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ON A COUPLED HYBRID SYSTEM OF ORDINARY SECOND-ORDER

NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

SH. M AL-ISSA1,2∗ , A. M. A. EL-SAYED3, H.H.G. HASHEM3, H. M. HARISI1, §

Abstract. In this work, the existence of solutions for coupled systems of ordinary
second-order hybrid functional differential blueequations (CSHDE) is concerned, due
to Dhage’s hybrid fixed point theorem. Continuous dependence of the solution of our
problem will be proven on delay functions. To demonstrate the produced outcome, an
example is provided.
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1. Introduction

The significance of the HDEs that appear in many dynamical systems is of special
attention. The treatment of Dhage’s research includes HDE [1], and it has been fully
addressed in numerous articles on hybrid differential equations of various perturbations
[2], [3], [4], [5], and [6], as well as references therein.

The original differential equations are perturbed in various ways in this class of HDE.
Many studies on the theory of HDE have been published, and we recommend the papers
[7, 8, 9, 10, 11, 12, 13]. The problem of the coupled hybrid fractional differential equations
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(CHFDE) was investigated by Hannabou et al [14].

CDα
( µ(t)
f1(t,µ(t),ν(t))

)
= ℏ1(t, µ(t), ν(t)), a.e., t ∈ [0, T ] 0 < α ≤ 1

CDβ
( ν(t)
f2(t,y(t),µ(t))

)
= ℏ2(t, ν(t), µ(t)), a.e., t ∈ [0, T ] 0 < β ≤ 1

a µ(0)
f1(0,µ(0),ν(0))

+ b µ(T )
f1(T,µ(T ),ν(T )) = c,

a µ(0)
f2(0,µ(0),ν(0))

+ b µ(T )
f2(T,µ(T ),ν(T )) = c,

where CDα and CDβ respectively indicate the fractional orders α and β of the Caputo
derivative.
The corresponding Dirichlet boundary value problem CHFDE was studied by Bashir et
al. [15]: 

cDδ
( µ(t)
f1(t,µ(t),ν(t))

)
= ℏ1(t, µ(t), ν(t)), 0 < t < 1 1 < α ≤ 2

cDω
( ν(t)
f2(t,ν(t),µ(t))

)
= ℏ2(t, ν(t), µ(t)), 0 < t < 1 1 < ω ≤ 2

µ(0) = µ(1) = 0, ν(0) = ν(1) = 0.

Dhage and et al. investigate the existence of coupled solutions to the nonhomogeneous
boundary value problem of coupled hybrid integro-differential equations of fractional order
in [16]. 

cDω
(x(t)−∑m

i=1 I
βihi(t,x(t),y(t))

f(t,x(t),y(t))

)
= ϕ(t, x(t), y(t)) a.e. t ∈ [0, 1],

cDδ
(x(t)−∑m

j=1 I
γikj(t,x(t),y(t))

g(t,x(t),y(t))

)
= ψ(t, y(t), x(t)) a.e. t ∈ [0, 1],

x(0) = a, x(1) = b, y(0) = c, y(1) = d,

(1)

We investigate the following initial value problem of coupled hybrid second-order dif-
ferential equations (CSHDE), which is driven by current research on coupled systems of
HDE. 

d2

dt2

(x(t)−h1(t,x(φ1(t)))
f1(t,x(φ2(t)))

)
= g1(t, x(t), y(φ3(t))), t ∈ J = [0, T ],

d2

dt2

(y(t)−h2(t,y(φ1(t)))
f2(t,y(φ2(t)))

)
= g2(t, y(t), x(φ3(t))), t ∈ J = [0, T ],

x(0) = h1(0, x(0)), y(0) = h2(0, y(0)) and

x′(0) = dh1
dt |t=0, y

′(0) = dh2
dt |t=0,

(2)

and establish the existence and uniqueness results where fi ∈ C(J × R,R \ {0}), gi ∈
C(J ×R×R,R), hi ∈ C(J ×R,R), (i = 1, 2), and φi ∈ C(J) with φj(0) = 0, (j = 1, 2, 3).
We define the solution of CSHDE (2) to be a pair of functions (x, y) ∈ C(J,R) × C(J,R)
satisfying

(i) the functions t → x(t)−h1(t,x(φ1(t)))
f1(t,x(φ2(t)))

and t → y(t)−h2(t,y(φ1(t)))
f2(t,y(φ2(t)))

, x, y ∈ C(J,R) are

continuous, and
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(ii) the system of equations in (2) is satisfied by (x, y).

To prove our result, we use the standard hybrid fixed point theory developed in [2]-[13].
The unique solution’s continuous dependency on the delay functions will be investigated.

The following is a breakdown of the paper’s structure: We’ll go through some helpful
hypotheses and preliminaries in Section 2. In Section 3, we show an additional Theorem
connected to the linear variation of the issue (2), and present sufficient criteria that verify
our main result for CSHDE (2). In Section 4, we show that solutions are continuously
dependent on delay functions, and an illustrated example will be provided to demonstrate
our findings.

2. Hypotheses and Auxiliary Results

Here, we present our fundamental result for CSHDE (2), which is based on Dhage’s
fixed point theorems [1]

Theorem 2.1. [1] Let S be a nonempty, closed convex and bounded subset of a Banach
algebra X and let A,C : X → X and B : S → X be three operators such that:

(a) A and C are Lipschitzian with Lipschitz constants δ and ρ, respectively,
(b) B is compact and continuous,
(c) x = AxBy + Cx⇒ x ∈ S, for all y ∈ S.
(d) δ M + ρ < r, for r > 0 where M = ∥B(S)∥.

Then the operator equation AxBx+ Cx = x has a solution in S.

Consider the following assumptions:

(A1) fi : J × R → R \ {0}, and hi : J × R → R, are continuous and there exist four
functions ki, Li ∈ C(J,R+), with norm ∥ki∥ and ∥Li∥, respectively (i = 1, 2), such
that

|hi(t, µ)− hi(t, ν)| ≤ ki(t)|µ− ν|,
|fi(t, µ)− fi(t, ν)| ≤ Li(t)|µ− ν|,

for all t ∈ J and µ, ν ∈ R with ∥k∥ = max{∥k1∥, ∥k2∥}, and ∥L∥ = max{∥L1∥, ∥L2∥}.
(A2) gi : J × R × R → R are continuous. There exist functions pi ∈ C(J,R+) and

four continuous nondecreasing functions Φi : [0,∞) → (0,∞), and Ψi : [0,∞) →
(0,∞), (i = 1, 2) with

|gi(t, µ, ν)| ≤ pi(t)Φi(|µ|)Ψi(|ν|), ∀ (t, µ, ν) ∈ J × R× R,

with ∥p∥ = max{∥p1∥, ∥p2∥}, Φ(r) = max{Φ1(|µ|)|,Φ2(|ν|)},
and Ψ(r) = max{Ψ1(|µ|)|,Ψ2(|ν|)}.

(A3) The functions φj : J → J, are continuous, with φj(0) = 0, j = 1, 2, 3.
(A4) There is a real number r > 0 for which

r ≥
2 F ∥p∥Φ(r)Ψ(r) T 2

2 +H1 +H2

1−
(
∥p∥Φ(r)Ψ(r) ∥L∥T 2

2 + ∥k∥
) , (3)

with Fi = sup
t∈J

|fi(t, 0)|, F = max{F1, F2}, Hi = supt∈J |hi(t, 0)|, (i = 1, 2), and

∥p∥Φ(r)Ψ(r)∥L∥T
2

2
+ ∥k∥ < 1. (4)

The following lemma is used in the proof of the main existence result.
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Lemma 2.1. Assume that hypotheses (A1) − (A4) holds. Then x ∈ C(J,R) is a solution
of the SHDE (5),

d2

dt2

(x(t)−h1(t,x(φ1(t)))
f1(t,x(φ2(t)))

)
= g1(t, x(t), y(φ3(t))) t ∈ J = [0, T ],

x(0) = h1(0, x(0)), and x′(0) = dh1
dt |t=0,

(5)

if and only if it is equivalent to the quadratic integral equation

x(t) = h1(t, x(φ1(t))) + f1(t, x(φ2(t)))

∫ t

0
(t− s)g1(s, x(s), y(φ3(s))) ds. (6)

Proof. First step, allowing x to be a solution of the SHDE (5), we obtain by integrating
from 0 to t, for two sides of (5)

d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

)
− d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

) ∣∣∣∣
t=0

=

∫ t

0
g1(s, x(s), y(φ3(s)))ds.

However, since f1(0, x(0)) ̸= 0 and φj(0) = 0, j = 1, 2, 3.

d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

) ∣∣∣∣
t=0

=
f1(0, x(0))

(
x′(0)− dh1

dt

∣∣
t=0

)
−
(
x(0)− h1(0, x(0))

)df1
dt

∣∣
t=0

f21 (0, x(0))
= 0.

Using the boundary conditions

x(0) = h1(0, x(0)),

x′(0) =
dh1
dt

∣∣
t=0

.

Hence, we obtain

d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

)
=

∫ t

0
g1(s, x(s), y(φ3(s))) ds. (7)

When we integrate two sides of (7) from 0 to t, we get

x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))
− x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

∣∣∣∣
t=0

=

∫ t

0
(t− s)g1(s, x(s), y(φ3(s)))ds,

(8)

as well as
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

∣∣∣∣
t=0

=
x(0)− h1(0, x(0))

f1(0, x(0))
= 0.

As a result, eq.(8) yields

x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))
=

∫ t

0
(t− s) g1(s, x(s), y(φ3(s))) ds,

i.e.,

x(t) = h1(t, x(φ1(t))) + f1(t, x(φ2(t)))

∫ t

0
(t− s) g1(s, x(s), y(φ3(s))) ds.

Thus, eq.(6) holds.
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Conversely, assume, on the other hand, that x fulfills eq.(6). Then, for both sides of
eq.(6), we divide by f1(t, x(φ2(t))) and make direct differentiation.

d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

)
=

∫ t

0
g1(s, x(s), y(φ3(s))) ds.

Therefore equation (5) can be verified by direct differentiation.

d2

dt2

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

)
= g1(t, x(t), y(φ3(t))).

Thus, inserting t = 0 in equation (6), gives

x(0)− h1(0, x(0))

f1(0, x(0))
→ 0 as t→ 0,

therefore x(0) = h1(0, x(0)), and

d

dt

(
x(t)− h1(t, x(φ1(t)))

f1(t, x(φ2(t)))

) ∣∣∣∣
t=0

= 0

f1(t, x(φ2(t)))(x
′(t)− dh1

dt )− (x(t)− h1(t, x(t)))
df1
dt

f21 (t, x(φ2(t)))

∣∣∣
t=0

= 0

f1(0, x(0))
(
x′(0)− dh1

dt
|t=0

)
−
(
x(0)− h1(0, x(0))

)df1
dt

∣∣∣∣
t=0

= 0.

As we established that x(0) = h1(0, x(0)), we may deduce that x′(0) = dh1
dt |t=0. □

2.1. Existence of solution.

Theorem 2.2. Assume that the hypotheses (A1) − (A4) holds. Then the coupled system
(2) has at least one solution defined on J × J .

Proof. In view of Lemma 2.1, the solutions of the CSHDE (2)

x(t) = h1(t, x(φ1(t))) + f1(t, x(φ2(t)))

∫ t

0
(t− s) g1(s, x(s), y(φ3(s))) ds, (9)

y(t) = h2(t, y(φ1(t))) + f2(t, y(φ2(t)))

∫ t

0
(t− s) g2(s, y(s), x(φ3(s))) ds. (10)

Construct a subset S = (S1, S2) of the Banach space E = C(J,R)× C(J,R) by
S := {(x, y) ∈ E, ∥(x, y)∥ ≤ r},

where r satisfies the inequality given in (3).
Obviously, S is bounded convex, and a closed subset of the Banach space E. In con-

junction with the functions fi, gi and hi, (i = 1, 2), we introduce the three operators
A = (A1, A2) : E → E, C = (C1, C2) : E → E and B = (B1, B2) : S → E defined by

A(x, y) = (A1x,A2y) =
(
f1(t, x(φ2(t))), f2(t, y(φ2(t)))

)
,

B(x, y) = (B1x,B2y)

=

(∫ t

0
(t− s) g1(s, x(s), y(φ3(s)))ds,

∫ t

0
(t− s) g2(s, y(s), x(φ3(s)))ds

)
,

C(x, y) = (C1x,C2y) =
(
h1(t, x(φ1(t))), h2(t, y(φ1(t)))

)
.

The coupled system of functional integral equations (9) and (10) can thus be expressed as
a system of operator equations, as shown below

A(x, y)(t) ·B(x, y)(t) + C(x, y)(t) = (x, y)(t), t ∈ J, (11)
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In addition, due to the multiplication of two components in E gives(
A1x(t) ·B1y(t) + C1x(t), A2y(t) ·B2x(t) + C2y(t)

)
= (x, y)(t), t ∈ J. (12)

Furthermore, this indicates that
A1x(t) ·B1x(t) + C1x(t) = x(t), t ∈ J,

A2y(t) ·B2y(t) + C2y(t) = y(t), t ∈ J.

(13)

We shall demonstrate that A, B and C meet all requirements of B.C. Dhage fixed-point
Theorem [17]. This will be accomplished in the steps that follow.

Step 1. We shall demonstrate that A = (A1, A2) and C = (C1, C2) are Lipschitzian
on E. So, we shall demonstrate that Ai, Ci are lipschitzian on C(J,R), i = 1, 2. Let
x, y ∈ C(J,R). Then by (A1), we have

|Aix(t)−Aiy(t)| = |fi(t, x(φ2(t)))− fi(t, y(φ2(t)))|
≤ Li(t) |x(φ2(t))− y(φ2(t))| ≤ ∥Li∥ ∥x− y∥.

As a result, for any t ∈ J . If we take the supremum over t, we get

∥Aix−Aiy∥ ≤ ∥Li∥ ∥x− y∥.

Therefore, Ai is a Lipschitzian on X with Lipschitz constant ∥Li∥ .
Similarly, for any x, y ∈ C(J,R), we get

|Cix(t)− Ciy(t)| = |hi(t, x(φ1(t)))− hi(t, y(φ1(t)))|
≤ ki(t)|x(φ1(t))− y(φ1(t))| ≤ ∥ki∥ ∥x− y∥.

As a result, for any t ∈ J . If we take the supremum over t, we get

∥Cix− Ciy∥ ≤ ∥ki∥ ∥x− y∥.

This demonstrates that Ci is a Lipschitz mapping on X with the Lipschitz constant ∥ki∥,
which yields, for all u = (x, y), v = (x̄, ȳ) ∈ E, the operator A is defined as follows:

Au−Av = A(x, y)−A(x̄, ȳ)

= (A1x,A2y)− (A1x̄, A2ȳ)

= (A1x−A1x̄ , A2y −A2ȳ),

then

∥Au−Av∥ = ∥(A1x−A1x̄, A2y −A2ȳ)∥
≤ ∥A1x−A1x̄∥+ ∥A2y −A2ȳ)∥
≤ ∥L1∥ ∥x− x̄∥+ ∥L2∥ ∥y − ȳ∥
≤ ∥L∥ ∥x− x̄∥+ ∥L∥ ∥y − ȳ∥
≤ ∥L∥

(
∥x− x̄∥+ ∥y − ȳ∥

)
≤ ∥L∥ ∥u− v∥,

which shows that A is Lipschitzian, as shown by the Lipschitz constant ∥L∥. Likewise, we
have C is Lipschitzian with Lipschitz constant ∥k∥ as well.

Step 2.To show that B = (B1, B2) is completely continuous operator on S into E.
We begin by demonstrating that B is continuous on E. Assume that the sequence of
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points (xn, yn) in S converging to a point (x, y) ∈ E which satisfies {(xn, yn)} → (x, y) as
n→ ∞. Then, by Lebesgue dominated convergence theorem, we get

lim
n→∞

B1xn(t) = lim
n→∞

∫ t

0
(t− s) g1(s, xn(s), y(φ3(s)) ds

=

∫ t

0
(t− s) g1(s, x(s), y(φ3(s)) ds

= B1x(t).

As a result, the operator B1 is a continuous one. B2 can also be checked regularly.

lim
n→∞

B2yn(t) = B2y(t).

Hence

lim
n→∞

Bun(t) = ( lim
n→∞

B1xn, lim
n→∞

B2yn)

= (B1x(t), B2y(t))

= B(x, y)

= Bu(t).

Thus, Bun → Bu as n→ ∞ uniformly on R+. As a result, B on S into S is a continuous
operator. We can now prove that B is a compact operator on S. It is sufficient to
demonstrate that B(S) is a uniformly bounded and equi-continuous set in E. Allow
(x, y) ∈ S be arbitrary to demonstrate this. Then by hypothesis (A2),

|B1x(t)| ≤
∫ t

0
(t− s) |g1(s, x(s), y(φ3(s))|ds

≤
∫ t

0
(t− s) p1(t) Φ1(|x|) Ψ1(|y|)]ds

≤ ∥p1∥ Φ1(|x|) Ψ1(|y|)
∫ t

0
(t− s)ds

≤ ∥p∥ Φ(r) Ψ(r)
T 2

2
.

If we take the supremum over t ∈ J , we get

∥B1x(t)∥ ≤ |p∥ Φ(r) Ψ(r)
T 2

2
,

for all x ∈ S. This demonstrates that B1 is uniformly bounded on S.
In the same way, one can find that

∥B2y(t)∥ ≤ ∥p∥ Φ(r) Ψ(r)
T 2

2
.

We get, for u = (x, y) ∈ S

∥Bu∥ = ∥B(x, y)∥ = ∥(B1x,B2y)∥
= ∥B1y∥+ ∥B2x∥

≤ 2 ∥p∥ Φ(r) Ψ(r)
T 2

2
,

for all u ∈ S, it follows that B is uniformly bounded on S.
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Following that, we demonstrate that B(S) is equi-continuous sequence of functions in
E. If we choose t1, t2 ∈ J with t1 < t2 and u = (x, y) ∈ S, then we have

(B1x)(t2)− (B1x)(t1)

≤
∫ t2

0
(t2 − s)g1(s, x(s), y(φ3(s)))ds−

∫ t1

0
(t1 − s)g1(s, x(s), y(φ3(s)))ds

≤
∫ t1

0
(t2 − s)g1(s, x(s), y(φ3(s)))ds+

∫ t2

t1

(t2 − s)g1(s, x(s), y(φ3(s)))ds

−
∫ t1

0
(t1 − s)g1(s, x(s), y(φ3(s)))ds

≤
∫ t1

0
[(t2 − s)− (t1 − s)]g1(s, x(s), y(φ3(s)))ds+

∫ t2

t1

(t2 − s)g1(s, x(s), y(φ3(s)))ds,

and

|(B1x)(t2)− (B1x)(t1)|

≤
∫ t1

0
(t2 − t1)|g1(s, x(s), y(φ3(s)))|ds+

∫ t2

t1

(t2 − s)|g1(s, x(s), y(φ3(s)))|ds

≤
∫ t1

0
(t2 − t1) p1(t) Φ1(|x|) Ψ1(|y|)ds+

∫ t2

t1

(t2 − s) p1(t) Φ1(|x|) Ψ1(|y|)ds

≤ ∥p1∥ Φ(r) Ψ(r)
[
T (t2 − t1) +

∫ t2

t1

(t2 − s) ds
]

≤ ∥p1∥ Φ(r) Ψ(r)
[
T (t2 − t1) +

(t2 − t1)
2

2

]
.

i.e.,

|(B1x)(t2)− (B1x)(t1)| ≤ ∥p1∥ Φ(r) Ψ(r)[T (t2 − t1) +
(t2 − t1)

2

2
],

which is independent of y. Then, for ϵ1 > 0, there exists a δ1 > 0, with

|t2 − t1| < δ1 =⇒ |(B1x)(t2)− (B1x)(t1)| < ϵ1.

In a similar manner, one can get that for ϵ2 > 0, there exists a δ2 > 0, with

|t2 − t1| < δ2 =⇒ |(B2y)(t2)− (B2y)(t1)| < ϵ2.

Thus, for ϵ > 0, there exists a δ > 0, with

|t2 − t1| < δ =⇒ |Bu(t2)−Bu(t1)| < ϵ.

Let t2, t1 ∈ J and for all u ∈ S. This demonstrates that B(S) is an equi-continuous set in
E.

Now, since the set B(S) is a uniformly bounded and equi-continuous set in E, Arzela-
Ascoli Theorem states that it is compact. B is thus a complete continuous operator on
S.

Step 3. The last condition of Dhage fixed-point Theorem [17] is fulfilled. Assume for
u ∈ E,

u = (x, y) = (A1xB1x+ C1x,A2yB2y + C2y).
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Let x ∈ C(J,R) and y ∈ S∈ be two arbitrary values using the formula
x = A1xB1x+ C1x. Next, we get

|x(t)| ≤ |A1x(t)||B1x(t)|+ |C1x(t)|

≤ |f1(t, x(φ2(t)))|
∫ t

0
(t− s) |g1(s, x(s), y(φ3(s)))|ds+ |h1(t, x(φ1(t)))|

≤ (|f1(t, x(φ2(t)))− f1(t, 0)|+ |f1(t, 0)|)
∫ t

0
(t− s) p1(t) Φ1(|x|) Ψ1(|y|)ds

+ (|h1(t, x(φ1(t)))− h1(t, 0)|+ |h1(t, 0)|)

≤ (∥L1∥|x(φ2(t))|+ F1) ∥p1∥Φ1(|x|)Ψ1(|y|)
∫ t

0
(t− s) ds+ ∥k1∥|x(φ1(t))|+H1

≤ (∥L1∥ ∥x∥ + F1) ∥p1∥ Φ(r) Ψ(r)
T 2

2
+ ∥k1∥ ∥x∥ +H1.

Consequently,

|x(t)| ≤ (∥L∥ ∥x∥+ F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥x∥+H1.

If we take the supremum over t ∈ J , we get

∥x∥ ≤ (∥L∥ ∥x∥+ F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥x∥+H1. (14)

Likewise, using similar reasoning, if we let y ∈ C(J,R) and x ∈ S1 be random components
in the sense that y = A2y B2y + C2y. After that, we get

|y(t)| ≤ (∥L2∥ ∥y∥ + F2) ∥p2∥ Φ(r) Ψ(r)
T 2

2
+ ∥k2∥ ∥y∥ +H2.

Consequently,

|y(t)| ≤ (∥L∥ ∥y∥ + F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥y∥ +H2.

If we take the supremum over t ∈ J , we get

∥y∥ ≤ (∥L∥ ∥y∥ + F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥y∥ +H2. (15)

By condition (c), we can deduce that u = (x, y) ∈ S.
Adding the inequalities (14) and (15), we get

∥x∥+ ∥y∥

≤ (∥L∥ ∥x∥+ F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥x∥+H1

+ (∥L∥ ∥y∥ + F ) ∥p∥ Φ(r) Ψ(r)
T 2

2
+ ∥k∥ ∥y∥ +H2

≤
(
∥p∥ Φ(r) Ψ(r)∥L∥T

2

2
+ ∥k∥

)
[∥x∥+ ∥y∥] +

(
2 F ∥p∥ Φ(r) Ψ(r)

)T 2

2
+H1 +H2.

As ∥(x, y)∥ = ∥x∥+ ∥y∥, we have that ∥(x, y)∥ ≤ r.
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Step 4. Lastly, we demonstrate that δM + ρ < 1,

M = ∥B(S)∥
= sup {∥B(x, y)∥ : (x, y) ∈ S}
= sup {∥B1(x)∥+ ∥B2(y)∥ : (x, y) ∈ S}

≤ 2 ∥p∥ Φ(r) Ψ(r)
T 2

2
,

as well as (A4) we get

∥L∥ M

2
+ ∥k∥ < 1,

with δ = ∥L∥
2 and ρ = ∥k∥.

As a result, all requirements of Dhage fixed-point Theorem [17] are fulfilled. As a con-
sequence, the operator equation (x, y) = A(x, y)B(x, y) + C(x, y) has a solution in S.
Therefore, a CSHDE (2) has a solution defined on J × J . □

3. Particular cases, and example

As specific cases, we can derive existence results for certain CSHDE (when hi = 0, fi =
1, i = 1, 2 )

• Taking gi(t, x, y) = −λ2x(t), λ ∈ R+, then we obtain a system of simple harmonic
oscillators 

d2x(t)
dt2

= −λ2x(t) t ∈ J,

d2y(t)
dt2

= −λ2y(t) t ∈ J,

x(0) = 0, y(0) = 0 and

x′(0) = 0, y′(0) = 0.

(16)

• Taking gi(t, x, y) =
(
t2−k
t2

)
x+qi(y), k ∈ R where qi(y) are continuous functions,

then we obtain a coupled system of Riccati differential equations



t2 d
2x(t)
dt2

− (t2 − k)x(t) = t2q1(y(φ3(t))) t ∈ J,

t2 d
2y(t)
dt2

− (t2 − k)y(t) = t2q2(x(φ3(t))) t ∈ J,

x(0) = 0, y(0) = 0 and

x′(0) = 0, y′(0) = 0,

(17)

• Taking gi(t, x, y) = −(t2 − 2lt− k)x+ qi(y), k ∈ R where qi(y) are continuous
functions and l is fixed, then we obtain a coupled system of Coulomb wave dif-
ferential equations
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d2x(t)
dt2

+ (t2 − 2lt− k)x = q1(y(φ3(t))) t ∈ J = [0, T ],

d2y(t)
dt2

+ (t2 − 2lt− k)y = q2(x(φ3(t))) t ∈ J,

x(0) = 0, y(0) = 0 and

x′(0) = 0, y′(0) = 0.

(18)

• Taking gi(t, x, y) =
(
−8π2m

ℏ2

)
(Ex − kt2

2 x) + qi(y), k ∈ R where qi(y) are con-

tinuous functions and ℏ is the Planket’s constant and E, k are positive real
numbers, then we obtain a coupled system of Schrödinger wave differential equa-
tions for simple harmonic oscillators



d2x(t)
dt2

=
(
−8π2m

ℏ2

)
(Ex(t)− kt2

2 x(t)) + q1(y(φ3(t))) t ∈ J = [0, T ],

d2y(t)
dt2

=
(
−8π2m

ℏ2

)
(Ey(t)− kt2

2 y(t)) + q2(x(φ3(t))) t ∈ J,

x(0) = 0, y(0) = 0 and

x′(0) = 0, y′(0) = 0.

(19)

Remark:
The existence results for the coupled system (2) can be proved, if we relax assumption
(A2) and replace (A2) and (A4) by the conditions that follow

(A′
2) g : J × R× R → R, fulfills Carathéodory requirement i.e., g is measurable in t for

any (µ, ν) ∈ R× R and continuous in µ, ν for almost all t ∈ J .
Functions t→ a(t) , t→ b1(t), b2(t) are exists with

|g(t, µ, ν)| ≤ a(t) + b1(t)|µ|+ b2(t)|ν|, ∀ (t, µ, ν) ∈ J × R× R,

(A′
4) There is a number r > 0 for which

r ≤ ||L||.||a||T 2 +G||b||T 2 + ||k||
2||b1||.||L||T 2 + 2||b2||.||L||T 2

, (20)

where G = supt∈J |f(t, 0)|, and (||L||||a||+G||b1||++G||b2||)T 2 + ||k|| < 1.
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Example:
Consider CSHDE that follows:

d2

dt2

(
x(t)− cosπt+2t2

1+5t2
|x(t)|(

|x(t)|+1
|x(t)|+2

)
7+ln(t+1)

2
√

25+t2
+ 2−t

10

)
= (t−1)2+3

70(13−t2)
(7|x(t)|+ 15)(|y(t)|+ 1), t ∈ J = [0, 1],

d2

dt2

x(t)− 3(cosπt+2t)

5(2+10t)2

(
x2(t)+5|x(t)|

|x(t)|+3

)
t

2(50+t)

(
|x(t)|+tan−1 x(t)

)
t+1
3

 = (x+1)(y+1)e−(|x|+|y|) sin2 t
5+2t+t2

, t ∈ J = [0, 1],

x(0) = h1(0, x(0)), y(0) = h2(0, y(0)) and

x′(0) = dh1
dt |t=0, y

′(0) = dh2
dt |t=0,

(21)

where

f1(t, x(t)) =

(
|x(t)|+ 1

|x(t)|+ 2

)
7 + ln(t+ 1)

2
√
25 + t2

+
2− t

10
,

f2(t, x(t)) =
t

2(50 + t)

(
|x(t)|+ tan−1 x(t)

) t+ 1

3
.

Take x, y ∈ R and t ∈ J , then

|f1(t, x(t))− f1(t, y(t))| ≤
(
7 + ln(t+ 1)

2
√
25 + t2

)
|x− y|,

|f2(t, x(t))− f2(t, y(t))| ≤
t

50 + t
|x− y|,

h1(t, x(t)) =
cosπt+ 2t2

1 + 5t2
|x(t)|, h2(t, x(t)) =

(cosπt+ 11t)

(2 + 10t)2
|x(t)|,

|h1(t, x(t))−h1(t, y(t))| ≤
(
1 + 2t2

1 + 5t2

)
|x−y|, |h2(t, x(t))−h2(t, y(t))| ≤

(
1 + 2t

(2 + 10t)2

)
|x−y|,

and

|g1(t, x(t))| =
∣∣((t− 1)2 + 3) cos2 t

35(13− t2)
(7|x(t)|+ 15)

∣∣ ≤ ((t− 1)2 + 3

13− t2

)(
|x|
5

+
3

7

)
,

|g2(t, x(t))| =
∣∣(x+ 1)e−|x| sin2 t

5 + 2t+ t2
∣∣ ≤ |x|+ 1

5 + 2t+ t2
.

We conclude that

p1(t) =
(t−1)2+3
13−t2

, Ψ1(x) =
|x|
5 + 3

7 , and Φ1(y) =
|y|
2 + 1

2 .

p2(t) =
1

5+2t+t2
, Ψ2(|x|) = (|x|+ 1)e−x, and Φ2(|y|) = (|y|+ 1)e−y.

We can readily confirm this. x(0) = hi(0, x(0)), x
′(0) = dhi

dt |t=0, i = 1, 2.
||k1|| = 1/2, ||k2|| = 1/12, ||p1|| = 4/13 and ∥p2∥ = 1/5, , ∥L1∥ = 7/10 ,∥L2∥ = 1/51 and
F1 = 0.9, F2 = 2/3, H1 = 1, H2 = 0.252

For condition ∥L∥∥p∥Φ(r)Ψ(r)T
2

2 + ∥k∥ = 0.7149 < 1 is hold, r should be taken
1.2987 < r.
Furthermore, all additional criteria for Theorem 2.2 can be simply checked. According to
Theorem 2.2, the a solution of CSHDE 2.2 exist.
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4. Continuous dependence

4.1. Uniqueness of the solution. Take into account the following hypotheses

(A∗
2) gi : J × R → R, i = 1, 2., functions that are continuous fulfilling the Lipschitz

criterion, there exists functions mi ∈ C(J,R+) with ∥mi∥ = supt∈J |mi(t)| such
that

|gi(t, µ1, ν1)− gi(t, µ2, ν2)| ≤ mi(t)(|µ1 − µ2|+ |ν1 − ν2|),

where G0i = supt∈J |gi(t, 0, 0)|,
with G0 = max{G01, G02} and ∥m∥ = max{∥m1∥, ∥m2∥}.

Theorem 4.1. Assume that Theorem 2.2 is valid, with Change hypotheses (A2) by (A∗
2).

If

∥k∥ +

[
2 ∥L∥ ∥m∥ r + ∥L∥G0 + ∥m∥ F

]
T 2

2
< 1,

then the solution of CSHDE (2) unique. .

Proof. Let u1 = (x1, y1) and u2 = (x2, y2) be two solutions of CSHDE (2). Then for t ∈ J ,
we get

|x1(t)− x2(t)|

≤ |h1(t, x1(φ1(t)))− h1(t, x2(φ1(t)))|+ |f1(t, x1(φ2(t)))

∫ t

0
(t− s)g1(s, x1(s), y1(φ3(s)))ds

− f1(t, x2(φ2(t)))

∫ t

0
(t− s)g1(s, x2(s), y2(φ3(s)))ds|

≤ k1(t)|x1(φ1(t))− x2(φ1(t))|

+ |f1(t, x1(φ2(t)))− f1(t, x2(φ2(t)))|
∫ t

0
(t− s)|g1(s, x1(s), y1(φ3(s)))| ds

+ |f1(t, x1(φ2(t)))|
∫ t

0
(t− s)|g1(s, x1(s), y1(φ3(s)))− g1(s, x2(s), y2(φ3(s)))| ds

≤ k1(t)|x1(φ1(t))− x2(φ1(t))|

+ L1(t)|x1(φ2(t))− x2(φ2(t))|
∫ t

0
(t− s)|g1(s, x1(s), y1(φ3(s)))|ds

+ |f1(t, x1(φ2(t)))|
∫ t

0
(t− s) m1(t) [|x1(s)− x2(s)|+ |y1(φ3(s))− y2(φ3(s))|] ds

≤ |k1(t)| |x1(φ1(t))− x2(φ1(t))|

+ |L1(t)|x1(φ2(t))− x2(φ2(t))|
∫ t

0
(t− s)[|g1(s, x1(s), y1(φ3(s)))− g1(s, 0, 0)|

+ |g1(s, 0, 0)|] ds+ |f1(t, x1(φ2(t)))− f1(t, 0)|

+ |f1(t, 0)| |m1(t)|
∫ t

0
(t− s)[|x1(s)− x2(s)|+ |y1(φ3(s))− y2(φ3(s))|]ds
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≤ |k1(t)| |x1(φ1(t))− x2(φ1(t))|

+ |L1(t)|x1(φ2(t))− x2(φ2(t))|
∫ t

0
(t− s)

(
|m1(t)|[|x1(s)|+ |y1(φ3(s))|] + |g1(s, 0)|

)
ds

+ (|L1(t)||x1(φ2(t))|+ |f1(t, 0)|)|m1(t)|

×
∫ t

0
(t− s)[|x1(s)− x2(s)|+ |y1(φ3(s))− y2(φ3(s))|]ds.

If we take the supremum over t ∈ J , we get

∥x1 − x2∥ ≤ ∥k1∥ ∥x1 − x2∥+ ∥L1∥ ∥x1 − x2∥ (∥m1∥ [∥x1∥+ ∥y1∥] +G01)

∫ t

0
(t− s) ds

+ (∥L1∥ ∥x1∥+ F1) ∥m1∥ [∥x1 − x2∥+ ∥y1 − y2∥]
∫ t

0
(t− s) ds

∥x1 − x2∥ ≤ ∥k1∥ ∥x1 − x2∥+
[
∥L1∥ ∥x1 − x2∥ (∥m1∥ [∥x1∥+ ∥y1∥] +G01)

]
T 2

2

+

[
(∥L1∥ ∥x1∥+ F1) ∥m1∥ [∥x1 − x2∥+ ∥y1 − y2∥]

]
T 2

2
.

In a similar manner, one can derive that

∥y1 − y2∥ ≤ ∥k2∥ ∥y1 − y2∥+
[
∥L2∥ ∥y1 − y2∥ (∥m2∥ [∥x1∥+ ∥y1∥] +G02)

]
T 2

2

+

[
(∥L2∥ ∥y1∥+ F2) ∥m2∥ [∥x1 − x2∥+ ∥y1 − y2∥]

]
T 2

2
.

Now, consider

∥u1 − u2∥
= ∥(x1, y1)− (x2, y2)∥ = ∥x1 − x2∥+ ∥y1 − y2∥

≤ ∥k1∥ ∥x1 − x2∥+
[
∥L1∥ ∥x1 − x2∥ (∥m1∥ [∥x1∥+ ∥y1∥] +G01)

]
T 2

2

+

[
(∥L1∥ ∥x1∥+ F1) ∥m1∥ [∥x1 − x2∥+ ∥y1 − y2∥]

]
T 2

2

+ ∥k2∥ ∥y1 − y2∥+
[
∥L2∥ ∥y1 − y2∥ (∥m2∥ [∥x1∥+ ∥y1∥] +G01)

]
T 2

2

+

[
(∥L2∥ ∥y1∥+ F2) ∥m2∥ [∥x1 − x2∥+ ∥y1 − y2∥]

]
T 2

2

≤ ∥k∥ [∥x1 − x2∥+ ∥y1 − y2∥] +
[
∥L∥ (∥m∥ ∥u1∥+G0)

]
T 2

2
[∥x1 − x2∥+ ∥y1 − y2∥]

+

[
(∥L∥ ∥u1∥+ F ) ∥m∥

]
T 2

2
[∥x1 − x2∥+ ∥y1 − y2∥]

≤
(

∥k∥ +

[
∥L∥ (∥m∥ r +G0)

]
T 2

2
+

[
(∥L∥ r + F ) ∥m∥

]
T 2

2

)
[∥x1 − x2∥+ ∥y1 − y2∥],
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we have

∥u1 − u2∥ ≤
(

∥k∥ +

[
2 ∥L∥ ∥m∥ r + ∥L∥G0 + ∥m∥ F

]
T 2

2

)
∥u1 − u2∥.

Then (
1−

(
∥k∥ +

[
2 ∥L∥ ∥m∥ r + ∥L∥G0 + ∥m∥ F

]
T 2

2

))
∥u1 − u2∥ ≤ 0,

as well as that
∥u1 − u2∥ = 0 =⇒ u1 = u2

□

4.2. Continuous dependence on the delay functions. We now demonstrate that
solution for coupled system (2) is continuously dependent on φi(t)

Definition 4.1. The solution of the initial value problem (2) depends continuously on the
delay functions φi(t) if ∀ ϵ > 0, ∃ δ > 0, such that

|φi(t)− φ∗
i (t)| ≤ δ =⇒ ||u− u∗|| ≤ ϵ.

Theorem 4.2. Assume that assumptions for Theorem 4.1 hold, The CSHDE (2) solution
is then continuously dependent

on φi(t).

Proof. Let u = (x, y), u∗ = (x∗, y∗) is being solutions of CSHDE (2). Then
for given δ > 0 with |φi(t)− φ∗

i (t)| ≤ δ, ∀ t ≥ 0, we get

|x(t)− x∗(t)|
≤ |h1(t, x(φ1(t)))− h1(t, x

∗(φ∗
1(t)))|

+ |f1(t, x(φ2(t)))

∫ t

0
(t− s)g1(s, x(s), y(φ3(s)))ds

− f1(t, x
∗(φ2(t)))

∫ t

0
(t− s)g1(s, x

∗(s), y∗(φ3(s)))ds|

≤ |h1(t, x(φ1(t)))− h1(t, x
∗(φ∗

1(t)))|

+ |f1(t, x(φ2(t)))

∫ t

0
(t− s)g1(s, x(s), y(φ3(s)))ds

− f1(t, x
∗(φ2(t)))

∫ t

0
(t− s)g1(s, x(s), y(φ3(s)))ds|

+ |f1(t, x∗(φ2(t)))

∫ t

0
(t− s)g1(s, x(s), y(φ3(s)))ds

− f1(t, x
∗(φ2(t)))

∫ t

0
(t− s)g1(s, x

∗(s), y∗(φ3(s)))ds|

≤ |h1(t, x(φ1(t))) − h1(t, x
∗(φ∗

1(t)))|

+ |f1(t, x(φ2(t)))− f1(t, x
∗(φ2(t)))|

∫ t

0
(t− s)|g1(s, x(s), y(φ3(s)))| ds

+ |f1(t, x∗(φ2(t)))|
∫ t

0
(t− s)[g1(s, x(s), y(φ3(s)))− g1(s, x

∗(s), y∗(φ3(s)))] ds
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≤ k1(t)|x(φ1(t)) − x∗(φ∗
1(t))|

+ L1(t)|x(φ2(t))− x∗(φ2(t))|
∫ t

0
(t− s)[ G01 +m1(s)(|x(s)|+ |y(φ3(s))|)] ds

+ (|L1(t)||x∗(φ2(t))|+ F1)

∫ t

0
(t− s) m1(s)[|x(s) − x∗(s)|+ |y(φ3(s))− y∗(φ3(s))|] ds

≤ k1(t)|x(φ1(t)) − x∗(φ1(t)) + x∗(φ1(t)) − x∗(φ∗
1(t))|

+ L1(t)|x(φ2(t))− x∗(φ2(t))|[ G01 + ∥m1∥(∥x∥+ ∥y∥)]
∫ t

0
(t− s) ds

+ (∥L1∥∥x∗∥+ F1)

∫ t

0
(t− s)|m1(s)|[|x(s) − x∗(s)|+ |y(φ3(s))− y∗(φ3(s))|] ds

≤ ∥k1∥[|x(φ1(t)) − x∗(φ1(t))|+ |x∗(φ1(t)) − x∗(φ∗
1(t))|]

+ ∥L1∥|x(φ2(t))− x∗(φ2(t))| [ G01 + ∥m1∥(∥x∥+ ∥y∥)]T
2

2

+ (∥L1∥∥x∗∥+ F1)∥m1∥
∫ t

0
(t− s)[|x(s) − x∗(s)|+ |y(φ3(s))− y∗(φ3(s))|]ds.

If we take the supremum over t ∈ J , we get

∥x− x∗∥ ≤ ∥k∥[∥x− x∗∥+ |x∗(φ1(t))− x∗(φ∗
1(t))|]

+ ∥L∥∥x− x∗∥[ G0 + ∥m∥(∥x∥+ ∥y∥)]T
2

2

+ (∥L∥∥x∗∥+ F )∥m∥[∥x− x∗∥+ ∥y − y∗∥]T
2

2
.

In a similar manner, one can drive that

∥y − y∗∥ ≤ ∥k∥[∥y − y∗∥+ |y∗(φ1(t))− y∗(φ∗
1(t))|]

+ ∥L∥∥y − y∗∥[ G0 + ∥m∥∥x∥]T
2

2
+ (∥L∥∥y∗∥+ F )∥m∥∥x− x∗∥T

2

2
.

Hence

∥u− u∗∥ = ∥x− x∗∥+ ∥y − y∗∥
≤ ∥k∥

[
∥x− x∗∥+ ∥y − y∗∥+ |x∗(φ1(t))− x∗(φ∗

1(t))|+ |y∗(φ1(t))− y∗(φ∗
1(t))|

]
+ ∥L∥

[
∥x− x∗∥+ ∥y − y∗∥

]
[ G0 + ∥m∥[∥x∥+ ∥y∥]T

2

2

+ (∥L∥[∥x∗∥+ ∥y∗∥] + F )∥m∥
[
∥x− x∗∥+ ∥y − y∗∥T

2

2
≤ ∥k∥

[
∥u− u∗∥+ |x∗(φ1(t))− x∗(φ∗

1(t))|+ |y∗(φ1(t))− y∗(φ∗
1(t))|

]
+ ∥L∥∥u− u∗∥[ G0 + ∥m∥∥u∥]T

2

2
+ (∥L∥∥u∗∥+ F )∥m∥∥u− u∗∥T

2

2
≤ ∥k∥

[
∥u− u∗∥+ |x∗(φ1(t))− x∗(φ∗

1(t))|+ |y∗(φ1(t))− y∗(φ∗
1(t))|

]
+ ∥L∥∥u− u∗∥[ G0 + ∥m∥r]T

2

2
+ (∥L∥r + F )∥m∥∥u− u∗∥T

2

2

≤
[
∥k∥+

(
∥L∥G0 + F∥m∥+ 2∥L∥∥m∥

)T 2

2

]
∥u− u∗∥

+ ∥k∥|x∗(φ1(t))− x∗(φ∗
1(t))|+ |y∗(φ1(t))− y∗(φ∗

1(t))|
]
.
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However, based on the continuity of solutions x∗ and y∗, we get

|φ1(t)− φ∗
1(t)| ≤ δ =⇒ |x∗(φ1(t))− x∗(φ∗

1(t))| ≤ ϵ1,

=⇒ |y∗(φ1(t))− y∗(φ∗
1(t))| ≤ ϵ2.

Then

∥u − u∗∥ ≤ ∥k∥[ϵ1 + ϵ2]

1−
[
∥k∥+

(
∥L∥G0 + F∥m∥+ 2∥L∥∥m∥

)
T 2

2

] ≤ ϵ.

This implies that the solution of the CSHDE (2) continuously dependent on φ1. □
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