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EXTENDED RESULTS OF COMMON FIXED POINTS BY USING

α− ψ-GERAGHTY CONTRACTION AND APPLICATIONS

H. AFSHARI1∗, H. SHOJAAT2, §

Abstract. By introducing an α − ψ-Geraghty contraction for αC-admissible pair of
multi-valued operators, we get some new results of common fixed points in complex-
valued double-controlled metric spaces. These new results improve and generalize some
results mentioned in the literature.
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1. Introduction

Azam et al. in [5], presented the notion of complex-valued metric spaces (CMS), and
fixed point (FP) results for functions with some rational inequalities were established.
Also, an essential class of FP theorems is α − ψ–contraction mappings, introduced by
Samet and Vetro, were extended to studies on multi-valued mappings by some authors,
see for instance [2, 16].
CMS found exciting applications in many branches of mathematics such as algebraic ge-
ometry and number theory as well as in fields of study such as physics, thermodynam-
ics, and electrical engineering. Also, the concept of b-metric was presented in 1989 by
Bakhtin [8]. Based on this results, Rao et al. [9] introduced the idea of FP theorems on
complex-valued b-metric spaces which is a natural extension of the CMS. In 2016, Singh et
al. [17] presented a contractive type mapping satisfying some rational inequalities. They
obtained the existence of a common fixed point (CFP) for a pair of single-valued mappings
satisfying more general contraction conditions in the framework of CMS. By combining
α − ψ-Geraghty contraction with αC-admissible pair of multi-valued operators, we get
some new results of CFPs in complex-valued double-controlled metric spaces. We expand
the results of [17,20] from CMS to complex-valued b-metric spaces and also generalize the
contraction mappings used therein by introducing a multivalued contraction mapping sat-
isfying a general condition in complex-valued b-metric spaces. Our result really improves

1Department of Mathematics, Faculty of Science, University of Bonab, Bonab, Iran.
e-mail: hojat.afshari@yahoo.com, hojat.afshari@ubonab.ac.ir; ORCID: https://orcid.org/0000-0003-
1149-4336.

2 Department of Mathematics Education, Farhangian University, Tehran, Iran.
e-mail:hadishojaat@yahoo.com; ORCID: https://orcid.org/ 0000-0002-6838-072x.

∗ Corresponding author.
§ Manuscript received: November 11, 2023; accepted: February 15, 2024.
TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.4; © Işık University, Depart-
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and strengthens the results of [1,3,4,7,10–13,15,18–20] and many other related results in
the literature.

2. Preliminaries

Let R and C be the set of real and complex numbers, respectively and ϑ1, ϑ2, ϑ3 ∈ C.
A partial order ⪯ on C is defined as below:

ϑ1 ⪯ ϑ2 ⇐⇒ Re(ϑ1) ≤ Re(ϑ2), Im(ϑ1) ≤ Im(ϑ2).

So ϑ1 ⪯ ϑ2 if only one of the below four conditions holds:
(a) Re(ϑ1) = Re(ϑ2), and Im(ϑ1) = Im(ϑ2),
(b) Re(ϑ1) = Re(ϑ2), and Im(ϑ1) < Im(ϑ2),
(c) Re(ϑ1) < Re(ϑ2), and Im(ϑ1) = Im(ϑ2),
(d) Re(ϑ1) < Re(ϑ2), and Im(ϑ1) < Im(ϑ2).
We use the notation ϑ1 ⋨ ϑ2, if ϑ1 ̸= ϑ2 and if one of the properties (b), (c) or (d) hold,
then we have ϑ1 ≺ ϑ2 if only (a) satisfied. If µ1, µ2 ∈ R, 0 ≤ µ1 ≤ µ2 and ϑ1 ⪯ ϑ2, then
µ1ϑ1 ⪯ µ2ϑ2 for all ϑ1, ϑ2 ∈ C. Also, ϑ1 ⪯ ϑ2, and ϑ2 ≺ ϑ3 implies ϑ1 ≺ ϑ3.
If S(ϑ) = {w ∈ C : ϑ ⪯ w} for ϑ ∈ C and S0 = S(0), then, ϑ1 ⪯ ϑ2 implies |ϑ1| ≤ |ϑ2|
and ϑ1 ⋨ ϑ2 implies |ϑ1| < |ϑ2|, for all ϑ1, ϑ2 ∈ S0.

Definition 2.1. [14] Suppose w : X ×X −→ (ξn,∞) is a function with lim infn→∞ ξn > 1.
Then dC : X ×X −→ C is said to be a complex-valued metric if the below items are true:
(i) ∀ϱ, ς ∈ X , dC(ϱ, ς) ⪰ 0 and dC(ϱ, ς) = 0 if and only if ϱ = ς,
(ii) ∀ϱ, ς ∈ X , dC(ϱ, ς) = dC(ς, ϱ),
(iii) ∀ϱ, ς, ξ ∈ X , dC(ϱ, ς) ⪯ w(ϱ, ς)[dC(ϱ, ξ) + dC(ξ, ς)],
and (X , dC) is called dC-metric space (dC-MS).

Definition 2.2. [14] Let (X , dC) be a dC-MS and let {ϱn} be a sequence in X and ϱ ∈ X .
For every c ∈ C, with c ≻ 0, there exists N ∈ N such that,
(i) for all n > N , dC(ϱn, ϱ) ≺ c, then {ϱn} is said to be convergent to ϱ and denoted by
limn→∞ ϱn = ϱ;
(ii) for n > N , if dC(ϱn, ϱn+ϱ) ≺ c, then {ϱn} is said to be a Cauchy sequence;
(iii) If every Cauchy sequence is convergent, then (X , dC) is complete.

Lemma 2.1. [14] For (X , dC) if limn→∞ |dC(ϱn, ϱ)| = 0, then {ϱn} converges to ϱ. Also
{ϱn} is a Cauchy sequence if limn,p→∞ |dC(ϱn, ϱn+p)| = 0.

Definition 2.3. [6] Suppose that (X , dC) is a dC-MS.
(i) A ⊆ X is said to be bounded from below if there exists s ∈ X with s ⪯ a for a ∈ A.
(ii) F : X → 2C is said to be bounded from below if
∀ ϱ ∈ X , there exists xp ∈ C with xp ⪯ u for u ∈ Fϱ := F(ϱ).

Let CB(X ) denote all, closed and bounded subsets of X . For a ∈ X and A,B ∈ CB(X ),
we use the following notations:
(i) S(a,B) = ϱb∈BS(dC(a, b)) = ϱb∈B{ϑ ∈ C : dC(a, b) ⪯ ϑ},
(ii) S(A,B) = (ϱa∈AS(a,B)) ∩ (ϱb∈BS(b,A)).

Definition 2.4. [6] For F : X → CB(X ) and ϱ, ς ∈ X , if Aϱ(Fς) = {ϑ ∈ C| ϑ =
dC(ϱ, u) : u ∈ Fς}, then F
(i) has the lower bound (l.b.) property on (X , dC) if for ϱ, ς ∈ X , ∃ ϑ0 ∈ C with ϑ0 ⪯ ϑ
for ϑ ∈ Aϱ(Fς), that is said to be a lower bound of F and denoted by lϱ(Fς).
(ii) has the greatest lower bound (g.l.b.) property if a greatest lower bound of Aϱ(Fς) exists
in C for ϱ, ς ∈ X . Then, dC(ϱ,Fς) =∈ F{dC(ϱ, u) : u ∈ Fς}.
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Definition 2.5. W ⊆ X , is said to be proximinal in X if for s ∈ X , there exists ς ∈ W ,
dC(s, ς) = dC(s,W ).

Definition 2.6. If αC : X × X → S0 and F ,G : X → CB(X ). Then
(i) F is αC-admissible if for ϱ, ς ∈ X , αC(ϱ, ς) ⪰ 1 implies αC(u, v) ⪰ 1, u ∈ Fϱ, v ∈ Fς,
(ii) (F ,G) is αC-admissible if α(ϱ, ς) ⪰ 1 implies αC(u, v) ⪰ 1 and αC(v, u) ⪰ 1, u ∈ Fϱ,
v ∈ Fς.
Definition 2.7. For a dC-MS X , put αC : X × X → S0. Then X satisfies the condition
(B∗) with respect to αC if for any {ϱn} in X with αC(ϱn, ϱn+1) ⪰ 1 for n ≥ 1 and ϱn → ϱ,
we have αC(ϱn, ϱ) ⪰ 1 and αC(ϱ, ϱn) ⪰ 1.

Definition 2.8. If Ψ be a family of nondecreasing continuous functions ψ : S0 → S0

with
∑∞

n=1 |ψn(w)| <∞, where ψn is the nth iterate of ψ, also ψ(ct) ≤ cψ(r), c > 1. It is
obviously ψ(w) ≺ w.

It is essential to note that max{ϑ1, ϑ2} is not necessarily equal to ϑ1 or ϑ2 for each pair
ϑ1, ϑ2 ∈ C, because

max{ϑ1, ϑ2} = max{Re(ϑ1),Re(ϑ2)}+ imax{Im(ϑ1), Im(ϑ2)}.

3. Main results

Theorem 3.1. Let (X , dC) be complete and F ,G : X → CB(X ) be a pair of αC-admissible
with g.l.b. property such that Fϱ and Gϱ are proximinal for ϱ ∈ X . Suppose also that there
exists β : S0 → S0 such that

1

αC(ϱ, ς)
β(ψ(M(ϱ, ς)))ψ(M(ϱ, ς)) ∈ S(Fϱ,Gς), |β(ψ(M(ϱ, ς)))| ≤ 1

w2(ϱ, ς)
, (1)

for ϱ, ς ∈ X , where ψ ∈ Ψ and

M(ϱ, ς) = max{dC(ϱ, ς), dC(ϱ,Fϱ), dC(ς,Gς),
dC(ϱ,Gς) + dC(ς,Fϱ)

2w(ϱ, ς)
}. (2)

Assume that
(i). For sequence {ϱn} (is convergent), we have

lim
j→∞

w(ϱj+1, ϱj+2)

w(ϱj , ϱj+1)
< 1, (3)

in addition, limn→∞w(ϱ, ϱn) and limn→∞w(ϱn, ϱ) are finite;
(ii). there exist ϱ0 ∈ X and ϱ1 ∈ Fϱ0 with αC(ϱ0, ϱ1) ⪰ 1 and αC(ϱ1, ϱ0) ⪰ 1.
If X has condition (B∗) respect to αC, then F and G have a CFP.

Proof. Put ϱ0 ∈ X and ϱ1 ∈ Fϱ0 such that αC(ϱ0, ϱ1) ⪰ 1 and αC(ϱ1, ϱ0) ⪰ 1. By using
(1), construct a sequence {ϱκ} in X such that
ϱ2κ+1 ∈ Fϱ2κ, ϱ2κ+2 ∈ Gϱ2κ+1, for all k ≥ 0,

dC(ϱ2κ+1, ϱ2κ+2) ⪯
1

αC(ϱ2κ, ϱ2κ+1)
β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1)), (4)

and

dC(ϱ2κ+2, ϱ2κ+3) ⪯
1

αC(ϱ2κ+2, ϱ2κ+1)
β(ψ(M(ϱ2κ+2, ϱ2κ+1)))ψ(M(ϱ2κ+2, ϱ2κ+1)), (5)

where

M(ϱ2κ, ϱ2κ+1) = max{dC(ϱ2κ, ϱ2κ+1), dC(ϱ2κ,Fϱ2κ), dC(ϱ2κ+1,Gϱ2κ+1), (6)
dC(ϱ2κ,Gϱ2κ+1)+dC(ϱ2κ+1,Fϱ2κ)

2w(ϱ2κ,ϱ2κ+1)
},
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and

M(ϱ2κ+1, ϱ2κ+2) = max{dC(ϱ2κ+1, ϱ2κ+2), dC(ϱ2κ+1,Fϱ2κ+1), dC(ϱ2κ+2,Gϱ2κ+2),
dC(ϱ2κ+1,Gϱ2κ+2)+dC(ϱ2κ+2,Fϱ2κ+1)

2w(ϱ2κ+1,ϱ2κ+2)
}.

Since (F ,G) is αC-admissible, then αC(ϱκ, ϱκ+1) ⪰ 1 and αC(ϱκ+1, ϱκ) ⪰ 1 for all k ≥ 0.
If ϱ2κ = ϱ2κ+1 for some k ≥ 0, then ϱ2κ+1 = ϱ2κ+2. In fact, if ϱ2κ+1 ̸= ϱ2κ+2, then

0 < |dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|

≤ |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))|

<
1

w2(ϱ2κ, ϱ2κ+1)
|ψ(M(ϱ2κ, ϱ2κ+1))|

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ, ϱ2κ+1)|,

now, we have the below cases:
Step 1: If M(ϱ2κ, ϱ2κ+1) = dC(ϱ2κ, ϱ2κ+1) thus we have:

0 < |dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|
≤ |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))| (7)

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ, ϱ2κ+1)|

=
1

w2(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ, ϱ2κ+1)|.

(8)

Setting t = sup{ 1
w(ϱκ,ϱκ+1)

, k = 1, 2, 3, . . .},
we get

0 < |dC(ϱ2κ+1, ϱ2κ+2)| <
1

w2(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ, ϱ2κ+1)|

≤ t2|dC(ϱ2κ, ϱ2κ+1)| < t4|dC(ϱ2κ−1, ϱ2κ)|
< . . . < t4k+2|dC(ϱ0, ϱ1)|. (9)

Now, as regards 0 < t < 1, we obtain limκ→∞ |dC(ϱ2κ+1, ϱ2κ+2)| = 0, (Similarly, it can
be proved that limκ→∞ |dC(ϱ2κ+2, ϱ2κ+3)| = 0), and in general it can be proved that
limκ→∞ |dC(ϱκ, ϱκ+1)| = 0.
Step 2: If M(ϱ2κ, ϱ2κ+1) = dC(ϱ2κ,Fϱ2κ), then considering ϱ2κ+1 ∈ Fϱ2κ, we have:

0 < |dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|
≤ |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))| (10)

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ, ϱ2κ+1)|

=
1

w2(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ,Fϱ2κ)|

<
1

w2(ϱ2κ, ϱ2κ+1)
(w(ϱ2κ, ϱ2κ+1)|dC(ϱ2κ, ϱ2κ+1) + dC(ϱ2κ+1,Fϱ2κ)|)

=
1

w(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ, ϱ2κ+1)|.

As in case (1), we obtain limκ→∞ |dC(ϱκ, ϱκ+1)| = 0.
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Step 3: If M(ϱ2κ, ϱ2κ+1) = dC(ϱ2κ+1,Gϱ2κ+1), then by considering ϱ2κ+2 ∈ Gϱ2κ+1,
we have

0 < |dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|
≤ |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))| (11)

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ, ϱ2κ+1)|

=
1

w2(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ+1,Gϱ2κ+1)|

<
1

w2(ϱ2κ, ϱ2κ+1)
(w(ϱ2κ, ϱ2κ+1)|dC(ϱ2κ+1, ϱ2κ+2)

+ dC(ϱ2κ+2,Gϱ2κ+1)|)

=
1

w(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ+1, ϱ2κ+2)| < |dC(ϱ2κ+1, ϱ2κ+2)|,

which is a contradiction. Hence, this case is not possible.

Step 4: If M(ϱ2κ, ϱ2κ+1) =
dC(ϱ2κ,Gϱ2κ+1)+dC(ϱ2κ+1,Fϱ2κ)

2w(ϱ2κ,ϱ2κ+1)
, then we have:

0 < |dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|
≤ |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))| (12)

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ, ϱ2κ+1)|

=
1

w2(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ,Gϱ2κ+1) + dC(ϱ2κ+1,Fϱ2κ)

2w(ϱ2κ, ϱ2κ+1)
|

<
1

2w3(ϱ2κ, ϱ2κ+1)
(w(ϱ2κ, ϱ2κ+2)|dC(ϱ2κ, ϱ2κ+1) + dC(ϱ2κ+1,Gϱ2κ+1)|)

<
w(ϱ2κ, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ, ϱ2κ+1)

+ w(ϱ2κ+1, ϱ2κ+2)(dC(ϱ2κ+1, ϱ2κ+2) + dC(ϱ2κ+2,Gϱ2κ+1))|

<

(
w(ϱ2κ, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)
+

w(ϱ2κ, ϱ2κ+2)w(ϱ2κ+1, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)

)
max{|dC(ϱ2κ, ϱ2κ+1)|, |dC(ϱ2κ+1, ϱ2κ+2)|}.

If max{|dC(ϱ2κ, ϱ2κ+1)|, |dC(ϱ2κ+1, ϱ2κ+2)|} = |dC(ϱ2κ, ϱ2κ+1)|, then we get

0 < |dC(ϱ2κ+1, ϱ2κ+2)|

<

(
w(ϱ2κ, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)
+

w(ϱ2κ, ϱ2κ+2)w(ϱ2κ+1, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)

)
|dC(ϱ2κ, ϱ2κ+1)|

< (
1

2w2(ϱ2κ, ϱ2κ+1)
+

1

2w(ϱ2κ, ϱ2κ+1)
)|dC(ϱ2κ, ϱ2κ+1)|

=
1

w(ϱ2κ, ϱ2κ+1)
|dC(ϱ2κ, ϱ2κ+1)|,
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so, as in case (1), we obtain limκ→∞ |dC(ϱκ, ϱκ+1)| = 0.
If max{|dC(ϱ2κ, ϱ2κ+1)|, |dC(ϱ2κ+1, ϱ2κ+2)|} = |dC(ϱ2κ+1, ϱ2κ+2)|, then we have

0 < |dC(ϱ2κ+1, ϱ2κ+2)|

<

(
w(ϱ2κ, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)
+

w(ϱ2κ, ϱ2κ+2)w(ϱ2κ+1, ϱ2κ+2)

2w3(ϱ2κ, ϱ2κ+1)

)
|dC(ϱ2κ+1, ϱ2κ+2)|

< (
1

2w(ϱ2κ+1, ϱ2κ+2)
+

1

2w(ϱ2κ+1, ϱ2κ+2)
)|dC(ϱ2κ+1, ϱ2κ+2)|

=
1

w(ϱ2κ+1, ϱ2κ+2)
|dC(ϱ2κ+1, ϱ2κ+2)| < |dC(ϱ2κ+1, ϱ2κ+2)|,

which again is a contradiction. Therefore, ϱ2κ will be a CFP for G and F .
(Also, in the same way, we have ϱ2κ+2 = ϱ2κ+3 if ϱ2κ+1 = ϱ2κ+2 for some k ≥ 0).
Suppose that ϱκ ̸= ϱκ+1 for all k ≥ 0. From inequalities (4) and (6), we have

|dC(ϱ2κ+1, ϱ2κ+2)| ≤ |αC(ϱ2κ, ϱ2κ+1)dC(ϱ2κ+1, ϱ2κ+2)|

< |β(ψ(M(ϱ2κ, ϱ2κ+1)))ψ(M(ϱ2κ, ϱ2κ+1))|

<
1

w2(ϱ2κ, ϱ2κ+1)
|M(ϱ2κ.ϱ2κ+1)|,

Thus, as in the above process, limκ→∞ |dC(ϱκ, ϱκ+1)| = 0. We will show next that
{ϱκ} is Cauchy. By (9) and condition (iii) from the definition of dC, we have

|dC(ϱκ, ϱκ+ι)| ≤ w(ϱκ, ϱκ+ι)|dC(ϱκ, ϱκ+1) + dC(ϱκ+1, ϱκ+ι)|

≤ w(ϱκ, ϱκ+ι)t
κ|dC(ϱ0, ϱ1)|

+ |w(ϱκ, ϱκ+ι)w(ϱκ+1, ϱκ+ι)
(
dC(ϱκ+1, ϱκ+2)

+ dC(ϱκ+2, ϱκ+ι)
)
|

≤ w(ϱκ, ϱκ+ι)t
κ|dC(ϱ0, ϱ1)|

+ w(ϱκ, ϱκ+ι)w(ϱκ+1, ϱκ+ι)t
κ+1|dC(ϱ0, ϱ1)|

+ w(ϱκ, ϱκ+ι)w(ϱκ+1, ϱκ+ι)w(ϱκ+2, ϱκ+ι)t
κ+2|dC(ϱ0, ϱ1)|

...

+ w(ϱκ, ϱκ+ι)w(ϱκ+1, ϱκ+ι)w(ϱκ+2, ϱκ+ι) . . .

w(ϱκ+ι−1, ϱκ+ι)t
κ+ι−1|dC(ϱ0, ϱ1)|

< ntκ−1|dC(ϱ0, ϱ1)|.

Taking into account, tκ → 0 as κ → 0, we get limκ→∞ |dC(ϱκ, ϱκ+ι)| = 0. Hence,
the {ϱκ} is Cauchy. As regards (X , dC) is complete dC-MS, there exists ϱ∗ ∈ X with
limκ→∞ |dC(ϱκ, ϱ∗)| = 0. Since X has the property (B∗), we have
αC(ϱ

∗, ϱκ) ⪰ 1 and αC(ϱκ, ϱ
∗) ⪰ 1 for all k ≥ 1. Moreover,

β(ψ(M(ϱ2κ, ϱ
∗)))ψ(M(ϱ2κ, ϱ

∗))

αC(ϱ2κ, ϱ∗)
∈ S(Fϱ2κ,Gϱ∗), (13)

β(ψ(M(ϱ∗, ϱ2κ+1)))ψ(M(ϱ∗, ϱ2κ+1))

αC(ϱ∗, ϱ2κ+1)
∈ S(Fϱ∗,Gϱ2κ+1),
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for all k ≥ 1, where

M(ϱ2κ, ϱ
∗) = max{dC(ϱ2κ, ϱ∗), dC(ϱ2κ,Fϱ2κ), dC(ϱ∗,Gϱ∗),
dC(ϱ2κ,Gϱ∗) + dC(ϱ

∗,Fϱ2κ)
2w(ϱ2κ, ϱ∗)

}, (14)

and

M(ϱ∗, ϱ2κ+1) = max{dC(ϱ∗, ϱ2κ+1), dC(ϱ
∗,Fϱ∗), dC(ϱ2κ+1,Gϱ2κ+1),

dC(ϱ
∗,Gϱ2κ+1) + dC(ϱ2κ+1,Fϱ∗)

2w(ϱ∗, ϱ2κ+1)
}.

Since S(Fϱ2κ,Gϱ∗) ⊆ S(a,Gϱ∗) and S(Fϱ∗,Gϱ2κ+1) ⊆ S(Fϱ∗, b), a ∈ Fϱ2κ,
b ∈ Gϱ2κ+1 and k ≥ 0, then

β(ψ(M(ϱ2κ, ϱ
∗)))ψ(M(ϱ2κ, ϱ

∗))

αC(ϱ2κ, ϱ∗)
∈ S(ϱ2κ+1,Gϱ∗),

β(ψ(M(ϱ∗, ϱ2κ+1)))ψ(M(ϱ∗, ϱ2κ+1))

αC(ϱ∗, ϱ2κ+1)
∈ S(Fϱ∗, ϱ2κ+2)

and so there exist sequences {uκ} ⊆ Fϱ∗ and {vκ} ⊆ Gϱ∗ such that

dC(ϱ2κ+1, vκ) ⪯
1

αC(ϱ2κ, ϱ∗)
β(ψ(M(ϱ2κ, ϱ

∗)))ψ(M(ϱ2κ, ϱ
∗)), (15)

and

dC(uκ, ϱ2κ+2) ⪯
1

αC(ϱ∗, ϱ2κ+1)
β(ψ(M(ϱ∗, ϱ2κ+1)))ψ(M(ϱ∗, ϱ2κ+1)). (16)

Next, we show that {uκ} and {vκ} converge to ϱ∗. For some (m > 1, m is an integer
number), we have

|dC(ϱ∗, vκ)| ≤ w(ϱ∗, vκ)|dC(ϱ∗, ϱ2κ+1) + dC(ϱ2κ+1, vκ)|

≤ w(ϱ∗, vκ)[|dC(ϱ∗, ϱ2κ+1)|

+ w(ϱ2κ+1, vκ)|dC(ϱ2κ+1, ϱ2κ+2) + dC(ϱ2κ+2, vκ)|]

≤ w(ϱ∗, vκ)

[
|dC(ϱ∗, ϱ2κ+1)|

+ w(ϱ2κ+1, vκ)
[
|dC(ϱ2κ+1, ϱ2κ+2)|

+ w(ϱ2κ+2, vκ)|dC(ϱ2κ+2, ϱ2κ+3) + dC(ϱ2κ+3, vκ)|
]]

(17)

≤ w(ϱ∗, vκ)[|dC(ϱ∗, ϱ2κ+1)|+
m∑
j=1

(
Π2κ+j
i=2κ+1w(ϱi, vκ)

)
dC(ϱ2κ+j , ϱ2κ+j+1)

+
(
Π2κ+j
i=2κ+1w(ϱi, vκ)

)
dC(ϱ2κ+m+1, vκ)] (18)

≤ w(ϱ∗, vκ)[|dC(ϱ∗, ϱ2κ+1)|+
m∑
j=1

(
Π2κ+j
i=2κ+1w(ϱi, vκ)

)
t2κ+jdC(ϱ0, ϱ1)]

+
(
Π2κ+j
i=2κ+1w(ϱi, vκ)

)
dC(ϱ2κ+m+1, vκ)] → 0. (19)
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By definition of t and regarding that t2κ → 0, while k → ∞, we get

m∑
j=1

(
Π2κ+j
i=2κ+1w(ϱi, vκ)

)
t2κ+jdC(ϱ0, ϱ1) → 0.

So, limκ→∞ |d(ϱ∗, vκ)| = 0. It can be shown similarly, limκ→∞ |d(ϱ∗, uκ)| = 0. Considering
that Fϱ∗ and Gϱ∗ are closed, we obtain ϱ∗ ∈ Gϱ∗ and ϱ∗ ∈ Fϱ∗. Thus, F and G have a
CFP. □

If we take F = G in Theorem 3.1, then we get the following corollary.

Corollary 3.1. Let (X , dC) be complete and F : X → CB(X ) a αC-admissible with g.l.b.
property such that Fϱ be proximinal and

1

αC(ϱ, ς)
β(ψ(M(ϱ, ς)))ψ(M(ϱ, ς)) ∈ S(Fϱ,Fς), |β(ψ(M(ϱ, ς)))| ≤ 1

w2(ϱ, ς)
, (20)

for ϱ, ς ∈ X and ψ ∈ Ψ, where

M(ϱ, ς) = max{dC(ϱ, ς), dC(ϱ,Fϱ), dC(ς,Fς), dC(ϱ,Fς)+dC(ς,Fϱ)
2w(ϱ,ς) }. Assume that

(i). For each point ϱ and convergent sequence {ϱn}, the following inequality holds;

lim
j→∞

w(ϱj+1, ϱj+2)

w(ϱj , ϱj+1)
< 1,

additionally, limn→∞w(ϱ, ϱn) and limn→∞w(ϱn, ϱ) are finite;
(ii). There exists ϱ0 ∈ X and ϱ1 ∈ Fϱ0 such that αC(ϱ0, ϱ1) ⪰ 1 and αC(ϱ1, ϱ0) ⪰ 1.
If X satisfies the condition (B∗), then F has a FP.

If in Theorem 3.1, we set M(ϱ, ς) = d(ϱ, ς), then we can deduce the following corollary.

Corollary 3.2. Let (X , dC) be complete and F ,G : X → CB(X ) be a pair of αC-admissible
with g.l.b. property such that Fϱ and Gϱ be proximinal, and

1

αC(ϱ, ς)
β(ψ(d(ϱ, ς)))ψ(d(ϱ, ς)) ∈ S(Fϱ,Gς), |β(ψ(dC(ϱ, ς)))| ≤

1

w2(ϱ, ς)
, (21)

for ϱ, ς ∈ X , where ψ ∈ Ψ.
Also assume that
(i). For each point ϱ and convergent sequence {ϱn},

lim
j→∞

w(ϱj+1, ϱj+2)

w(ϱj , ϱj+1)
< 1, (22)

in addition, limn→∞w(ϱ, ϱn) and limn→∞w(ϱn, ϱ) are finite;
(ii). There exists ϱ0 ∈ X and ϱ1 ∈ Fϱ0 such that αC(ϱ0, ϱ1) ⪰ 1 and αC(ϱ1, ϱ0) ⪰ 1.
If X satisfies the condition (B∗), then F and G have CFP.

Corollary 3.3. Let (X , dC) be complete and F : X → CB(X ) be αC-admissible with g.l.b.
property such that Fϱ is proximinal and

1

αC(ϱ, ς)
β(ψ(M(ϱ, ς)))ψ(M(ϱ, ς)) ∈ S(Fϱ,Fς), |β(ψ(M(ϱ, ς)))| ≤ 1

w2(ϱ, ς)
, (23)

for ϱ, ς ∈ X and ψ ∈ Ψ, where

M(ϱ, ς) = X{dC(ϱ, ς), dC(ϱ,Fϱ), dC(ς,Fς), dC(ϱ,Fς)+dC(ς,Fϱ)
2w(ϱ,ς) }. Assume that
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(i). For each point ϱ and sequences {ϱn} and {ςn} (respectively convergent and arbitrary
sequence) in X ,

lim
j→∞

w(ϱj+1, ϱj+2)

w(ϱj , ϱj+1)
< 1,

additionally, limn→∞w(ϱ, ϱn) and limn→∞w(ϱn, ϱ) are finite;
(ii). There exists ϱ0 ∈ X and ϱ1 ∈ Fϱ0 such that αC(ϱ0, ϱ1) ⪰ 1 and αC(ϱ1, ϱ0) ⪰ 1.
If X satisfies the condition (B∗), then F has a FP.

If F and G are self-maps and αC(ϱ, ς) = 1, then we can obtain the following consequence.

Corollary 3.4. Let (X , dC) be complete and F ,G : X → X be self mappings with g.l.b.
property such that Fϱ and Gϱ are proximinal, and

dC(Fϱ,Gς) ⪯ β(ψ(M(ϱ, ς)))ψ(M(ϱ, ς)), |β(ψ(M(ϱ, ς)))| ≤ 1

w2(ϱ, ς)
, (24)

for each ϱ, ς ∈ X , where ψ ∈ Ψ, and

M(ϱ, ς) = X{dC(ϱ, ς), dC(ϱ,Fϱ), dC(ς,Gς), dC(ϱ,Gς)+dC(ς,Fϱ)
2w(ϱ,ς) }.

Also, if (i) of Theorem 3.1 holds, then F and G have a CFP.

Example 3.1. Let X = { 1
16 ,

1
8 ,

1
4}. Define w : X × X → [1,∞) and ρ : X × X → [0,∞)

as the following

w(ϱ, ς) =


1 + ϱ ϱ > ς,
1
ς ϱ < ς,

1 ϱ = ς.

ρ(ϱ, ς) =

{
0 ϱ = ς,

min{ϱ, ς} otherwise.

Consider dC(ϱ, ς) = (1 + i)ρ(ϱ, ς). Clearly, dC(ϱ, ς) ⪰ 0, and dC(ϱ, ς) = dC(ς, ϱ).
Checking the triangular inequality; if ϱ = ς, then ρ(ϱ, ς) = 0, and so it is true. For
ϱ, ς, ξ ∈ X ,

• if ϱ < ξ < ς, then, ϱ ≤ 1
ς (ϱ+ ξ);

• if ϱ < ς < ξ, then, ϱ ≤ 1
ς (ϱ+ ς);

• and if ξ < ϱ < ς, then, ϱ ≤ 1
ς 2ξ.

So, ρ(ϱ, ς) ≤ w(ϱ, ξ)(ρ(ϱ, ξ) + ρ(ξ, ς)). When ς < ϱ, the same results is true. Thus,
dC(ϱ, ς) ⪯ w(ϱ, ξ)(dC(ϱ, ξ) + dC(ξ, ς)).
Also, the condition (i) from Theorem 3.1 is satisfied.
Consider ψ(w) = 9

10w, β(ψ(r)) =
1

ψ2(r)
, and

F(ϱ) =


{1
8} ϱ = 1

16 ,

{ 1
16 ,

1
4} ϱ = 1

8 ,

{1
4} ϱ = 1

4 ,

G(ς) =


{ 1
16 ,

1
8} ς =

1
16 ,

{ 1
16} ς =

1
8 ,

{1
4} ς =

1
4 ,
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αC(ϱ, ς) =

{
1 + i ϱ = ς = 1

4 ,
1

(1+i)2
otherwise.

Clearly, (F ,G) is αC-admissible and Fϱ and Gϱ are proximinal, because X is finite.
Also, X has condition (B∗) respect to αC. There exist ϱ0 = 1

4 and ϱ1 = 1
4 ∈ Fϱ0 = {1

4}
such that αC(ϱ0, ϱ1) = αC(ϱ1, ϱ0) = 1 + i ⪰ 1.

Next, we will show that β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))
αC(ϱ,ς) ∈ S(Fϱ,Gς).

We show that for a ∈ Fϱ, there exists b ∈ Gς with

dC(a, b) ⪯ β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))
αC(ϱ,ς) , and also for b ∈ Gς, there exists a ∈ Fϱ with dC(a, b) ⪯

β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))
αC(ϱ,ς) .

If ϱ = ς = 1
4 then Fϱ = Gς = {1

4}, clearly dC(a, b) ⪯
β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))

αC(ϱ,ς) is established for

all a ∈ Fϱ and b ∈ Gς.
Let ϱ = ς = 1

8 . Then, Fϱ = { 1
16 ,

1
4} and Gς = { 1

16}, hence

1

16
≤

(1 + i) 1
16

9
10

99
100

1
256(1 + i)2(1 + i)−2

,

and so dC(a, b) ⪯ β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))
αC(ϱ,ς) . Also, if a = 1

4 ∈ F(18), then for b = 1
16 ∈ G(18), the

mentioned inequality is established.
Now, if ϱ = ς = 1

16 . Then, for Fϱ = {1
8} and Gς = { 1

16 ,
1
8} the aforementioned relation is

established.
For a = 1

8 ∈ F( 1
16) and b =

1
8 ∈ G( 1

16), dC(a, b) = 0, and so

dC(a, b) ⪯ β(ψ(M(ϱ,ς)))ψ(M(ϱ,ς))
αC(ϱ,ς) . Other cases are checked as above. Therefore, the assump-

tions of Theorem 3.1 are fulfilled. Here, ϱ∗ = 1
4 is a CFP of F and G.

4. Application

Here, we investigate the existence of the solution for an inclusion system with derivative
of fractional order.
Set r ∈ [a, b] ⊆ R+ and Iιaτ(r, x(r)) =

∫ r
a

(r−s)ι−1

Γ(ι) τ(s, x(s))ds, (τ ∈ C([a, b]×R,R), ι ∈ R+).

Consider the following system:x(r) ∈ w(r) +W(r, Iιa(U(r, x(r)))),

y(r) ∈ z(r) + Z(r, Iιa(V (r, y(r)))),
(25)

where, x, y, w, z : [a, b] → R, U, V,W,Z : [a, b]× R → R are continuous and two functions
W and Z are bounded, additionally.
Let X = L1([a, b]) (Lebesgue integrable functions). Consider dC : X × X → C by:

dC(F ,G) = ∥ F(r)− G(r) ∥1e
iθ =

(∫ b

a
| F(r)− G(r) | dr

)
eiθ, (26)

where θ ∈ [π4 ,
π
2 ] and function w : X × X → [1,+∞) which satisfy in the condition (i) of

Corollary 3.2. Clearly, (X , dC) is a complete respect to function w.
Define ΛUw : X → 2X by

ΛUwF(r) = {z(r) +W(r, Iιa(U(r,F(r)))), z(r) + Z(r, Iιa(U(r,F(r))))} (∀r ∈ [a, b]), (27)

with w ∈ X (is continuous), U : [a, b] × R → R and W,Z : [a, b] × R → R are bounded
continuous. Then, it can be easily shown that ΛUwF ⊆ X is closed and bounded for F ∈ X .
Clearly, F ∈ X is a solution of the system (25) whenever it is a CFP of ΛUw and ΛVz .
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The following theorem shows that Corollary 3.2 can be used to check the existence and
uniqueness of system (25).

Theorem 4.1. Let (X , dC) be complete with respect to the metric (dC defined by (26)).
Assume that F ,G : X → CB(X ) are defined by:

Fϱ(r) = ΛUwϱ(r), Gς(r) = ΛVz ς(r), r ∈ [a, b].

Suppose that γ = ∥ w − z ∥1, also, for r ∈ [a, b], µ1, µ2 ∈ R, we have;|W(r, µ1)−Z(r, µ2)| ≤ ϕ1(r) | µ1 − µ2 |,

|U(r, ϱ(s))− V (r, ς(s))| ≤ ϕ2(r)
[

16|ϱ(s)−ς(s)|
4+∥ϱ(s)−ς(s)∥1

2 − 2γ
λ(b−a)

]
,

(28)

where ϕ1 and ϕ2 have upper bounds of Γ(ι+ 1)/8 and (b− a)−ι on [a, b], respectively.
In this case, the Corollary 3.2 is satisfied for F and G. Thus they have a CFP.

Proof. Define ψ(w) = w
2 , β(r) = e2iθ

e2iθ+t2
, for all w ∈ S0 and αC(ϱ, ς) =

√
2[sin θ0 +

(0.1)i cos θ0], for all ϱ, ς ∈ X , where θ0 is an arbitrary angel in [π4 ,
π
2 ]. Clearly, αC(ϱ, ς) ⪰ 1,

for each ϱ, ς ∈ X and so the pair (F ,G) is αC-admissible. In addition, X has the property
(B∗) and the subsets Fϱ and Gς of X are proximinal. By using 28, for each O ∈ Fϱ,
R ∈ Gς, and r ∈ [a, b], we have

∥ O(r)−R(r) ∥1 =

∫ b

a
| O(r)−R(r) | dr

=

∫ b

a
|w(r) +W(r, Iιa(U(r, ϱ(r))))− z(r)−Z(r, Iιa(V (r, ς(r))))|dr

≤ ∥ w(r)− z(r) ∥1 +
∫ b

a
ϕ1(r) | Iιa(U(r, ϱ(r)))− Iιa(V (r, ς(r))) | dr

≤ γ +
Γ(ι+ 1)

8

∫ b

a
|
∫ r

a

(r − ζ)ι−1

Γ(ι)
[U(ζ, ϱ(ζ))− V (ζ, ς(ζ))] dζ | dr

≤ γ +
Γ(ι+ 1)

8

∫ b

a

∫ r

a

(r − ζ)ι−1

Γ(ι)
| U(ζ, ϱ(ζ))− V (ζ, ς(ζ)) | dζ dr

≤ γ +
Γ(ι+ 1)

8

∫ b

a

∫ b

ζ

(r − ζ)ι−1

Γ(ι)
| U(ζ, ϱ(ζ))− V (ζ, ς(ζ)) | dr dζ

≤ γ +
1

8

∫ b

a
(b− ζ)ι | U(ζ, ϱ(ζ))− V (ζ, ς(ζ)) | dζ

≤ γ +
1

8
(b− a)ι

∫ b

a
| U(ζ, ϱ(ζ))− V (ζ, ς(ζ)) | dζ

≤ γ +
1

8
(b− a)ι

∫ b

a
ϕ2(ζ)

[
16 | ϱ(ζ)− ς(ζ) |

4 + ∥ ϱ(ζ)− ς(ζ) ∥1
2 − γ

(b− a)

]
dζ

≤ 1

8

∫ b

a

16 | ϱ(ζ)− ς(ζ) |
4 + ∥ ϱ(ζ)− ς(ζ) ∥1

2dζ

=
2∥ ϱ(ζ)− ς(ζ) ∥1

4 + ∥ ϱ(ζ)− ς(ζ) ∥1
2 .
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So

∥ O(r)−R(r) ∥1e
iθ ⪯

2∥ ϱ(ζ)− ς(ζ) ∥1eiθ

4 + ∥ ϱ(ζ)− ς(ζ) ∥1
2 ,

and then

dC(O, ξ) ⪯ β(ψ(dC(ϱ, ς)))ψ(dC(ϱ, ς)) ⪯
β(ψ(dC(ϱ, ς)))ψ(dC(ϱ, ς))

αC(ϱ, ς)
.

Consequently, β(ψ(dC(ϱ,ς)))ψ(dC(ϱ,ς))
αC(ϱ,ς) ∈ S(Fϱ,Gς). Thus, from Corollary 3.2, F and G have

a CFP in X . Hence, the system (25) has a solution in X . □
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