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HARMONIC MEAN CORDIAL LABELING OF SOME WELL KNOWN

GRAPHS

J. PAREJIYA1∗, P. T. LALCHANDANI2, D. B. JANI3, S. MUNDADIYA4, §

Abstract. All the graphs considered in this article are simple and undirected. Let
G = (V(G), E(G)) be a simple undirected Graph. A function f : V (G) → {1, 2} is
called Harmonic Mean Cordial if the induced function f∗ : E(G) → {1, 2} defined by

f∗(uv) = ⌊ 2f(u)f(v)
f(u)+f(v)

⌋ satisfies the condition |vf (i)−vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1 for

any i, j ∈ {1, 2}, where vf (x) and ef (x) denotes the number of vertices and number of
edges with label x respectively and ⌊x⌋ denotes the greatest integer less than or equals
to x. A Graph G is called Harmonic Mean Cordial graph if it admits Harmonic Mean
Cordial labeling. In this article, we have discussed Harmonic Mean Cordial labeling of
splitting graphs graph of some well known graphs.

Keywords:Harmonic Mean Cordial, Splitting graph, Corona Product, Path graph, Star
Graph, Bistar Graph.

AMS Subject Classification: 05C78

1. Introduction

We begin with simple, finite, connected and undirected graph G = (V (G), E(G)). For
basic terminology and notation not defined here we have followed Balakrishnan and Rang-
nathan [1]. In [5] J. Gowri and J. Jayapriya defined Harmonic Mean Cordial labeling of
graph G. Let G = (V (G), E(G)) be a simple undirected Graph. A function f : V (G) →
{1, 2} is called Harmonic Mean Cordial if the induced function f∗ : E(G) → {1, 2} defined

by f∗(uv) = ⌊ 2f(u)f(v)
f(u)+f(v)⌋ satisfies the condition |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1

for any i, j ∈ {1, 2}, where vf (x) and ef (x) denotes the number of vertices and number
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ment of Mathematics, 2025; all rights reserved.

651



652 TWMS J. APP. ENG. MATH. V.15, N.3, 2025

of edges with label x respectively and ⌊x⌋ is the floor function. A Graph G is called
Harmonic Mean Cordial graph if it admits Harmonic Mean Cordial labeling. For the sake
of convenience of the reader we use HMC for harmonic mean cordial labeling. Motivated
by the interesting results proved on HMC labeling in [5, 6, 8, 9] and on interesting results
proved on Root Cube Mean Cordial labeling by [10], in this article we have discussed
HMC labeling of Splitting graph of Path graph, Star graph, Bistar graph, Comb graph,
Pn ⊙Km also we have proved that if a connected graph G is HMC then G⊙K1 is HMC.
We have also shown a graph G which is not HMC but G ⊙ K1 is HMC. Here, we have
mentioned basic definitions to make this article self-contained.

Definition 1.1. [11] The splitting graph S
′
(G) of a graph G is obtained by adding to each

vertex v a new vertex v
′
such that v

′
is adjacent to every vertex that is adjacent to v in G.

Definition 1.2. [1] A walk in a graph G is a finite alternating sequence of vertices and
edges. A walk is called a trail if all the edges are distinct.

Definition 1.3. [1] A trail is called a Path if all the vertices are distinct. It is denoted by
Pn, where n > 1.

Definition 1.4. [1] A simple graph G is said to be complete if every pair of distinct
vertices of G are adjacent in G. It is denoted by Kn, where n > 2.

Definition 1.5. [1] Let G1 and G2 be two vertex-disjoint graphs. Then the join of two
graphs G1 and G1 denoted as G1 ∨ G2 is a supergraph of G1 + G2 in which every vertex
of G1 is adjacent to each vertex of G2.

Definition 1.6. [1] A graph is bipartite if its vertex set can be partitioned into two non
empty subsets V1 and V2 such that each edge of G has one end in V1 and other in V2. The
pair (V1, V2) is called bipartition of a bipartite graph. It is denoted by G(V1, V2). A simple
bipartite graph G(V1, V2) is complete if each vertex of V1 is adjacent to all the vertices of
V2. If G(V1, V2) is complete with |V1| = m and |V2| = n then G(V1, V2) is denoted by Km,n.

Definition 1.7. [1] A complete bipartite graph of the form K1,n is called a star, where
n > 1.

Definition 1.8. [4] Bistar is the graph obtained by joining the apex vertices of two copies
of star graph K1,n, where n > 1.

Definition 1.9. [7] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then the Corona
of G1 and G2 is denoted as G1⊙G2 is a graph obtained by taking one copy of G1 (which
has p1 vertices) and p1 copies of G2 and then joining the ith vertex of G1 to every vertex
in the ith copy of G2 .

Definition 1.10. [1] Let Pn be a path with n vertices. The Comb graph is defined Pn⊙K1.
It has 2n vertices and 2n− 1 edges, where n > 2.

2. Main Results

Theorem 2.1. S
′
(Pn) is HMC if n is even.

Proof. Note that G = (V,E) = S
′
(Pn) be the graph with |V (G)| = 2n and |E(G)| = 3n−3.

Let V (Pn) = {vi|1 ≤ i ≤ n} and E(Pn) = {ei|1 ≤ i ≤ n− 1}. Let v′
i be the corresponding

vertex of vi in S
′
(Pn) for 1 ≤ i ≤ n and e

′
i be the a corresonding edge of ei in S

′
(Pn) for

1 ≤ i ≤ n− 1.
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Figure 1 : S
′
(Pn)

In this graph we have (n − 2) vertices with degree 4, n vertices with degree 2 and 2

vertices with degree 1. Suppose that S
′
(Pn) is HMC. Suppose that n is even. Since the

graph S
′
(Pn) is HMC, we have vf (1) = n = vf (2). Now, if we define a labeling function

f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ n

2 + 1
1 ; n

2 + 1 < i ≤ n

f(v
′
1) = 1

and

f(v
′
i) =

{
2 ; 2 ≤ i ≤ n

2
1 ; n

2 < i ≤ n

Note that ef(1) =
3n−2

2 and ef (2) =
3n−4

2 . So, |ef (1)− ef (2)| = 1.

Therefore, S
′
(Pn) is HMC when n is even.

Hence, S
′
(Pn) is HMC if n is even. □

Example 2.1. HMC labeling of S
′
(P4).
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Figure 2 : S
′
(P4)

Theorem 2.2. S
′
(Pn) is not HMC if n is odd.

Proof. Note that G = (V,E) = S
′
(Pn) be the graph with |V (G)| = 2n and |E(G)| = 3n−3.

Let V (Pn) = {vi|1 ≤ i ≤ n} and E(Pn) = {ei|1 ≤ i ≤ n− 1}. Let v′
i be the corresponding

vertex of vi in S
′
(Pn) for 1 ≤ i ≤ n and e

′
i be the a corresonding edge of ei in S

′
(Pn) for

1 ≤ i ≤ n− 1 as shown in Figure 1. In this graph we have (n− 2) vertices with degree 4,

n vertices with degree 2 and 2 vertices with degree 1. Suppose that S
′
(Pn) is HMC.

Suppose that n is odd. Since a graph S
′
(Pn) is HMC, vf (1) = n = vf (2). Note that if we

give vetrex label as shown in pattern 1 or pattern 2, then it generates maximum no. of
edges with label 2 and it is 3n−5

2 and minimum no. of edges with label 1 and it is 3n−1
2 . So,

labeling functions shown in pattern 1 and pattern 2 is the best possible labeling function
for |ef (1)− ef (2)| to be minimum.
pattern 1:
We have defined a labeling function f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
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f(v
′
1) = 1

and

f(v
′
i) =

{
2 ; 2 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
pattern 2:
We have defined a labeling function f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
and

f(v
′
i) =

{
2 ; 1 ≤ i ≤ n−1

2
1 ; n−1

2 < i ≤ n

But in this case also we have |ef (1)− ef (2)| = 2 > 1. So, S
′
(Pn) is not HMC, when n is

odd. Hence, S
′
(Pn) is not HMC if n is odd. □

Corollary 2.1. S
′
(Pn) is HMC if and only if n is even.

Proof. Proof follows from Theorem 2.1 and Theorem 2.2. □

Theorem 2.3. S
′
(K1,n) is HMC.

Proof. Note that G = (V,E) = S
′
(K1,n) be the graph with |V (G)| = 2n + 2 and

|E(G)| = 3n. Let V (K1,n) = {vi|1 ≤ i ≤ n + 1} and E(K1,n) = {ei|1 ≤ i ≤ n}. Let

v
′
i be the corresponding vertex of vi in S

′
(K1,n) for 1 ≤ i ≤ n + 1 and e

′
i be the a cor-

resonding edge of ei in S
′
(K1,n) for 1 ≤ i ≤ n.
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Figure 3 : S
′
(K1,n)

In this graph we have one vertex with degree 2n, one vertex with degree n, n no. of
vertices with degree 2 and n no. of vertices with degree 1. Suppose that S

′
(K1,n) is HMC.

Case 1: n is even
Since S

′
(K1,n) is HMC, we have vf (1) = n + 1 = vf (2). Now, if we define a labeling

function f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ n

2 + 2
1 ; n

2 + 2 < i ≤ n+ 1
and

f(v
′
i) =

{
2 ; 1 ≤ i ≤ n

2 − 1
1 ; n

2 − 1 < i ≤ n+ 1

Note that ef(1) =
3n
2 and ef (2) =

3n
2 . So, |ef (1)− ef (2)| = 0.

Case 2: n is odd
Since S

′
(K1,n) is HMC, we have vf (1) = n + 1 = vf (2). Now, if we define a labeling

function f : V (G) → {1, 2} as follows,
f(vi) = 2; 1 ≤ i ≤ n
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f(vn+1) = 1

f(v
′
1) = 2

f(v
′
1) = 1; 2 ≤ i ≤ n

Note that ef(1) =
3n−1

2 and ef (2) =
3n+1

2 . So, |ef (1)− ef (2)| = 1.

Hence, S
′
(K1,n) is HMC.

□

Example 2.2. HMC labeling of S
′
(K1,4) and S

′
(K1,5).
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Figure 4(a) : S
′
(K1,4)
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Figure 4(b) : S
′
(K1,5)

Theorem 2.4. S
′
(Bn,n) is HMC.

Proof. Note that G = (V,E) = S
′
(Bn,n) be the graph with |V (G)| = 4n+4 and |E(G)| =

6n+ 3. Let V (Bn,n) = {vi|1 ≤ i ≤ 2n+ 2} and E(Bn,n) = {ei|1 ≤ i ≤ 2n+ 1}. Let v′
i be

the corresponding vertex of vi in S
′
(Bn,n) for 1 ≤ i ≤ 2n+2 and e

′
i be the a corresonding

edge of ei in S
′
(Bn,n) for 1 ≤ i ≤ 2n+ 1.

Figure 5 : S
′
(Bn,n)

In this graph we have 2 apex vertices with degree (2n + 2), 2 vertices corresponding to
apex vertices with degree (n+ 1), 2n no. of vertices with degree 1 and 2n no. of vertices

with degree 2. Suppose that S
′
(Bn,n) is HMC. So, we have vf (1) = 2n+ 2 = vf (2). Now,

if we define a labeling function f : V (G) → {1, 2} as follows,

f(vi) =

{
1 ; 1 ≤ i < n+ 1
2 ; n+ 1 ≤ i ≤ 2n+ 2

and

f(v
′
i) =

{
1 ; 1 ≤ i ≤ n+ 1
2 ; n+ 1 < i ≤ 2n+ 1

f(v
′
2n+2) = 1

Note that, ef (1) = 3n+2 and ef (2) = 3n+1. Then |ef (1)− ef (2)| = 3n+2− 3n− 1 = 1.

Hence, S
′
(Bn,n) is HMC. □
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Figure 6(a) : S
′
(B2,2) Figure 6(b) : S

′
(B3,3)

Example 2.3. HMC labeling of S
′
(B2,2) and S

′
(B3,3).

Theorem 2.5. S
′
(Pn ⊙K1) is HMC.

Proof. Note that G = (V,E) = S
′
(Pn⊙K1) be the graph with |V (G)| = 4n and |E(G)| =

6n − 3. Let V (Pn ⊙K1) = {vi|1 ≤ i ≤ 2n} and E(Pn ⊙K1) = {ei|1 ≤ i ≤ 2n − 1}. Let

{v′
i} be the corresponding vertex of {vi} in S

′
(Pn ⊙ K1) for 1 ≤ i ≤ 2n and e

′
i be the a

corresonding edge of ei in S
′
(Pn ⊙K1) for 1 ≤ i ≤ 2n− 1.

Figure 7 : S
′
(Pn ⊙ k1)

In this graph we have (n − 2) no. of vertices with degree 6, two vertices with degree 4,
(n + 2) no. of vertices with degree 2, (n − 2) vertices with degree 3 and n vertices with

degree 1. Suppose that S
′
(Pn ⊙K1) is HMC.

Case 1: n is even
As the graph S

′
(Pn ⊙ K1) is HMC, we have vf (1) = 2n = vf (2). Now, if we define a

labeling function f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ 3n

2
1 ; 3n

2 < i ≤ 2n
and

f(v
′
i) =

{
2 ; 1 ≤ i ≤ n

2
1 ; n

2 < i ≤ 2n
Note that, ef (1) = 3n− 1 and ef (2) = 3n− 2. Then |ef (1)− ef (2)| = 1.
Case 2: n is odd
As the graph S

′
(Pn ⊙ K1) is HMC, we have vf (1) = 2n = vf (2). Now, if we define a

labeling function f : V (G) → {1, 2} as follows,

f(vi) =

{
2 ; 1 ≤ i ≤ 3n−1

2
1 ; 3n−1

2 < i ≤ 2n
and

f(v
′
i) =

{
2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ 2n
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Note that, ef (1) = 3n− 1 and ef (2) = 3n− 2. Then |ef (1)− ef (2)| = 1.

Hence, S
′
(Pn ⊙K1) is HMC. □

Example 2.4. HMC labeling of S
′
(P4 ⊙ k1) and S

′
(P3 ⊙ k1).
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Figure 8(a) : S
′
(P4 ⊙ k1)
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Figure 8(b) : S
′
(P3 ⊙ k1)

Theorem 2.6. S
′
(Pn ⊙Km) is HMC.

Proof. Note that G = (V,E) = S
′
(Pn ⊙Km) be the graph with |V (G)| = 2n(m+ 1) and

|E(G)| = 3(n+ nm− 1). Let V (Pn ⊙Km) = {vi|1 ≤ i ≤ n(m+ 1)} and E(Pn ⊙K2m) =

{ei|1 ≤ i ≤ mn + n − 1}. Let v
′
i be the corresponding vertex of vi in (Pn ⊙ Km) for

1 ≤ i ≤ 3n and e
′
i be the a corresonding edge of ei in S

′
(Pn⊙Km) for 1 ≤ i ≤ mn+n−1.

PP

Figure 9 : S
′
(Pn ⊙Km)

In this graph we have (n − 2) vertices with degree (2m + 4), two vertices with degree
(2m + 2), (n − 2) no. of vertices with degree (m + 2), 2 vertices with degree (m + 1),
nm no. of vertices with degree 2 and nm no. of vertices with degree 1. Suppose that
S

′
(Pn ⊙Km) is HMC.

Case 1: n is even
Since S

′
(Pn ⊙ Km) is HMC, we have vf (1) = n(m + 1) = vf (2). Now, if we define a

labeling function f : V (G) → {1, 2} as follows,

f(vi) =


2 ; 1 ≤ i ≤ n

2 + 1
1 ; n

2 + 1 < i ≤ n
2 ; n+ 1 ≤ i ≤ n+ nm

2
1 ; n+ nm

2 < i ≤ n(1 +m)
and

f(v
′
i) =


2 ; 1 ≤ i ≤ n

2 + 1
1 ; n

2 + 1 < i ≤ n
2 ; n+ 1 ≤ i ≤ nm

2 − 2 + n
1 ; nm

2 − 2 + n < i ≤ n(1 +m)
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Note that ef(1) =
3n+3mn−2

2 and ef (2) =
3n+3mn−4

2 . So, |ef (1)− ef (2)| = 1.
Case 2: n is odd
Since S

′
(Pn ⊙Km) is HMC, we have vf (1) = n(m+ 1) = vf (2).

In this Case we have two possibilities.
Subase 1: m is even
If we define a labeling function f : V (G) → {1, 2} as follows,

f(vi) =


2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
2 ; n+ 1 ≤ i ≤ n+ 3 +m(n−1

2 )
1 ; n+ 3 +m(n−1

2 ) < i ≤ n(m+ 1)
and

f(v
′
i) =


2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
2 ; n+ 1 ≤ i ≤ n+m(n−1

2 )
1 ; n+m(n−1

2 ) < i ≤ n(m+ 1)

Note that ef(1) =
3
2(n+ nm− 1) and ef (2) =

3
2(n+ nm− 1). So, |ef (1)− ef (2)| = 0.

Subase 2: m is odd
If we define a labeling function f : V (G) → {1, 2} as follows,

f(vi) =


2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
2 ; n+ 1 ≤ i ≤ n+m(n+1

2 )
1 ; n+m(n+1

2 ) < i ≤ n(m+ 1)
and

f(v
′
i) =


2 ; 1 ≤ i ≤ n+1

2
1 ; n+1

2 < i ≤ n
2 ; n+ 1 ≤ i ≤ n+ 2 +m(n−3

2 )
1 ; n+ 2 +m(n−3

2 ) < i ≤ n(m+ 1)

Note that ef(1) =
3n+3mn−4

2 and ef (2) =
3n+3mn−2

2 . So, |ef (2)− ef (1)| = 1.

Hence, S
′
(Pn ⊙Km) is HMC. □

Example 2.5. HMC labeling of S
′
(P4 ⊙ k2) and S

′
(P4 ⊙ k3).
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Figure 10(a) : S
′
(P4 ⊙ k2)
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Figure 10(b) : S
′
(P4 ⊙ k3)

Example 2.6. HMC labeling of S
′
(P3 ⊙ k4) and S

′
(P3 ⊙ k3).
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Figure11(a) : S
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Theorem 2.7. Let G be a connected graph. If G is HMC then G⊙K1 is HMC.

Proof. Let V (G) = {v1, v2, ..., vn} and let f : V (G) → {1, 2} be the HMC labelling func-
tion. Let ui be the pendant vertex adjacent to vi in G⊙K1 for each i ∈ {1, 2, ...., n} .
Since G is HMC, then we have vf (1) = vf (2).
Case 1: vf (1) = vf (2)
Since, G is HMC, we have |ef (1)− ef (2)| ≤ 1.
Define f∗ : V (G⊙K1) → {1, 2} as follows
For any i ∈ {1, 2, ...., n}
f∗(vi) = 1 if f(vi) = 1
f∗(vi) = 2 if f(vi) = 2
f∗(ui) = 1 if f(vi) = 1
f∗(ui) = 2 if f(vi) = 2
Note that, v∗f (0) = v∗f (1) = 2vf (1) and ef∗(1) = ef (1) +

n
2 and ef∗(2) = ef (2) +

n
2 . Now,

|ef∗(1)− ef∗(2)| = |ef (1) + n
2 − ef (2)− n

2 | = |ef (1)− ef (2)| ≤ 1.
□

Theorem 2.8. The Graphs Pn ⊙K1,K1,n ⊙K1 and Bn,n ⊙K1 are HMC.

Proof. By [5],Theorems 3.2,3.3 and 3.4, we have Pn, K1,n and Bn,n are HMC. So, by
Theorem 2.7 it follows that Pn ⊙K1,K1,n ⊙K1 and Bn,n ⊙K1 are HMC.

□

In the next Reamrk 2.1 we have provided an example of a connect graph G which is not
HMC but G⊙K1 is HMC.

Remark 2.1. By Theorem 2.2, it is clear that S
′
(P3) is not HMC if n is odd. Let

G = S
′
(Pn). Let V (G ⊙ K1) = {v1, v2, v3, u1, u2, u3} where vi are the vertices of S

′
(Pn)

and ui is the pendent vertex adjacent to vi in G ⊙ K1 for i = 1, 2, 3. Now define f :
V (G⊙K1) → {1, 2} as follows
f(vi) = 2 for 1 ≤ i ≤ 6
f(ui) = 1 for 1 ≤ i ≤ 6.
Note that vf (1) = vf (2) = 6 = ef (1) = ef (2). So, G⊙K1 is HMC.

3. Conclusion

In this article we have proved that Splitting graph of Path graph S
′
(Pn) is HMC if and

only if n is even. Splitting graph of Star graph S
′
(K1,n), Splitting graph of Bistar graph

S
′
(Bn,n), Splitting graph of Comb graph S

′
(Pn ⊙ K1) and S

′
(Pn ⊙ Km) are HMC. We

have also proved that If a connected graph G is HMC then G⊙K1 is HMC. We have also
shown a graph G which is not HMC but G⊙K1 is HMC.
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