η0, η1, · · · , ηk}T for k = 1, · · · ,K

Assuming that “Z” is an unobserved random variable, where Zt is a k -dimensional
vector such that Z = {Z1, Z2, · · · , Zn}

Zt = {Z1, Z2, · · · , Zt}T Whose component is

Zi,t =

{
1 if Xt spring up from the jthweight
0, otherwise

For 1 ≤ j ≤ K, that is, P
(
Zt = (1, 0, · · · , 0)T

)
= η1, P

(
Zt = (0, 1, · · · , 0)T

)
= η2,

· · · ,P
(
Zt = (0, 0, · · · , 1)T

)
= ηk

Let Θ = {ϕk, ηk, λk}T be the universal parameter space.



632 TWMS J. APP. ENG. MATH. V.15, N.3, 2025

Given Zt, the Poisson distribution of the complete data (Xt, Zt) is

Lt(Θ) =
K∏
k=1

[
ηk

λk
Xte−λk

Xt!

]Zk t

(5)

Supposing that the complete data function in equation (5) is at time “t”. The observed

data log-likelihood function is L(Θ) =
n∑

t=1
Lt. Supposing L(Θ) =

n∑
t=L+1

Lt be the complete

data log-likelihood function for sample size (n). So, the directly-maximized log-likelihood
function of L(Θ) gives
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where,

Xt = ϕk,0 + ϕk,1xt−1 + · · ·+ ϕkxt−pk = ϕk,0
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First-order derivatives of L(Θ) with respect to each of the parameter gives,
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k = 1, 2, · · · ,K; i = 0, · · · , pk

Second derivatives of Lt(Θ) with respect to each of the parameter will be derived with
respect to letting a function of xt be a function of a random variable at time “t” and
counter “j” such that

τ(xt, j) =

{
1 for i = 0
xt−i j > 0
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So,
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Applying the EM-algorithm procedure for estimating the universal parameter Θ, through
the Lt(Θ) in equation (7).

E-step: The E-step of the EM-algorithm, we firstly assume that the universal param-
eter space Θ is known, then the missing values of the unknown data (ZL,t) is replaced
by the expected value of the observed data “X” of each parameter. Letting Ωk,t to be
the expected value of Zk,t makes Ωk,t be the transition probability of the expected value
in totality divided by the individual transition probability of each expected value (Bayes’
theorem). That is,

Ωk,t =
ηk

λk
Xte−λk

Xt!

K∑
k=1

ηk
λk

Xte−λk

Xt!

(20)

for k = 1, · · · ,K; t = L+ 1, · · · , n; Zk,t = Ωk,t

M-step: The M-step of the EM algorithm is to maximize the expectations computed
in the E-step. The missing data “Z” is assumed to be guessed and filled by their expected
values of the parameters. The mixing weight of each regime can then be obtained via
Lt(Θ) by subtracting Ωk,t from Lt(Θ) to give,

η̂k =

n∑
t=L+1

Ωk,t

n− L
(21)

Such that ϕ̂k pk for k = 1, · · · , pk that could also be estimated via a system of equations
(that is, estimates of the parameters are then obtained by iterating these two steps until
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convergence) or alternatively via Newton-Raphson iterative procedure of all the parameter
space at once.

Θr+1
k = Θr

k +
[
E
(
−n∇2

Θk
L(Θ)/(ϕk0, ϕki, λk)

)]−1 ×∇Θk
L(Θ)/(ϕk0, ϕki,λk) (22)

3.2. Limiting Behavior (Asymptotic Property) for PMA Model. The limit distri-
bution (Asymptotic property) for PMA model will be based on the Central Limit Theorem
(CLT) for providing alternate approximation for probability of sum of independent ran-
dom variable as the sample size approaches infinity.

The Central Limit Theorem:Let {Xi}ni=1
be a sequence of IID random variables,

each having mean (µ) and variance (σ). Define Sn = X1 +X2 + · · · +Xn, σ (Sn) as the
standard deviation of Sn.

Then the distribution of

Zn =
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σ
√
n

(23)

what intends to the standard normal as n → ∞. That is,

P
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Letting Sn =
∑

X, E (Sn) = nλ σ (Sn) =
√
nλ as the mean and variance of Pois-

son. The Moment Generating Function (MGF) of Z-variate as known from the normal
distribution is

Zn =
X − µ√

σ
(25)

From the normal variate, and transforming into PMA model, MGF given by Zn
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Introducing Mz(t) = etxt
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Recall that Mxt(t) for Poisson distribution is
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So,
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⇒ logMzn(t) =
t2

2
+

t3

6
√
nλk

(43)

lim
n→∞

logMzn(t) =
t2

2
(Continuity from above) (44)

Taking exponential of both sides

Mzn(t) = exp

(
t2

2

)
(45)
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Comparing Mzn(t) = exp
(
t2

2

)
with exp

(
µt+ σ2t2

2

)
, it means µ = 0, σ2 = 1

So, as Zn converges to N (0, 1)

Which means that as n → ∞, the limiting distribution of the PMA asymptotically ap-
proaches N (0, 1). It is to be noted that the Poisson distribution is a limiting case of
Negative-Binomial distribution.

4. Numerical Results

This research presents an assessment of the significant wave height of the met-ocean ob-
servational measurements of the Atlantic Ocean. Real-time observations from the Atlantic
Marine Energy Test Site Data Dashboard wave buoys known as Belmullet Inner (Berth B)
and Belmullet Outer (Berth A) on the west coast of Ireland of wave energy assessments
based on 10-years recorded data from May 2012 to April 2021. The two berths A and B
display real-time performance indicators related to wave climate for the Belmullet Inner
(Berth B) and Belmullet Outer (Berth A) site respectively. The significant wave height
observations gathered for the two berths were measured in metre (m) as whole number
(natural; discretized; count numbers). The primary aim is to provide an assessment of
wave traits for the two deployment berths based on regime switching of Poisson mixture
autoregressive related process.

Table 1. Parametric Bootstrap Medians and 95% Percentile C.I of the
Atlantic Ocean of Belmullet Inner (Berth B) and Belmullet Outer (Berth
A).

Berth lambda Median 2.5% 97.5% Goodness of fitness test
A 282.0723 282.0639 281.9815 282.1536 535.6261
B 282.0723 282.0736 281.9969 282.1322 535.6261

Keys: C.I=Confidence Interval

Interestingly, the mean and median for the significant wave height of berth (A) and
(B) approximately coincide in terms of magnitude, this sufficiently suggest that the entire
probability distribution for both of the berths are perfectly symmetrical in distribution
with approximately zero skewed distribution. It is to be noted that lambda (λk) is referred
to as the mean of each of the regime, such that, k = 1, 2. The estimated magnitude of
282.1322 and 282.1536 for the 97.5 percentile connotes that 97.5% of the significant wave
height observations for berths A and B are below 282.1536 and 282.1322 respectively.
In a similar manner, significant wave height observations for berths A and B are above
281.9815 and 281.9969. However, since the estimated χ2-value of 535.6261 for berth A
and B coincide and greater than the critical value of 20.476, we reject the null hypothesis
that the berths datasets do not follow Poisson distribution. From Fig.1 below, from the
two histograms for the berths, the highest proportion was at approximately 0.12 for each
of Belmullet Inner (Berth B) and Belmullet Outer (Berth A). This connote that the most
frequent observations of the wave heights are around 300 metre. This shows how frequently
the wave height observations fall into the bin of interval 0-500. The bin divided the shaded
part into two parts; this suggests two regimes switching for the distribution.
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Figure 1. Histogram of Significant Wave Height of Belmullet Inner (Berth
B) and Belmullet Outer (Berth A).

Table 2. Poisson Mixture Autoregressive Coefficients for Significant Wave
Height of Belmullet Outer (A).

Berth MSE MAIC MHQIC MBIC Moduli of AR
Model Performance 12.32 1275978.56 1276023.09 1276128.46 —

Regime 1 — — — — (1.55, 1.01, 1.55, 10.84)
Regime 2 — — — — (1.00, 2.08, 2.08, 4.69)

Mixing Weight Reg. Mean Var. Param D.F. Param Reg. Var M.S.E(λk)
— — — — — —
0.84 13.44 235.27 6.56 5082.61 0.0560
0.16 0.001 0.04 2.00 5.12 0.00076

Keys: Reg. Mean=Regime Mean; Var. Param= Variance Parameter; D.F. Param=
Degrees of Freedom Parameters; Reg.Var= Regime Variance; Moduli of AR= Moduli of

AR Poly Roots

The Mathematically Model of PMAR(2:4,4) =:

X̂(A) =

{
36.12− 0.90xt−1 − 0.31xt−2 + 0.43xt−3 − 0.04xt−4 (η1 , λ1 ) = (0.84, 13.44)
0.001 + 0.58xt−1 + 0.31xt−2 + 0.15xt−3 + 0.05xt−3 (η2 , λ2 ) = (0.16, 0.01)

(46)
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Figure 2. Time Plot and Regime Density of the Significant Wave Height
of Belmullet Outer (A).

Table 3. Poisson Mixture Autoregressive Coefficients for Significant Wave
Height of Belmullet Inner (B).

Berth MSE MAIC MHQIC MBIC Moduli of AR
Model Performance 12.02 1275978.56 1276023.09 1276128.46 —

Regime 1 — — — — (1.55, 1.01, 1.55, 10.84)
Regime 2 — — — — (1.00, 2.08, 2.08, 4.69)

Mixing Weight Reg. Mean Var.Param D.F. Param Reg. Var M.S.E(λk)
— — — — — —
0.84 13.44 235.27 6.56 5082.61 0.0560
0.16 0.001 0.04 2.00 5.12 0.00076

The Mathematically Model of PMAR(2:4,4) =:

X̂(B) =

{
36.12− 0.90xt−1 − 0.31xt−2 + 0.43xt−3 − 0.04xt−4 (η1 , λ1 ) = (0.84, 13.44)
0.001 + 0.58xt−1 + 0.31xt−2 + 0.15xt−3 + 0.05xt−4 (η2 , λ2 ) = (0.16, 0.01)

(47)

4.1. Discussion of Results. The Belmullet Inner (Berth B) and Belmullet Outer (Berth
A) nearly possessed approximately the same PMARmodel performance of AIC=1275978.56;
BIC= 1276128.46; and HQIC=1276023.09 respectively. The two berths gave a realization
of two regimes’ switching of

Reg1 = 36.12− 0.90xt−1 − 0.31xt−2 + 0.43xt−3 − 0.04xt−4 (η1 , λ1 ) = (0.84, 13.44)
Reg2 = 0.001 + 0.58xt−1 + 0.31xt−2 + 0.15xt−3 + 0.05xt−3 (η2 , λ2 ) = (0.16, 0.01)

(48)
The transitional weight parameters are 0.84 and 0.003 for regime one (Reg1) and regime

two (Reg2) respectively; the unconditional means (otherwise known as regime means)
are 13.44 and 0.001 respectively. The degree of freedom and regime variance estimates
are (6.56, 2.00) and (5082.61, 5.12) for regime one and two respectively. Second regime
produced a small degree of freedom compared to the first regime, this connote that the
second regime gave a reducing complexity and reduced redundant. Large degree of freedom
by first regime might induce numerical problems. The transitional weight estimate of 0.84
by regime one indicates that in the long run, roughly 84% of the observations are generated
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Figure 3. Time Plot and Regime Density of the Significant Wave Height
of Belmullet Inner (Berth B).

from the first regime. Second regime seems to mostly account for the periods when the
series takes smaller values and lesser volatility, because of its smaller variance parameter
and regime variance of 0.16 and 5.12 respectively. The AR coefficients are somewhat
similar in both berths, implying that it could be appropriate to restrict the berths to be
identical despite observations from two separate test locations at various depths. Maybe
due to the non-complexity of the second regime, it gave a minimum error forecast of Mean
Square Error (MSE) of 12.02 compared to 12.32 produced by first regime.

Figure 4. Graphical Representation of AR Coefficients Per the Two
Regime for the Significant Wave Height of Belmullet Outer (A) and In-
ner (B).
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5. Conclusion

The explicated model of PMAR(k : p1, p2, . . . , pk) with Poisson random noise was de-
signed and expounded via mingling autoregressive processes for discretized (count) time
events for transitional mixture of autoregressive with stylized properties — multimodali-
ties, tenure-switching, time-varying volatilities (conditional variances), change points like
behavior of recurring periodical series. The Poisson marginal distribution for mixture au-
toregressive model is the simplest counting distributional random noise for the process,
though, other flexible counting Probability Mass Functions (PMFs), such as, Binomial,
Negative-Binomial, Hyper-geometric, Multinomial, Polya-Aeppli, Poisson-Inverse Gauss-
ian, Beta-Binomial, Compound Poisson distributions etc. could be a close substitute for
Poisson random noise. Consequently, it will be ideal to use the PMAR(k : p1, p2, . . . , pk)
model for count time events instead of the MAR(k : p1, p2, . . . , pk) with Gaussian random
noise. It is to be noted that Gaussian takes values from any of the two sides of the real
number line and Poisson for discretized time events is just a proper subset of the positive
side of the real number line. This distinction and separation by PMAR(k : p1, p2, . . . , pk)
process is needed in other to curb the infinitely many waste and redundancy values in the
domain of the Gaussian and real number line. In conclusion, the positive integer of the
significant wave height of Belmullet Inner (Berth B) and Belmullet Outer (Berth A) gave
a realization of two regimes.
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6. Appendix

PMA Lower Bound Variance of Estimator

g (xt; λk) =
λk

xte−λk

xt!
xt = 0, 1, 2, 3, · · ·

δ log gx (xt/λk)

δλk
=

δ

δλk
[−λk + xt log λk − log xt!] (49)

= 1 +
xt
λk

(50)

I(
∧
λ k) = nEx

[
δ log gx (xt/λk)

δλk

]2
= nEx

[
xt
λk

− 1

]2
(51)

n

λ2
k

[xt − λk]
2 =

n

λk
(52)

∂E(Xt)

λk
= 1

Cramer Rao Lower Bound is

V ar(
∧
λ k) ≥ 1

n/λk

=
λk

n
(53)

Efficiency of λk
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M.S.E(λ̂k) = V ar(
∧
λ k) + b2(λk) =

λk

n
(54)

⇒ M.S.E(λ̂k) = V ar(
∧
λ k) =

λk

n
(55)

This implies that the lower bounded variance of each k -tenure-changing for the PMAR(k :
p1, p2, . . . , pk) process is nothing but each regime-means divided by the sample size. In ad-
dition, it connotes that the Mean Square Error (MSE) of the k -tenure-changing PMAR(k :
p1, p2, . . . , pk) process coincides with its lower bounded variance.
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