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ON THE COVERING RADIUS OF SOME CLASSES OF DNA CODE

OVER FINITE RING

P. CHELLA PANDIAN1∗, §

Abstract. In this correspondance, investigate the covering radius of different types
of repetition codes over finite ring(R) with Bachoc distance. Derive the lower bound
and upper bound on the covering radius of block repetition DNA codes over R. Also
determined are the covering radius of various repetition DNA codes, simplex DNA code
type α and simplex DNA code type β and bounds on the covering radius for macdonald
DNA codes of both types over R.
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1. Introduction

DNA is found in all living beings as a double stranded molecule, with a form similar
to a twisted ladder. This double stranded helix consists of an alternating chains of sug-
ars, phosphates and nitrogenous bases like Adenine(A), Thiamine(T), Cytosine (C) and
Guanine (G). The association between these two strands are a alternating combinations
of these four nitrogenous bases.

The two ends of the strand are distinct and are conventionally denoted as 3′ end and
5′ end. Two strands of DNA can form (under suitable conditions) a double strand if the
respective bases complement of each other, where A matches with T and C matches with
G [18].

The problem of designing DNA codes (sets of words of fixed length n over the alphabets
{A,C,G, T} ) that satisfy certain combinatorial constraints has applications for reliably
storing and retrieving information in synthetic DNA strands. These codes can be used in
particular for DNA computing[1] or as molecular bar-codes.

There are many researchers doing research on code over finite rings. In particular, codes
over Z4 received much attention [2, 4, 5, 10, 12, 16, 17, 6]. The covering radius of binary
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linear codes were studied [4, 5], Recently the covering radius of codes over Z4 has been
investigated with various distances [13]. In [2] Sole et al. gave many upper and lower
bounds on the covering radius of a code over Z4 with different distances. In [15, 6], the
covering radius of some particular codes over Z4 have been investigated.

This paper, investigates the covering radius of the simplex DNA codes of both types
and macdonald DNA codes of both types alone with repetition DNA codes over R. Also,
it generalizes some of the known bounds in [2].

2. Preliminary

Coding theory has several applications in genetics and bioengineering. The problem
of designing DNA codes (sets of that words of fixed length n over the alphabet of finite
ring(R) = {A,C,G, T} that satisfy certain combinatorial constraints) has applications for
reliably storing and retrieving information in synthetic DNA strands.

A DNA code is a subset of Rn, where n is a length of DNA code. The code-
words of DNA code is (x1, x2, · · · , xn) with xi ∈ R(representing the four nucleotides
in DNA). Use a hat to denote the Watson-Crick complement of a nucleotide, so A
matches with T and C matches with G. Let R = {A,C,G, T} be the finite alphabet and
the DNA codes are sets of codeword with fixed length n over the alphabet. That is,
C = {AAAA,AACC,CCGG,GGTT, TTTT}, therefore each codeword of length is 4. It
follows the map A → 0, C → 1, T → 2 and G → 3. Therefore the problem of the DNA
codes is corresponding to the problem of the Z4-linear codes. These transpositions do not
affect the GC-weight of the codeword (the number of entries that are C or G). In my
work, by using the above map in Z4 with bachoc weight, so obtain the covering radius for
repetition DNA codes.

Let d = (d1, d2, · · · , dn) ∈ Rn and n be its length. Let b be an element of {A,C,G, T}.
For all d = (d1, d2, · · · , dn) ∈ Rn, define the weight of d at b to be wb(d) = |{i|xi = b}|.

A DNA linear code C of length n over R is an additive subgroup of Rn. An element
of C is called a DNA codeword of C and a generator matrix of C is a matrix whose rows
generate C. In [3], the Bachoc weight w(x) of a vector x is 0 if xi = 0; 1 if xi = 1 and 2

if xi = 2, 3. A linear Gray map φ from R → Z2
2 is defined by φ(x + 2y) = (y, x + y), for

all x+ 2y ∈ R, that is, φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). The image
φ(C), of a linear code C over R of length n by the Gray map is a binary code of length
2n with same cardinality [16].

Any DNA linear code C over R is equivalent to a code with Generator Matrix(GM) of
the form

GM =

[
Ik0 A B
0 2Ik1 2D

]
, where A,B and D are matrices over R.

Then the DNA code C contain all DNA codewords [v0, v1]GM, where v0 is a vector
of length k1 over R and v1 is a vector of length k2 over Z2. Thus C contains a total of
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4k12k2 codewords. The parameters of C are given
[
n, 4k12k2 , d

]
, where d represents the

minimum Bachoc distance of C.

A DNA linear code C over R of length n, 2-dimension k, minimum bachoc distance d
is called an [n, k, db] or simply an [n, k, d] code.

Section 3, give a covering radius of repetition DNA codes, type repetition DNA codes
and determines the covering radius of different types of repetition DNA codes and two
block, three block repetition DNA codes with bachoc weight. Obtain the covering radius
of simplex DNA codes α type and β type of R are section 4 and finally section 5 explain
to macDonald DNA codes α type and β type macDonald DNA codes α type and β type
determines the bounds on the covering radius of macDonald DNA codes α type and β
type of R.

3. Covering Radius of Repetition DNA Codes

Let d be a bachoc distance of DNA code C over R. Thus, the covering radius of C :

rd(C) = max
u∈Rn

{
min
c∈C

{d(c, u)}
}
.

The following result of Mattson [7] is useful for computing covering radius of codes over
rings generalized easily from codes over finite fields.

Proposition 3.1. If C0 and C1 are codes over R generated by matrices GM0 and GM1

respectively and if C is the code generated by GM =

(
0 GM1

GM0 A

)
then rd(C) ≤

rd (C0) + rd (C1) and the covering radius of D (concatenation of C0 and C1) satisfy the
following rd(D) ≥ rd (C0) + rd (C1) , here d is a Bachoc distance in R.

A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2, α3, · · · , αq−1} is
an [n, 1, n] code C = {ᾱ | α ∈ Fq} , where ᾱ = (α, α, · · · , α). The covering radius of C is⌈
n(q−1)

q

⌉
[11]. Using this, it can be seen easily that the covering radius of block of size n

repetition code [n(q − 1), 1, n(q − 1)] generated by

GM = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
α2α2 · · ·α2

n︷ ︸︸ ︷
α3α3 · · ·α3 · · ·

n︷ ︸︸ ︷
αq−1αq−1 · · ·αq−1]

is
⌈
n(q−1)2

q

⌉
, since it will be equivalent to a repetition code of length (q − 1)n.

Consider the repetition DNA code over R. There are two types of them of length n viz.

• cytosine repetition code Cβ : [n, 1, n] generated by GMβ = [

n︷ ︸︸ ︷
1 1 · · · 1]

• thymine repetition code Cα : (n, 2, 2n) generated by GMα = [

n︷ ︸︸ ︷
2 2 · · · 2].

Theorem 3.1. Let Cβ and Cα be the DNA code of types β and α in generator matrices
GMβ and GMα. Then, 2

⌊
n
2

⌋
≤ r (Cα) ≤ 2n and n ≤ r (Cβ) ≤ 2n.

Proof. Let x =

⌊n
2
⌋︷ ︸︸ ︷

22 · · · 2

⌈n
2
⌉︷ ︸︸ ︷

00 · · · 0 and the code of C = {00 · · · 0, 22 · · · 2} is generated by
[22 · · · 2] is an [n, 1, 2n] code. Then, d(x, 00 · · · 0) = wt(x−00 · · · 0) = 2

⌈
n
2

⌉
and d(x, 22 · · · 2)

= wt(x− 22 · · · 2) = 2
⌊
n
2

⌋
. Therefore d (x,Cα) = min

{
2
⌈
n
2

⌉
, 2

⌊
n
2

⌋}
. Thus, by definition

of covering radius

r (Cα) ≥ 2
⌊n
2

⌋
(1)
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Let x be any word in Rn. Let us take x has ω0 coordinates as 0’s, ω1 coordinates
as 1’s, ω2 coordinates as 2’s, ω3 coordinates as 3’s, then ω0 + ω1 + ω2 + ω3 = n. Since
Cα = {00 · · · 0, 22 · · · 2} and Bachoc weight of R : 0 is 0, 1 is 1, 2 and 3 are 2. Therefore,
d(x, 00 · · · 0) = n− ω0 + ω2 + ω3 and d(x, TT · · ·T ) = n− ω2 + ω0 + ω3.

Thus d (x,Cα) = min {n− ω0 + ω2 + ω3, n− ω2 + ω0 + ω3} and hence,

d (x,Cα) ≤ n+ n = 2n. (2)

Hence, from the Equation (1) and (2), so 2
⌊
n
2

⌋
≤ r (Cα) ≤ 2n.

Now, obtain the covering radius of Cβ covering with respect to the bachoc weight.
Then d(x, 00 · · · 0) = n − ω0 + ω2 + ω3, d(x, 11 · · · 1) = n − ω1 + ω2 + ω3, d(x, 22 · · · 2) =
n− ω2 + ω0 + ω3 and d(x, 33 · · · 3) = n− ω3 + ω0 + ω1, for any x ∈ Rn.

This implies d(x,Cβ) = min{n− ω0 + ω2 + ω3, n− ω1 + ω2 + ω3, n− ω2 + ω0 + ω3, n−
ω3 + ω0 + ω1} ≤ 2n and hence r(Cβ) ≤ 2n.

Let x =

t︷ ︸︸ ︷
00 · · · 1

t︷ ︸︸ ︷
11 · · · 1

t︷ ︸︸ ︷
22 · · · 2

n−3t︷ ︸︸ ︷
33 · · · 3, where t =

⌊
n
4

⌋
,

then d(x, 00 · · · 0) = 2n−3t, d(x, 11 · · · 1) = 2n−4t, d(x, 22 · · · 2) = n and d(x, 33 · · · 3) = 5t.
Therefore r (Cβ) ≥ min{2n− 3t, 2n− 4t, n, 5t} ≥ n.

□

Block Repetition Code. Let GM = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
22 · · · 2

n︷ ︸︸ ︷
33 · · · 3] be a generator matrix

of R in each block of repetition code length is n. Then, the parameters of Block Rep-
etition Code(BRC) is [3n, 1, 4n]. The code of BRC = {c0 = 0 · · · 00 · · · 00 · · · 0, c1 =
1 · · · 12 · · · 23 · · · 3, c2 = 2 · · · 20 · · · 02 · · · 2, c3 = 3 · · · 32 · · · 22 · · · 1}, dimension of BRC is
1 and bachoc weight is 4n. Obtain, the following

Theorem 3.2. 2⌊n2 ⌋+ 2n ≤ r
(
BRC3n

)
≤ 4n.

Proof. Let x = 11 · · · 1 ∈ R3n. Then, d(x,BRC3n) = 4n.Hence by definition, r
(
BRC3n

)
≥

2⌊n2 ⌋+ 2n.

Let x = (u|v|w) ∈ R3n with u, v and w have compositions (r0, r1, r2, r3), (s0, s1,

s2, s3) and (t0, t1, t2, t3) respectively such that
3∑

i=0
ri = n,

3∑
i=0

si = n and
3∑

i=0
ti = n, then

d(x, c0) = 3n− r0 + r2 + r3 − s0 + s2 + s3 − t0 + t2 + t3,

d(x, c1) = 3n− r1 + r2 + r3 − s2 + s0 + s1 − t3 + t0 + t1,

d(x, c2) = 3n− r2 + r0 + r1 − s0 + s2 + s3 − t2 + t0 + t1

and

d(x, c3) = 3n− r3 + r0 + r2 − s2 + s0 + s1 − t1 + t2 + t3.

Thus, d(x,BRC3n) = min{3n− r0 + r2 + r3 − s0 + s2 + s3 − t0 + t2 + t3, 3n− r1 + r2 +
r3 − s2 + s0 + s1 − t3 + t0 + t1, 3n− r2 + r0 + r1 − s0 + s2 + s3 − t2 + t0 + t1, 3n− r3 + r0 +
r2 − s2 + s0 + s1 − t1 + t2 + t3} ≤ 4n and hence, r

(
BRC3n

)
≤ 4n. □

Define a two block repetitionDNA code over R of each of length is n and the parameters

of two block repetition code BRC2n : [2n, 1, 2n] is generated by G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
22 · · · 2]. Use

the above and obtain a following
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Theorem 3.3. 2⌊n2 ⌋+ n ≤ r
(
BRC2n

)
≤ 4n.

Let GM = [

m︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
22 · · · 2] be the generalized generator matrix for two different block

repetition dna code of length are m and n respectively. In the parameters of two different
block repetition code(BRCm+n) are [m+ n, 1,min{m, 2m+ n}] and Theorem 3.3 can be
easily generalized for two different length using similar arguments to the following.

Theorem 3.4. 2⌊n2 ⌋+m ≤ r
(
BRC2n

)
≤ 2n+ 2m.

4. Simplex DNA Code of type α and type β over R

In ref.[4] has been studied of quaternary simplex codes of type α and type β. Type α
Simplex code Sα

k is a linear DNA code over R with parameters
[
4k, k

]
and an inductive

generator matrix given by

GMα
k =

[
0 · · · 0 1 · · · 1 2 · · · 2 3 · · · 3
GMα

k−1 GMα
k−1 GMα

k−1 GMα
k−1

]
(3)

with GMα
1 = [0 1 2 3]. Type simplex code Sβ

k is a punctured version of Sα
k with parameters

[2k−1,
(
2k − 1

)
, k] and an inductive generator matrix given by

GMβ
2 =

[
1 1 1 1 0 2
0 1 2 3 1 1

]
(4)

GMβ
k =

[
11 · · · 1 00 · · · 0 22 · · · 2
GMα

k−1 GMβ
k−1 GMβ

k−1

]
(5)

and for k > 2, where GMα
k−1 is the generator matrix of Sα

k−1. For details the reader is
refered to [4]. Type α DNA code with minimum bachoc weight is 4.

Theorem 4.1. r(Sα
k ) ≤

22(k+1)−1
3 .

Proof. Let x = 11 · · · 1 ∈ Rn. By equation(3), the result of Mattson for finite rings and
using Theorem 3.2, then

r (Sα
k ) ≤ r

(
Sα
k−1

)
+ r(<

22(k−1)︷ ︸︸ ︷
11 · · · 1

22(k−1)︷ ︸︸ ︷
22 · · · 2

22(k−1)︷ ︸︸ ︷
33 · · · 3 >)

= r
(
Sα
k−1

)
+ 4.22(k−1)

= 4.22(k−1) + 4.22(k−2) + 4.22(k−3) + . . . . . .+ 4.22.1 + r (Sα
1 )

r (Sα
k ) ≤

22(k+1) − 1

3
, (since r (Sα

1 ) = 5)

□

Theorem 4.2. r(Sβ
k ) ≤

22k+1+3·4k−1−9·2k−2−20
3

Proof. By equation(5), Proposition 3.1 and Theorem 3.4, thus

r
(
Sβ
k

)
≤ r

(
Sβ
k−1

)
+ r(<

4(k−1)︷ ︸︸ ︷
11 · · · 1

2(2k−3)−2(k−2)︷ ︸︸ ︷
22 · · · 2 >)

r
(
Sβ
k

)
= r

(
Sβ
k−1

)
+ 2(2k−2) + 2(2k−3) − 2(k−2)
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r
(
Sβ
k

)
≤ 2

(
2(2k−2) + 2(2k−4) + . . .+ 24

)
+ 2

(
2(2k−3) + 2(2k−5) + . . .+ 23

)
−

2
(
2(k−2) + 2(k−3) + . . .+ 2

)
+ r

(
Sβ
2

)
r
(
Sβ
k

)
≤ 22k+1+3·4k−1−9·2k−2−20

3 ,
(
since r

(
Sβ
2

)
= 5

)
.

□

5. MacDonald DNA codes of type α and type β Over R

Let Fq be a finite field with q element and the q-ary MacDonald code C in Fq is a

unique parameters
[
qk−qt

q−1 , k, qk−1 − qt−1
]
and it is denoted by Mk,t(q) code. In which

every non-zero codeword has weight either qk−1 or qk−1 − qt−1[11]. In [14], the author
studied the covering radius of MacDonald codes over a finite field and also given many
exact values for smaller dimension. In [9], authors have defined the macdonald codes over
a ring using the generator matrices of simplex codes. For 2 ≤ t ≤ k − 1, let GMα

k,t be the
matrix obtained from GMα

k by deleting columns corresponding to the columns of GMα
t .

That is,

GMα
k,t =

[
GMα

k \
0

GMα
t

]
(6)

and let GMβ
k,t be the matrix obtained from GMβ

k by deleting columns corresponding to

the columns of GMβ
t . That is,

GMβ
k,t =

[
GMβ

k \
0

GMβ
t

]
(7)

where [A\B] denotes the matrix obtained from the matrix A by deleting the columns
of the matrix B and 0 is a (k − t) × 22t

(
(k − t)× 2t−1

(
2t − 1

))
. The code generated

by the matrix GMα
k,t is called code of type α and the code generated by the matrix

GMβ
k,t is called Macdonald code of type β. The type α code is denoted by Mα

k,t and the

type β code is denoted by Mβ
k,t. The Mα

k,t code is
[
4k − 4t, k

]
code over R and Mβ

k,t is a[(
2k−1 − 2t−1

) (
2k + 2t − 1

)
, k
]
code over R. In fact, these codes are punctured code of

Sα
k and Sβ

k respectively.

Next Theorem gives a basic bound on the covering radius of above macdonald codes.

Theorem 5.1. r
(
Mα

k,t

)
≤ 4k+1−4r+1

3 + r
(
Mα

r,t

)
for t < r ≤ k.

Proof. In equation(6), Proposition 3.1 and Theorem 3.2, thus

r
(
Mα

k,t

)
≤ r(<

22(k−1)︷ ︸︸ ︷
11 · · · 1

22(k−1)︷ ︸︸ ︷
22 · · · 2

22(k−1)︷ ︸︸ ︷
33 · · · 3 >) + r

(
Mα

r,t

)
= 4.4k−1 + r

(
Mα

k−1,t

)
, for k ≥ r > t.

≤ 4.4k−1 + 4.4k−2 + · · ·+ 4.4r + r
(
Mα

r,t

)
for k ≥ r > t

Thus, r
(
Mα

k,t

)
≤ 22k − 22r + r

(
Mα

r,t

)
, for k ≥ r > t.

□

Theorem 5.2. r
(
Mβ

k,t

)
≤ 4k+1−4r+1+3(4k−1−4r−1)+9(2r−1−2k−1)

6 + r
(
Mβ

r,t

)
, for t < r ≤ k.
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Proof. Using Proposition 3.1, Theorem 3.4 and in equation(7), obtain

r
(
Mβ

k,t

)
≤ r(<

22(k−1)︷ ︸︸ ︷
11 · · · 1

22(k−1)−1−2(k−1)−1︷ ︸︸ ︷
22 · · · 2 >) + r

(
Mβ

k−1,t

)
≤ 2.22(k−1)+2.22(k−1)−1 − 2.2(k−1)−1 + r

(
Mβ

k−1,t

)
r
(
Mβ

k,t

)
≤ 4k+1 − 4r+1 + 3(4k−1 − 4r−1) + 9(2r−1 − 2k−1)

6
+ r

(
Mβ

r,t

)
, for t < r ≤ k.

□

6. Conclusion

This work is for finite ring with four element. This could be extended for other even
numbers higher than 4. The estimation of lower bound and upper bound for each case can
be through light on the nature of sets and rings of higher order. These DNA codes can be
applied to complex sitution encounteded in genetic engineering.
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