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MODIFIED NEWTON METHOD IN RIEMANNIAN MANIFOLDS

C. PRASAD1, P. K. PARIDA2∗, §

Abstract. In this article, we present the semilocal convergence analysis of the modified
Newton method in Riemannian manifolds. We establish the Newton–Kantorovich con-
vergence theorem for the modified Newton method in Riemannian manifolds by using
majorizing function. Finally, two numerical examples are given to show the application
of our theorem.

Keywords: Vector fields; Riemannian manifolds; Lipschitz condition; Modified Newton
method.

AMS Subject Classification: 65H10, 65D99

1. Introduction

Solving a nonlinear equation is an important issue in the field of material science,
civil engineering, chemical engineering, mechanics, numerical optimization etc. There
are various methods to find the solution of a nonlinear equation. Iterative methods are
often used to solve a nonlinear equation. The Newton’s method is a very important
method to find the approximate roots of a nonlinear equation. To improve the convergence
order many iterative methods have been presented. Some famous third order iterative
methods in Banach spaces are Halley’s method, Chebyshev method, super-Halley method
and modified Newton method etc. The modified Newton method in Banach space [17] to
solve a nonlinear equation is defined as:

yn = xn − A′(xn)
−1A(xn),

xn+1 = xn − 2[A′(xn) + A′(yn)]
−1A(xn), for each n = 0, 1, 2, . . . ,

}
(1)

where A′(xn) is first Fréchet derivative of A at xn. Recently, there has been a growing
interest in studying iterative methods in Riemannian manifolds, since there are many
numerical problems in manifolds that arise in many contexts [6, 7]. Some higher order
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iterative methods in manifolds have been studied in [12, 16, 18]. In this study, we con-
sider to establish the Newton–Kantorovich convergence theorem for the modified Newton
method in Riemannian manifolds by using majorizing function which is used to find the
approximate zeros of a vector field.

The article is organized as follows: Section 1 is the introduction. In Section 2, we
present some basic results of differential geometry. In Section 3, we establish the semilocal
convergence analysis of the modified Newton method in Riemannian manifolds by using
majorizing function. In Section 4, two numerical examples are given. Finally, conclusions
form the Section 5.

2. Notions and Preliminaries

In this section, we discuss some basic results of differential geometry (for more details
see [12, 13, 14, 15]).

Let K be a real n dimensional Riemannian manifold. The tangent space of K at a is
denoted by TaK. The inner product ⟨ ., .⟩a on TaK induces the norm ∥.∥a. The tangent
bundle of K is denoted by TK and is defined by

TK := {(a, v); a ∈ K and v ∈ TaK} =
⋃
a∈K

TaK.

Let a, b ∈ K, and ϱ : [0, 1] → K be a piecewise smooth curve joining a and b. Then the arc

length of ϱ is defined by l(ϱ) =
∫ 1
0 ∥ϱ′(x)∥dx, and the Riemannian distance from a to b

is defined by d(a, b) = infϱ l(ϱ), where the infimum is taken over all the piecewise smooth
curves ϱ connecting a and b. Let χ(K) be the set of all vector fields of class C∞ on K and
D(K) the ring of real-valued functions of class C∞ defined on K. An affine connection ∇
on K is a mapping

∇ : χ(K)× χ(K) → χ(K)

(X,F) 7→ ∇XF.

Let F be a vector field of class C1 on K, the covariant derivative of F is determined by the
connection ∇ which defines on each a ∈ K, a linear application of TaK itself

DF(a) : TaK → TaK
v 7→ DF(a)(v) = ∇XF(a),

where X is a vector field satisfying X(a) = v. A parametrized curve ϱ : I ⊆ R → K is
a geodesic at p0 ∈ I, if ∇ϱ′(p)ϱ

′(p) = 0 at the point p0. If ϱ is a geodesic for all p ∈ I,
we say that ϱ is a geodesic. If [x, y] ⊆ I, then ϱ is called a geodesic segment joining ϱ(x)
to ϱ(y). Since ϱ′(p) is parallel along ϱ(p) therefore ∥ϱ′(p)∥ is constant. Let U(a, s) and
U [a, s] be an open and a closed geodesic ball with centre a and radius s respectively. By
the Hopf-Rinow theorem, if K is a complete metric space, then for any a, b ∈ K there
exists a geodesic ϱ called the minimizing geodesic joining a to b with

l(ϱ) = d(a, b).

Here we have assumed that K is complete. Therefore, if v ∈ TaK then there exists a
unique minimizing geodesic ϱ such that ϱ(0) = a and ϱ′(0) = v. The point ϱ(1) is called
the image of v by the exponential map at a, i.e.

expa : TaK → K,
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such that expa(v) = ϱ(1) and ϱ(p) = expa(pv), for any p ∈ [0, 1]. Let ϱ be a piecewise
smooth curve. Then for any x, y ∈ R, the parallel transport along ϱ is denoted by Rϱ,.,.

and given by

Rϱ,x,y : Tϱ(x)K → Tϱ(y)K
v 7→ V (ϱ(y)),

where V is the unique vector field along ϱ such that ∇ϱ′(p)V = 0 and V (ϱ(x)) = v. It can
be easily proved that Rϱ,x,y is linear and one-to-one. Therefore Rϱ,x,y : Tϱ(x)K → Tϱ(y)K is
an isomorphism and Rϱ,y,x is the inverse of parallel transport along the reversed portion
of ϱ from V (ϱ(y)) to V (ϱ(x)). Thus Rϱ,x,y is an isometry between Tϱ(x)K and Tϱ(y)K. For

i ∈ N, we define Ri
ϱ as

Ri
ϱ,x,y : (Tϱ(x)K)i → (Tϱ(y)K)i,

where
Ri

ϱ,x,y(v1, v2, ..., vi) = (Rϱ,x,y(v1), Rϱ,x,y(v2), ...., Rϱ,x,y(vi).

It has the important properties:

R−1
ϱ,y,x = Rϱ,x,y,

Rϱ,x,y ◦Rϱ,y,z = Rϱ,x,z.

Let j ∈ N and F be a vector field of class Ck. Then the covariant derivative of order j of
F is denoted by DjF and defined as the multilinear map

DjF : Ck(TK)× Ck(TK)× · · · × Ck(TK)︸ ︷︷ ︸
j-times

→ Ck−j(TK)

which is given by

DjF(A1, A2, . . . , Aj−1, A) = ∇AD
j−1F(A1, A2, . . . , Aj−1)

−
j−1∑
i=1

Dj−1F(A1, A2, . . . ,∇AAi, . . . , Aj−1),

for all A1, A2, . . . , Aj−1 ∈ Ck(TK).

Definition 2.1. Let K be a Riemannian manifold, Ω ⊆ K be an open convex set, and
F ∈ χ(K). Then DF = ∇(.)F is Lipschitz with constant W > 0, if for any geodesic ϱ and
x, y ∈ R such that ϱ[x, y] ⊆ Ω, it holds the inequality

∥Rϱ,y,xDF(ϱ(y))Rϱ,x,y −DF(ϱ(x))∥ ≤ W

∫ y

x
∥ϱ′(p)∥dp.

We will write DF ∈ LipW(Ω). If K = Rn, the above definition coincides with the usual
Lipschitz definition for the operator DF : K → K.

Proposition 1. Let ϱ be a curve in K and F be a C1 vector field on K, then the covariant
derivative of F in the direction of ϱ′(t) is defined as

DF(ϱ(t))ϱ′(t) = ∇ϱ′(t)Fϱ(t) = lim
r→0

1

r

(
Rϱ,t+r,tF(ϱ(t+ r))− F(ϱ(t))

)
.

If K = Rn, the above proposition coincides with the definition of directional derivative in
Rn.

Next, we take some theorems from [12] that are useful to prove our convergence theorem.
The proofs are given there.
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Theorem 2.1. Let ϱ be a geodesic in K and let F be a C1-vector field on K. Then,

Rϱ,t,0F(ϱ(t)) = F(ϱ(0)) +

∫ t

0
Rϱ,θ,0DF(ϱ(θ))ϱ′(θ)dθ.

Theorem 2.2. Let ϱ be a geodesic in K and let F be a C2-vector field on K. Then,

Rϱ,t,0DF(ϱ(t))ϱ′(t) = DF(ϱ(0))ϱ′(0) +

∫ t

0
Rϱ,θ,0D

2F(ϱ(θ))(ϱ′(θ), ϱ′(θ))dθ.

Theorem 2.3. Let ϱ be a geodesic in K such that [0, 1] ⊆ Dom(ϱ) and let F be a C2-vector
field on K. Then,

Rϱ,1,0F(ϱ(1)) = F(ϱ(0)) +DF(ϱ(0))ϱ′(0) +

∫ 1

0
(1− θ)Rϱ,θ,0D

2F(ϱ(θ))(ϱ′(θ), ϱ′(θ))dθ.

3. Modified Newton method in Riemannian manifolds

In this section, we will prove convergence and uniqueness of modified Newton method
in Riemannian manifolds to find the singularity of a vector field F. The modified Newton
method (1) in K has the form:

gn = −DF(an)
−1F(an),

bn = expan(gn),

α(t) = expan(tgn),

hn = −2
[
Rα,0,1DF(an) +DF(bn)Rα,0,1

]−1
F(an),

an+1 = expan(hn), for each n = 0, 1, 2, . . . ,


(2)

where DF(an) = ∇(.)F(an). Let a0 ∈ Ω ⊆ K and assume that

(1) ∥DF(a0)
−1∥ ≤ ε, ε > 0,

(2) ∥DF(a0)
−1F(a0)∥ ≤ φ, φ > 0,

(3) ∥D2F(a)∥ ≤ ϖ, for all a ∈ Ω, ϖ > 0,

(4) ∥Rϱ,b,aD
2F(ϱ(b))R2

ϱ,a,b −D2F(ϱ(a))∥ ≤ K
∫ b
a ∥ϱ′(x)∥dx, K > 0,

where ϱ is a geodesic such that ϱ[a, b] ⊆ Ω,

(5) ϖ
[
1 + 5K

3ϖ2ε

]
≤ M, M > 0,

(6) e = Mεφ ≤ 1
2 , U [a0, z

∗] ∈ Ω.

We define the polynomial

m(z) =
1

2
Mz2 − z

ε
+

φ

ε
.

Let z∗ and z∗∗ be the two positive roots of m(z). Now, we define the sequences for n ≥ 0,

yn = zn −m′(zn)
−1m(zn), z0 = 0,

zn+1 = zn − 2
(
m′(zn) +m′(yn)

)−1
m(zn).

}
(3)

Next, we give some Lemmas to prove the convergence of (2).
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Lemma 3.1. The sequences generated by (3) are increasing, bounded above by z∗. Hence
it converges to z∗ and for n ∈ N,

z∗ − zn+1 =
(z∗ − zn)

3

(z∗ − zn + z∗∗ − zn)2 − (z∗ − zn)(z∗∗ − zn)
, (4)

z∗∗ − zn+1 =
(z∗∗ − zn)

3

(z∗ − zn + z∗∗ − zn)2 − (z∗ − zn)(z∗∗ − zn)
, (5)

0 ≤ zn ≤ yn ≤ zn+1 < z∗. (6)

Proof. As m(z) = M
2 (z

∗ − z)(z∗∗ − z), m′(z) = −M
2 [(z

∗ − z) + (z∗∗ − z)], denote rn =
(z∗ − zn), sn = (z∗∗ − zn), then we get

yn − zn = −m(zn)

m′(zn)
=

rnsn
rn + sn

, (7)

zn+1 − zn = − 2m(zn)

m′(zn) +m′(yn)
=

2M
2 rnsn

M
2 (z

∗ − zn + z∗∗ − zn + z∗ − yn + z∗∗ − yn)

=
rnsn

rn + sn − (yn − zn)
=

rnsn(rn + sn)

(rn + sn)2 − rnsn
.

Then, we can get

zn+1 − yn = zn+1 − zn − (yn − zn) =
rnsn(rn + sn)

(rn + sn)2 − rnsn
− rnsn

rn + sn

=
r2ns

2
n

(r2n + s2n + rnsn)(rn + sn)
. (8)

Also, we can obtain

rn+1 = z∗ − zn+1 = z∗ − zn − (zn+1 − zn) = rn − rnsn(rn + sn)

(rn + sn)2 − rnsn
=

r3n
(rn + sn)2 − rnsn

and

sn+1 = z∗∗ − zn+1 = z∗∗ − zn − (zn+1 − zn) = sn − rnsn(rn + sn)

(rn + sn)2 − rnsn
=

s3n
(rn + sn)2 − rnsn

.

By (4),(5),(7) and (8), z0 = 0 < z∗, and by the principle of mathematical induction, (6)
holds. Therefore the sequences {yn}, {zn} are increasing and bounded above by z∗. Hence
it converges to z∗. □

Lemma 3.2. Let F be a C2 vector field and let α(t) be given as above. Then, for all
n ≥ 0, we have

Rα,1,0F(bn) =

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))(Rα,0,tgn, Rα,0,tgn)dt.
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Proof. By Theorem 2.3 and (2), we have

Pα,1,0F(bn) = F(an) +DF(an)gn +

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))(α′(t), α′(t))dt

= F(an) +DF(an)(−DF(an)
−1F(an))

+

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))(α′(t), α′(t))dt

=

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))(α′(t), α′(t))dt.

Since α is a geodesic, then α′(t) is parallel and α′(t) = Rα,0,tα
′(0), α′(0) = gn. we have

Rα,1,0F(bn) =

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))(Rα,0,tgn, Rα,0,tgn)dt.

□

Lemma 3.3. Let F be a C2 vector field on K and let α(t) be given as above and let µ(t)
be given as µ(t) = expbn(tln), where µ(0) = bn, µ(1) = an+1 and

ln = Rα,0,1

[
DF(an)

−1F(an) − 2
(
Rα,0,1DF(an) +DF(bn)Rα,0,1

)−1
Rα,0,1F(an)

]
. Then, for

all n ≥ 0, we have

Rµ,1,0F(an+1) =

∫ 1

0
(1− t)Rµ,t,0D

2F(µ(t))R2
µ,0,t(ln, ln)dt

+
1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, Rα,1,0ln)dt

+Rα,0,1

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))R2
α,0,t(gn, gn)dt

− 1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, gn)dt.
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Proof. Since α(0) = an and α(1) = bn, by Theorem 2.2, we have

DF(bn)ln =
1

2
[DF(bn)Rα,0,1 −Rα,0,1DF(an)]Rα,1,0ln

+
1

2
[DF(bn)Rα,0,1 +Rα,0,1DF(an)]Rα,1,0ln

=
1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, Rα,1,0ln)dt

+
1

2
[DF(bn)Rα,0,1 +Rα,0,1DF(an)]×Rα,1,0Rα,0,1

[
DF(an)

−1F(an)

− 2
(
Rα,0,1DF(an) +DF(bn)Rα,0,1

)−1
Rα,0,1F(an)

]
=

1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, Rα,1,0ln)dt

+
[1
2
[DF(bn)Rα,0,1 +Rα,0,1DF(an)]−Rα,0,1DF(an)

]
DF(an)

−1F(an)

=
1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, Rα,1,0ln)dt

− 1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, gn)dt.

By using Theorem 2.3 and Lemma 3.2, we get

Rµ,1,0F(an+1) = Rµ,1,0F(an+1)− F(bn)−DF(bn)ln + F(bn) +DF(bn)ln

=

∫ 1

0
(1− t)Rµ,t,0D

2F(µ(t))R2
µ,0,t(ln, ln)dt

+
1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, Rα,1,0ln)dt

+Rα,0,1

∫ 1

0
(1− t)Rα,t,0D

2F(α(t))R2
α,0,t(gn, gn)dt

− 1

2
Rα,0,1

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,t(gn, gn)dt.

□

Theorem 3.1. Let K be a complete Riemannian manifold, Ω ⊆ K be an open convex set
and F ∈ χ(K) satisfies the conditions (1)− (6) with:

εϖ(3z∗ + z∗∗) < 2.

Then, the method given by (2) is well defined, an ∈ U [a0, z
∗] and converges to the unique

singular point a∗ of F in U [a0, z
∗∗].

Proof. Firstly, we shall prove that the following statements hold for n ≥ 0, by mathemat-
ical induction :

• an ∈ U [a0, zn],
• d(bn, an) ≤ yn − zn,
• ∥DF(an)

−1RP,0,1DF(a0)∥ ≤ −m′(zn)
−1,

•
∥∥∥∥[Rα,0,1DF(an)+DF(bn)Rα,0,1

2

]−1
Rα,0,1RP,0,1DF(a0)

∥∥∥∥ ≤ −2
(
m′(zn) +m′(yn)

)−1
,

• d(an+1, bn) ≤ zn+1 − yn,



668 TWMS J. APP. ENG. MATH. V.15, N.3, 2025

• d(an+1, an) ≤ zn+1 − zn.

By Lemma 3.1, we know that for any natural number n, zn < z∗. Therefore it can be easily
proved that the above statements hold for n = 0. Suppose that the above statements hold
for n > 0. Then, we get

d(an+1, a0) ≤ d(an+1, an) + d(an, a0) ≤ zn+1 − zn + zn = zn+1.

Let P be a geodesic such that P(0) = a0, P(1) = an+1, and ∥P′(0)∥ = d(an+1, a0). By
Theorem 2.2, we have

∥RP,1,0DF(an+1)RP,0,1 −DF(a0)∥ ≤ϖd(an+1, a0) ≤ ϖzn+1 < Mz∗

=Mφ
1−

√
1− 2e

e
≤ 1

ε
≤ 1

∥DF(a0)−1∥
.

By Banach’s Lemma [19], RP,1,0DF(an+1)RP,0,1 is invertible and

∥RP,1,0DF(an+1)
−1RP,0,1∥ =∥DF(an+1)

−1∥

≤ ∥DF(a0)
−1∥

1− ∥DF(a0)−1∥∥RP,1,0DF(an+1)RP,0,1 −DF(a0)∥

≤ ε

1− εϖd(an+1, a0)
≤ ε

1− εMzn+1
= −m′(zn+1)

−1.

Now, we have∥∥∥∥Rα,0,1

(∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,tdt−

1

2

∫ 1

0
Rα,t,0D

2F(α(t))R2
α,0,tdt

)∥∥∥∥
≤
∥∥∥∥∫ 1

0

(
Rα,t,0D

2F(α(t))R2
α,0,t −D2F(an)

)
(1− t)dt

∥∥∥∥
+

∥∥∥∥12
∫ 1

0

(
Rα,t,0D

2F(α(t))R2
α,0,t −D2F(an)

)
dt

∥∥∥∥
≤K

6
d(bn, an) +

K

4
d(bn, an) =

5K

12
d(bn, an).

From (7) and (8), we have

(yn − zn)
2

zn+1 − yn
=

(rnsn)
2

(rn + sn)2
.
(r2n + s2n + rnsn)(rn + sn)

r2ns
2
n

≤ rn + sn ≤ z∗ + z∗∗ =
2

Mε
≤ 2

ϖε
.

By Lemma 3.3, we get

∥Rµ,1,0F(an+1)∥ = ∥F(an+1)∥

≤ ϖ

2
d(an+1, bn)

2 +
ϖ

2
d(an, bn)d(an+1, bn) +

5K

12
d(bn, an)

3

≤ ϖ

2
(zn+1 − yn)

2 +
ϖ

2
(yn − zn)(zn+1 − yn) +

5K

12
(yn − zn)

3

=
ϖ

2
(zn+1 − yn)

2 +
[
ϖ +

5K

12
.
2(yn − zn)

2

zn+1 − yn

]1
2
(yn − zn)(zn+1 − yn)

≤ ϖ

2
(zn+1 − yn)

2 +
[
ϖ +

5K

3ϖε

]1
2
(yn − zn)(zn+1 − yn)

≤ M

2
(zn+1 − yn)

2 +
M

2
(yn − zn)(zn+1 − yn) = m(zn+1).
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Therefore

d(bn+1, an+1) = ∥ −DF(an+1)
−1F(an+1)∥ ≤ −m′(zn+1)

−1m(zn+1) = yn+1 − zn+1.

Now, ∥∥∥∥Rα,0,1DF(an+1)Rα,1,0 +DF(bn+1)

2
−Rα,0,1RP,0,1DF(a0)RP,1,0Rα,1,0

∥∥∥∥
=

∣∣∣∣∣
∣∣∣∣∣
[
DF(bn+1)−Rα,0,1DF(an+1)Rα,1,0

2
+Rα,0,1DF(an+1)Rα,1,0

−Rα,0,1RP,0,1DF(a0)RP,1,0Rα,1,0

]∣∣∣∣∣
∣∣∣∣∣

≤ϖ

2
d(bn+1, an+1) +ϖd(an+1, a0) ≤

ϖ

2
(yn+1 − zn+1) +ϖzn+1

≤ϖ

2
d(yn+1 + zn+1) < Mz∗ ≤ 1

ε
≤ 1

∥DF(a0)−1∥
.

By Banach’s Lemma [19],
[
Rα,0,1DF(an+1)Rα,1,0+DF(bn+1)

2

]−1
exists, and∥∥∥∥[Rα,0,1DF(an+1)Rα,1,0 +DF(bn+1)

2

]−1
∥∥∥∥ =

∥∥∥∥[Rα,0,1DF(an+1) +DF(bn+1)Rα,0,1

2

]−1
∥∥∥∥

≤ ε

1− εM
2 (yn+1 + zn+1)

≤ 2
1
ε −Mzn+1 +

1
ε −Myn+1

≤− 2[m′(zn+1) +m′(yn+1)]
−1.

Thus,
d(an+2, bn+1)

=
∥∥∥Rα,0,1

[
DF(an+1)

−1F(an+1)− 2
(
Rα,0,1DF(an+1) +DF(bn+1)Rα,0,1

)−1
Rα,0,1F(an+1)

]∥∥∥
=

∥∥∥DF(an+1)
−1F(an+1)− 2

(
Rα,0,1DF(an+1) +DF(bn+1)Rα,0,1

)−1
Rα,0,1F(an+1)

∥∥∥
=

∣∣∣∣∣
∣∣∣∣∣[Rα,0,1DF(an+1) +DF(bn+1)Rα,0,1

2

]−1
×

[Rα,0,1DF(an+1) +DF(bn+1)Rα,0,1

2
−Rα,0,1DF(an+1)

]
DF(an+1)

−1F(an+1)

∣∣∣∣∣
∣∣∣∣∣

≤ −2[m′(zn+1) +m′(yn+1)]
−1ϖ

2
(yn+1 − zn+1)

2

≤ −M [m′(zn+1) +m′(yn+1)]
−1(yn+1 − zn+1)

2

= 2[m′(zn+1) +m′(yn+1)]
−1

[ [m′(zn+1) +m′(yn+1)]

2
−m′(zn+1)

]
m′(zn+1)

−1m(zn+1)

= m′(zn+1)
−1m(zn+1)− 2[m′(zn+1) +m′(yn+1)]

−1m(zn+1) = zn+2 − yn+1.

Hence, d(an+2, an+1) ≤ d(an+2, bn+1) + d(bn+1, an+1) ≤ zn+2 − zn+1. Thus the sequence
generated by (2) is well defined, an ∈ U [a0, z

∗] and converges to the singular point of F in
U [a0, z

∗]. Now, we will prove the singularity is unique. Let b∗ be the another singularity
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of F in U [a0, z
∗∗] and let ϑ : [0, 1] → Z be the minimizing geodesic such that ϑ(0) = a∗

and ϑ(1) = b∗. We have

∥Rϑ,t,0DF(ϑ(t))Rϑ,0,t −DF(a∗)∥ ≤ϖ

∫ t

0
∥ϑ′(0)∥ds

=ϖtd(a∗, b∗) ≤ ϖt
(
d(a0, a

∗) + d(a0, b
∗)
)
.

Hence

∥DF(a∗)−1∥
∫ 1

0
∥Rϑ,t,0DF(ϑ(t))Rϑ,0,tdt−DF(a∗)∥dt

≤ 1
1
ε −ϖz∗

∫ 1

0
ϖt

(
d(a0, a

∗) + d(a0, b
∗)
)
dt

≤ 1
1
ε −ϖz∗

× ϖ

2
(z∗ + z∗∗) < 1.

By Banach’s Lemma [19], the operator
∫ 1
0 Rϑ,t,0DF(ϑ(t))Rϑ,0,tdt is invertible and we have

0 = Rϑ,1,0F(b
∗)− F(a∗) =

∫ 1

0
Rϑ,t,0DF(ϑ(t))Rϑ,0,t(ϑ

′(0))dt.

Therefore ϑ′(0) = 0. As 0 = ∥ϑ′(0)∥ = d(a∗, b∗), we get a∗ = b∗. Hence the proof is
complete. □

Theorem 3.2. If e < 1
2 and U(a0, p) ⊆ Ω, where z∗ < p ≤ z∗∗, then a∗ is the unique

singular point of F in U(a0, p).

Proof. Let b∗ be the singularity of F in U(a0, p) and let H be the minimizing geodesic such
that H(0) = a0, H(1) = b∗, and ∥H′(0)∥ = d(a0, b

∗). By Theorem 2.1, we have

RH,1,0F(b
∗) = RH,1,0F(b

∗)− F(a0) + F(a0) +DF(a0)H
′(0)−DF(a0)H

′(0)

=

∫ 1

0
RH,t,0DF(H(t))RH,0,tH

′(0)dt−DF(a0)H
′(0) + F(a0) +DF(a0)H

′(0)

=

∫ 1

0

(
RH,t,0DF(H(t))RH,0,t −DF(a0)

)
H′(0)dt+ F(a0) +DF(a0)H

′(0).

By using Theorem 2.2, we have

Md(a0, b
∗)2

2
≥ϖd(a0, b

∗)2

2
≥ ∥F(a0) +DF(a0)H

′(0)∥

≥ 1

∥DF(a0)−1∥
∥DF(a0)

−1F(a0) + H′(0)∥

≤1

ε
∥DF(a0)

−1F(a0) + H′(0)∥

≥1

ε

(
∥H′(0)∥ − ∥DF(a0)

−1F(a0)∥
)
≥

(d(a0, b∗)
ε

− φ

ε

)
.

Therefore

m(d(a0, b
∗)) =

Md(a0, b
∗)2

2
− d(a0, b

∗)

ε
+

φ

ε
≥ 0.

Since d(a0, b
∗) ≤ p ≤ z∗∗, we have d(a0, b

∗) ≤ z∗, hence by Theorem 3.1, a∗ = b∗. □
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4. Numerical examples

In this section, two numerical examples are given to show the application of our theorem.

Example 4.1. Let us take the vector field Z from R3 to R3 which is given by

Z(a) = Z

a1
a2
a3

 =

 −a2
a1 − a1a

2
3

a1a2a3

 (9)

with the Frobenius norm and let F = Z|S2 . Then it can be easily verified that

Z|S2(a) ∈ TaS
2 ∀ a ∈ S2.

From [16], DF(a) in the basis

βa =


−a3

0
a1

 ,

 0
−a3
a2


of TaS

2 is given by

DF(a) =

(
− 1

a3
c1,1(a) − 1

a3
c1,2(a)

− 1
a3
c2,1(a) − 1

a3
c2,2(a)

)
,

where

ci,j(a) =aj

(
fi,a3(a)−

3∑
m=1

amfm,a3(a)ai

)
− a3

(
fi,aj (a)−

3∑
m=1

amfm,aj (a)ai

)
for i, j = 1, 2, fi,aj =

∂fi
∂aj

, and [F(a)]βa =
(
− f1(a)/a3,−f2(a)/a3

)T
. Now, we define

u1 =
f2(a)c1,2(a)− f1(a)c2,2(a)

c1,1(a)c2,2(a)− c1,2(a)c2,1(a)
, u2 =

f1(a)c2,1(a)− f2(a)c1,1(a)

c1,1(a)c2,2(a)− c1,2(a)c2,1(a)
,

g1(a) =u1c1,1(a) + u2c1,2(a), g2(a) = u1c2,1(a) + u2c2,2(a), g3(a) = −a1
a3

g1(a)−
a2
a3

g2(a).

Therefore from [16] D2F(a) with the same basis βa of TaS
2 is given by

D2F(a) =

(
− 1

a3
e1,1(a) − 1

a3
e1,2(a)

− 1
a3
e2,1(a) − 1

a3
e2,2(a)

)
,

where

ei,j(a) =aj

(
gi,a3(a)−

3∑
m=1

amgm,a3(a)ai

)
− a3

(
gi,a2(a)−

3∑
m=1

amgm,aj (a)ai

)
for i, j = 1, 2, gi,aj =

∂gi
∂aj

. Therefore

DF(a) =

(
−a1a2(a

2
1 + 1) −1− a21(a

2
2 + a23 − 1)

1− a22 − a21(−2 + a22)− a23 −a1a2(a
2
2 + a23 − 3)

)
.

Next, by using the method of Lagrange’s multipliers, we get

ϖ = sup{DF(a1, a2, a3) : a
2
1 + a22 + a23 = 5} = 11

is a Lipschitz constant of DF. Also

D2F(a) =

(
1 + a1a2 + a31a2 1 + a21(−1 + a22 + a23)
a22 + a21(−2 + a22) a1a2(a

2
2 + a23 − 3)

)
.
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Again by using the method of Lagrange’s multipliers, we get

K = sup{D2F(a1, a2, a3) : a
2
1 + a22 + a23 = 5} = 11.33

is a Lipschitz constant of D2F. Initially for a0 = (2,−0.0013091, 1)T , we have

∥DF(a0)
−1∥ = 1.00779 = ε,

∥DF(a0)
−1F(a0)∥ = 0.0013193 = φ.

Then, we easily get

M = 12.7034, e = 0.0168901 ≤ 1

2
, z∗ = 0.00133063,

z∗∗ = 0.154891, εϖ(3z∗ + z∗∗) = 1.76132 < 2.

That is, all the conditions of above Theorem are satisfied. By the modified Newton method
on S2, we get the solution. The results are in the Table 1, which shows that (ai) converges
to the singularity (2, 0, 1)T .

Table 1. Results of modified Newton method on S2 :

Iterations ai ||F(ai)|| d(ai+1, ai)

0

 2
−1.309100e− 03

1

 2.927237e-03 0

1

1.999999e+ 00
6.356511e− 09
9.999991e− 01

 2.927237e-03 1.309107e-03

2

 1.999999e+ 00
−8.170206e− 15
1.000000e+ 00

 3.427543e-06 9.580408e-07

Example 4.2. Consider the vector field F : R2 → R2 given by

F(a) = F(a1, a2)
T = (

cos a1 + 20a1
20

, a2)
T (10)

with the max norm ∥.∥ = ∥.∥∞. The first, second, and third Fréchet derivatives of F
are respectively:

DF(a) =

[− sin a1+20
20 0
0 1

]
,

D2F(a) =

[− cos a1
20 0 0 0
0 0 0 0

]
,

D3F(a) =

[
sin a1
20 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]
.

Initially for a0 = (0, 0)T , we have

∥DF(a0)
−1∥ = 1 = ε, ∥DF(a0)

−1F(a0)∥ = 0.05 = φ,

∥D2F(a)∥ = max(|− cos a1
20

|, 0) = |cos a1
20

| ≤ 1

20
= ϖ,

∥D3F(a)∥ = max(|sin a1
20

|, 0) = |sin a1
20

| ≤ 1

20
= K.
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Then, we easily get

M = 1.71667, e = 0.0858333 ≤ 1

2
, z∗ = 0.052353,

z∗∗ = 1.1127, εϖ(3z∗ + z∗∗) = 0.063488 < 2.

That is, all the conditions of above Theorem are satisfied. By the modified Newton method
on R2, we get the solution. The results are in the Table 2, which shows that (ai) converges
to the singularity (−0.04994, 0)T .

Table 2. Results of modified Newton method on R2 :

Iterations ai ||F(ai)|| d(ai+1, ai)

0

(
0
0

)
5.000000e-02 0

1

(
−4.993760e− 02

0

)
5.000000e-02 4.993760e-02

2

(
−4.993767e− 02

0

)
6.484663e-08 6.468519e-08

5. Conclusions

In this article, we have extended the modified Newton method from Banach space
to Riemannian manifolds to find the singularity of a vector field. We have studied the
semilocal convergence analysis of the modified Newton method in Riemannian manifolds
by using majorizing function and two numerical examples are given to show the application
of our theorem.

Acknowledgement. The authors would like to thank the anonymous reviewers for the
helpful comments and suggestions.
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