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MITTAG-LEFFLER-HYERS-ULAM STABILITY OF EULER-CAUCHY

DIFFERENTIAL EQUATION USING LAPLACE TRANSFORM

A. B. I. AHMED1∗, §

Abstract. In this paper, we study the Mittag-Leffler-Hyers-Ulam stability and Mittag-
Leffler-Hyers-Ulam-Rassias stability of the Euler-Cauchy differential equation using Laplace
transform. Basically, for the first time, the Mittag-Leffler-Hyers-Ulam stability of sec-
ond order differential equation with variable coefficients has been studied through the
Laplace transforms. We develop this approach to identify the necessary conditions that
the eigenvalue Sturm-Liouville equation is Mittag-Leffler-Hyers-Ulam stable.
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1. Introduction

The classical concept of Ulam stability for in theory of functional equation was first
posed by M. Ulam (see [28]) in terms:“what are the conditions for a function which ap-
proximately satisfies a functional equation f must be close to an exact solution of f?”.
He presented many insolvable questions for example: when is it true that a mapping (iso-
morphism) that approximately satisfies a functional equation must be close to an exact
solution of the equation?. If the answer is affirmative, then we could state that the func-
tional equation is stable. One year later, Hyers answered the Ulam’s outstanding question
(see [9]) in the case of approximately additive mappings on Banach spaces. The Ulam
stability theorem was generalized by Rassias (see [24], [25]). Then many authors studied
Ulam stability for different problems of functional equations by different methods (see [9],
[24] [11], [15], [8]). That is, there exists an exact unique solution of the Euler-Cauchy
differential equation near its approximate solution. Where the exact solution of initial
value problems for differential equations can be investigated using the Laplace transform
method, Fourier transform method, Green’s function approach, and other approximation
methods which are consider to be valuable and essential techniques.(see [3], [4], [5], [6]).
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Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of
the linear differential equations

x
′
(t) + lx(t) = 0, x

′
(t) + lx(t) = r(t),

x
′′
(t) + lx

′
(t) +mx(t) = 0, x

′′
(t) + lx

′
(t) +mx(t) = r(t),

were studied using Fourier transforms in (see [26]). By means of Fourier transform
and convolution principle (see [19]), the Mittag-Leffler-Hyers-Ulam stability and Mittag-
Leffler-Hyers-Ulam-Rassias stability of the homogeneous first-order differential equation
and higher-order differential equations

H
′
(x) + aH(x) = 0, H

′′
(x) + aH

′
(x) + bH(x) = 0, lim

|x|→∞
= 0,

H
′′
(x) +

n−1∑
j=0

ajH
j(x) = 0, lim

|x|→∞
= 0.

Moreover, the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias
stability of the first-order differential equations

u
′
(t) + lu(t) = 0, u

′
(t) + lu(t) = r(t),

were studied by using Laplace transforms in (see [21]). Also by using Aboodh transforms,
the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability
of the second-order differential equations

u
′′
(t) + µ2u(t) = 0, u

′′
(t) + µ2u(t) = q(t),

were established (see [22]).
The Hyers-Ulam method was used to demonstrate the Mittag-Leffler stability problems

for impulsive fractional difference equations (see [32]), investigate the stability of linear
fractional delay difference equations with impulse (see [33]), and demonstrate the stability
of fractional discrete-time neural networks using the fixed point method (see [34]).

Mittag-Leffler (see [18]) provided the Mittag-Leffler function Eα(z
α) in relation to the

divergent series approach. In [29], [2], [10], [14] the generalisation and characteristics
of E(z) were investigated. Some significant results to the Mittag-Leffler-Hyers-Ulam-
Rassias stability have been studied in [13], [16], [17], [23], [1], [12], [27], [30], [7], [31],
[20]. Especially, in [13] the authors investigated the Mittag-Leffler-Hyers-Ulam-Rassias
stabilityfor the second-order differential equation

y
′′
(t) + αy

′
(t) + βy(t) = 0.

In this paper, we present a new concept regarding the stability of a second order dif-
ferential equation with variable coefficients of type Euler-Cauchy equation in the sense of
Mittag-Leffler-Hyers-Ulam by the Laplace transform method. Also, we apply our new ap-
proach results to investigate the Mittag-Leffler-Hyers-Ulam-Rassias stability of the eigen-
value Sturm-Liouville equation.

2. Problem statement and auxiliary assertions

Let E denote either the real field R or the complex field C. A function f : (0,∞) → E
is said to be of exponential order c if there exist constants c, M > 0, T > 0 such that
|f(t)| ≤ Mect, ∀t > T . Essentially, in order for f(t) to have Laplace transform provided
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that limt→∞
f(t)

ect
= 0.

The Laplace transform L(f) = F (s), and

F (s) =

∫ ∞

0
f(t)e−stdt,

where there is δ ∈ R such that if R(s) > δ, then this integral converges and diverges if
R(s) < δ, where R(s) is the real part of s. Moreover, |F (s)| → 0 as R(s) → ∞.
The derivative of transform identity,

d

ds
F (s) = −

∫ ∞

0
tf(t)e−stdt = −L(tf(t)), (R(s) > δ).

We will often use this identity to compute the following transforms:

L(tf ′
(t)) = −F (s)− s

d

ds
F (s),

L(t2f ′′
(t)) = s2

d2

ds2
F (s) + 4s

d

ds
F (s) + 2F (s).

Since the integral Laplace transform is one-to-one mapping, then the inverse Laplace
transform has the formula

f(t) =
1

2πi
lim
T→∞

∫ α+iT

α−iT
F (s)estds =

1

2π

∫ ∞

−∞
e(α+iξ)tF (α+ iξ)dξ, (α > δ).

The convolution of two non-zero Lebesgue measurable functions f, z : (0,∞) → E is given
by

(f ∗ z)(t) =
∫ t

0
f(t− τ)z(τ)dτ,

that is,

L(f ∗ z)(t) = L(f(t))L(z(t)).
The aim of this paper is to investigate the Mittag-Leffler-Hyers-Ulam stability and

Mittag-Leffler-Hyers-Ulam-Rassias stability for the nonhomogeneous Euler-Cauchy differ-
ential equation

t2u
′′
(t) + atu

′
(t) + bu(t) = f(t), t ∈ (0,∞), (1)

where a, b are constants in E.
First, we may provide the following basic definitions concerning the Mittag-Leffler-Hyers-
Ulam stability of the Euler-Cauchy differential equation (1):

Definition 2.1. The Mittag-Leffler function of one parameter is defined as

Eα(z) =

∞∑
k=0

1

Γ(αk + 1)
zk, Re(α) > 0, z, α ∈ C.

Definition 2.2. The two-parameter Mittag-Leffler function is defined as

Eα,β(z) =
∞∑
k=0

1

Γ(αk + β)
zk, Re(α) > 0, z, α ∈ C.

If α = β = 1, then

E1,1(z) =

∞∑
k=0

1

Γ(k + 1)
zk = ez.
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Definition 2.3. We say that the Euler-Cauchy DE (1) has the Mittag-Leffler-Hyers-Ulam
stability if there exists a constant K > 0 satisfying the following condition: If for every
ε > 0, there exists a twice continuously differentiable function u ∈ C2(0,∞) satisfying the
inequality

|t2u′′
(t) + atu

′
(t) + bu(t)− f(t)| ≤ εEα(t),

for all t ∈ (0,∞), then there exists a solution uc(t) satisfying equation (1) such that

|u(t)− uc(t)| ≤ KεEα(t),

for all t ∈ (0,∞), where K is the Mittag-Leffler-Hyers-Ulam stability constant of (1).

Definition 2.4. We say that the Euler-Cauchy DE (1) has the Mittag-Leffler-Hyers-
Ulam-Rassias stability with respect to a continuous φ(t) : (0,∞) → (0,∞) if there exists a
constant Kφ > 0 such that for every ε > 0 and for each solution u ∈ C2(0,∞) satisfying
the inequality

|t2u′′
(t) + atu

′
(t) + bu(t)− f(t)| ≤ εφ(t)Eα(t),

for all t ∈ (0,∞), then there exists a solution uc(t) satisfying equation (1) such that

|u(t)− uc(t)| ≤ Kφεφ(t)Eα(t),

for all t ∈ (0,∞), where Kφ is the Mittag-Leffler-Hyers-Ulam-Rassias stability constant
for (1).

Theorem 2.1. For any z, α ∈ C,Re(α) > 0, the Laplace transform of Mittag-leffler
function is

L(Eα(t)) =

∞∑
k=0

k!

Γ(αk + 1)
s−(k+1).

Proof. The Laplace transform of the Mittag-Leffler function is

L(Eα(t)) =

∫ ∞

0
Eα(t)e

stdt =
∞∑
k=0

1

Γ(αk + 1)

∫ ∞

0
tkestdt.

Substitute st = −z, sdt = −dz, we get

L(Eα(t)) =
∞∑
k=0

1

Γ(αk + 1)

∫ ∞

0

(z
s

)k
e−z dz

s
=

∞∑
k=0

1

Γ(αk + 1)
s−(k+1)

∫ ∞

0
zke−zdz.

Since
∫∞
0 zke−zdz = Γ(k + 1) = k!, we get

L(Eα(t)) =

∞∑
k=0

k!

Γ(αk + 1)
s−(k+1).

□

3. Main results

3.1. Mittag-Leffler-Hyers-Ulam Stability for the Nonhomogeneous Euler-Cauchy
Differential Equation.

In this section, we prove the Mittag-Leffler-Hyers-Ulam stability and generalized Hyers-
Ulam stability of the Euler-Cauchy differential equation by using the Laplace transform.

Theorem 3.1. The Euler-Cauchy differential equation (1) is Mittag-Leffler-Hyers-Ulam
stable.
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Proof. For a given ε > 0, suppose that a twice continuously differentiable function u :
(0,∞) → E satisfying the inequality

|t2u′′
(t) + aty

′
(t) + bu(t)− f(t)| ≤ εEα(t), ∀t > 0. (2)

Then we will prove that there exists a constant K > 0 independent of ε, u(t) such that

|u(t)− uc(t)| ≤ KεEα(t),

for some uc(t) ∈ C2(0,∞) satisfies the Euler-Cauchy DE (1) for all t > 0.
Define a function p(t) : (0,∞) → E such that

p(t) := t2u
′′
(t) + atu

′
(t) + bu(t)− f(t)

for all t > 0, Taking Laplace transform to p(t), yields

L(p(t)) = S2 d2

ds2
L(u(t)) + (4− a)s

d

ds
L(u(t)) + (b− a+ 2)L(u(t))− L(f(t)).

Assuming
d

ds
= m, then we get

L(p(t)) = m2S2L(u(t)) + (4− a)msL(u(t)) + (b− a+ 2)L(u(t))− L(f(t))
=
(
m2s2 + (4− a)ms+ (b− a+ 2)

)
L(u(t))− L(f(t))

= m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2]
L(u(t))− L(f(t)),

and so

L(u(t)) = L(p(t)) + L(f(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] . (3)

We set

uc(t) =
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ f(t).

Then uc(0) = u(0) = 0 and

L(uc(t)) =
L(f(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] . (4)

Hence we get

L(t2u′′
c (t) + atu

′
c(t) + buc(t)) = m2S2L(uc(t))

+ (4− a)msL(uc(t)) + (b− a+ 2)L(uc(t)) = L(f(t)).

Since L is one-to-one and linear, we deduce that

t2u
′′
c (t) + atu

′
c(t) + buc(t) = f(t).

Thus uc(t) is a solution of Euler-Cauchy differential equation (1).
Applying (6) and (7) and considering
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L

(
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

)

=
L(p(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] ,
we obtain

L(u(t))− L(uc(t))

= L

(
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

)
,

and consequently

u(t)− uc(t) =
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t).

In view of (1), it holds that |p(t)| ≤ εEα(t) and it follows from the convolution property
that

|u(t)− uc(t)| =

∣∣∣∣∣∣ 1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

∣∣∣∣∣∣ .
Taking

√(a− 2

m

)2
+
( b2

m2

)
= B, then

|u(t)− uc(t)| =
1

m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
4− a

2m
t
(
eBt − e−Bt

2

)
∗ p(t)

∣∣∣∣∣∣

=
1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣
(
e
−
(4− a

2m
−B
)
t
− e

−
(4− a

2m
+B
)
t

)
∗ p(t)

∣∣∣∣∣∣
=

1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣
∫ t

0

(
e
−
(4− a

2m
−B
)
(t−τ)

− e
−
(4− a

2m
+B
)
(t−τ)

)
p(τ)dτ

∣∣∣∣∣∣
≤ 1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
(4− a

2m
−B
)
t
∫ t

0
e

(4− a

2m
−B
)
τ
p(τ)dτ

∣∣∣∣∣∣
+

1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
(4− a

2m
+B
)
t
∫ t

0
e

(4− a

2m
+B
)
τ
p(τ)dτ

∣∣∣∣∣∣ .
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Hence |p(t)| ≤ |εEα(t)|, then

|u(t)− uc(t)| ≤
εEα(t)e

−
(4− a

2m
−B
)
t

2m
√
(a− 2)2 + b− a

∫ t

0
e

(4− a

2m
−B
)
τ
dτ

+
εEα(t)e

−
(4− a

2m
+B
)
t

2m
√

(a− 2)2 + b− a

∫ t

0
e

(4− a

2m
+B
)
τ
dτ

≤ KεEα(t),

where the integrals
∫ t
0 e

(4− a

2m
−B
)
τ
dτ,

∫ t
0 e

(4− a

2m
+B
)
τ
dτ exist. Then according to Def-

inition 3, the Euler-Cauchy differential equation (1) has the Mittag-Leffler-Hyers-Ulam
stability. □

3.2. Mittag-Leffler-Hyers-Ulam-Rassias Stability for the Nonhomogeneous Euler-
Cauchy Differential Equation.

Now, we come to prove the Mittag-Leffler-Hyers-Ulam-Rassias stability of the Euler-
Cauchy differential equation (1). Although the proof follows a similar way to that of
Theorem 1, but we include it for completeness.

Theorem 3.2. The Euler-Cauchy differential equation (1) has Mittag-Leffler-Hyers-Ulam-
Rassias stability.

Proof. Given ε > 0, we suppose that u(t) ∈ C2(0,∞) and a function φ(t) : (0,∞) → (0,∞)
satisfies

|t2u′′
(t) + aty

′
(t) + bu(t)− f(t)| ≤ φ(t)εEα(t), ∀t > 0. (5)

Then we aim to prove that there exists a real number K > 0 independent of ε and u(t)
such that

|u(t)− uc(t)| ≤ KφεEα(t),

for some uc(t) ∈ C2(0,∞) satisfies the Euler-Cauchy DE (1) for all t > 0.
Define a function p(t) : (0,∞) → E such that

p(t) =: t2u
′′
(t) + atu

′
(t) + bu(t)− f(t)

for all t > 0, Taking Laplace transform to p(t), then

L(p(t)) = S2 d2

ds2
L(u(t)) + (4− a)s

d

ds
L(u(t)) + (b− a+ 2)L(u(t))− L(f(t)),

Taking
d

ds
= m, then

L(p(t)) = m2S2L(u(t)) + (4− a)msL(u(t)) + (b− a+ 2)L(u(t))− L(f(t))
=
(
m2s2 + (4− a)ms+ (b− a+ 2)

)
L(u(t))− L(f(t))

= m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2]
L(u(t))− L(f(t)),

hence

L(u(t)) = L(p(t)) + L(f(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] . (6)
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Let us check that the solution changes continuously with change in data. So if we set

uc(t) =
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ f(t).

Then uc(0) = u(0) = 0 and

L(uc(t)) =
L(f(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] . (7)

Hence, we obtain

L(t2u′′
c (t) + atu

′
c(t) + buc(t)) = m2S2L(uc(t))

+ (4− a)msL(uc(t)) + (b− a+ 2)L(uc(t)) = L(f(t)).

Since the integral Laplace transform L is one-to-one operator, then

t2u
′′
c (t) + atu

′
c(t) + buc(t) = f(t).

Thus uc(t) is a solution of equation (1).
Applying (6) and (7) and considering

L

(
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

)

=
L(p(t))

m2

[(
s+

4− a

2m

)2

+
b− a

m2
−
(
a− 2

m

)2] ,
we have

L(u(t))− L(uc(t))

= L

(
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

)
.

Then

u(t)− uc(t) =
1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t).

Regard to equation (1), it holds that |p(t)| ≤ εφEα(t) and it follows from the definition of
the convolution that

|u(t)− uc(t)| =

∣∣∣∣∣∣ 1

m
√
(a− 2)2 + b− a

e
−
4− a

2m
t
sinh

√(a− 2

m

)2
+
( b2

m2

)
t ∗ p(t)

∣∣∣∣∣∣ .
Taking

√(a− 2

m

)2
+
( b2

m2

)
= B, then

|u(t)− uc(t)| =
1

m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
4− a

2m
t
(
eBt − e−Bt

2

)
∗ p(t)

∣∣∣∣∣∣
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=
1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣
(
e
−
(4− a

2m
−B
)
t
− e

−
(4− a

2m
+B
)
t

)
∗ p(t)

∣∣∣∣∣∣
=

1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣
∫ t

0

(
e
−
(4− a

2m
−B
)
(t−τ)

− e
−
(4− a

2m
+B
)
(t−τ)

)
p(τ)dτ

∣∣∣∣∣∣
≤ 1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
(4− a

2m
−B
)
t
∫ t

0
e

(4− a

2m
−B
)
τ
p(τ)dτ

∣∣∣∣∣∣
+

1

2m
√
(a− 2)2 + b− a

∣∣∣∣∣∣e−
(4− a

2m
+B
)
t
∫ t

0
e

(4− a

2m
+B
)
τ
p(τ)dτ

∣∣∣∣∣∣ .
Hence

|p(t)| ≤ |εφ(t)Eα(t)|,

|u(t)− uc(t)| ≤
εφ(t)Eα(t)e

−
(4− a

2m
−B
)
t

2m
√
(a− 2)2 + b− a

∫ t

0
e

(4− a

2m
−B
)
τ
dτ

+
εφ(t)Eα(t)e

−
(4− a

2m
+B
)
t

2m
√

(a− 2)2 + b− a

∫ t

0
e

(4− a

2m
+B
)
τ
dτ

≤ Kεφ(t)Eα(t),

where the integrals
∫ t
0 e

(4− a

2m
−B
)
τ
dτ,

∫ t
0 e

(4− a

2m
+B
)
τ
dτ exist. Then from Definition 4,

the nonhomogeneous Euler-Cauchy differential equation (1) has the Mittag-Leffler-Hyers-
Ulam-Rassias stability. □

3.3. Example. Mittag-Leffler-Hyers-Ulam stability of Sturm-Liouville equa-
tion.

Sturm and Liouville published numerous papers on second order linear differential equa-
tions between 1836 and 1837. Their articles had such a profound influence that this topic
evolved into Sturm-Liouville theory. Since then, many thousands of different papers have
been produced. Yet, surprisingly, there is a lot of study being done on this topic right
now. Every year, hundreds of articles on Sturm-Liouville problems are published. Our
primary interest in this section is to investigate the stability problem of Sturm-Liouville
equation. So we provide the following example as applied result to our research. In this
example we study the Mittag-Leffler-Hyers-Ulam stability of eigenvalue Sturm-Liouville
equation: (

x2y
′)′

+ λy = f(x), x ∈ (1, 2), (8)

where λ is its eigenvalue. The eigenvalues of Sturm-Liouville equation are thats values for
which the nonzero solution exists.
Equation (8) involves the following Euler-Cauchy equation:

x2y
′′
+ 2xy

′
+ λy = f(x), 1 < x < 2, (9)

baised on the above results, we can completely prove that the eigenvalue Sturm-Liouville
equation (9) is Mittag-Leffler-Hyers-Ulam stable and determined the necessary condition
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that eigenvalue Sturm-Liouville equation has no trivial solutions. If a twice continuously
differentiable function y : (0,∞) → E satisfies the inequality

|x2y′′
(x) + 2xy

′
(x) + λy(x)− f(x)| ≤ εEα(t), ∀ 1 < x < 2, (10)

for some ε > 0 and λ ̸= 2, then there exists a solution yc(x) : (0,∞) → E of the Euler-
Cauchy DE (9) such that

|y(x)− yc(x)| ≤
εEα(t)e

−
(1− λ

m

)
x

2m
√
λ− 2

∫ x

1
e

(1− λ

m

)
ξ
dξ

+
εEα(t)e

−
(1 + λ

m

)
x

2m
√
λ− 2

∫ x

1
e

(1 + λ

m

)
ξ
dξ.

Thus the integrals ∫ x

1
e

(1− λ

m

)
ξ
dξ,

∫ x

1
e

(1 + λ

m

)
ξ
dξ

exist.
Then

|y(x)− yc(x)| ≤ KεEα(t)

for all 1 < x < 2.

4. Conclusion

In this study, we developed the Laplace transform method as a new approach to inves-
tigate the Mittag-Leffler-Hyers-Ulam stability and the generalized Mittag-Leffler-Hyers-
Ulam stability of Euler-Cauchy differential equation (with variable coefficients). We
demonstrated the Mittag-Leffler-Hyers-Ulam stability of eigenvalue Sturm-liouville equa-
tion as an application.
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