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SOLVING HIGHER ORDER INTUITIONISTIC FUZZY DIFFERENTIAL

EQUATIONS

T. ASLAOUI1, B. B. AMMA2∗, S. MELLIANI1, L. S. CHADLI1, §

Abstract. In this paper, we provide the existence and uniqueness intuitionistic fuzzy
solutions for the second-order intuitionistic fuzzy differential equations satisfying a lips-
chitz condition. We generalised these results for the nth-order intuitionistic fuzzy differ-
ential equations with initial value conditions by using the Banach fixed point theorem.
Some examples are given to illustrate our main results.
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1. Introduction

Generalizations of fuzzy set theory, as discussed in [1], constitute one of the concepts
within intuitionistic fuzzy set (IFS). Subsequently, Atanassov introduced the concept of
a fuzzy set and proposed the notion of an intuitionistic fuzzy set. He explored the prin-
ciples of fuzzy set theory through the lens of intuitionistic fuzzy set (IFS) theory [2, 3].
IFS have a highly potent tool for modeling imprecision thanks to further development of
the intuitionistic fuzzy set theory, intuitionistic fuzzy geometry, intuitionistic fuzzy logic,
intuitionistic fuzzy topology, and an intuitionistic fuzzy approach to artificial intelligence.
Numerous fields have benefited from the IFSS’s useful applications, including [4, 5, 6, 7, 8].

One of the areas of intuitionistic fuzzy set theory that has recently undergone intensive
research is the idea of intuitionistic fuzzy differential equations (IFDEs). Intuitionistic
fuzzy solutions for these equations were first introduced by the authors of [9]. Intuition-
istic fuzzy solutions for differential equations were recently developed by the authors in
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[10, 11, 12, 13], they used several techniques to prove the existence and uniqueness of
intuitionistic fuzzy solutions under particular assumptions for these intuitionistic fuzzy
differential equations. Applications of numerical algorithms for handling IFDEs can be
found [14, 15, 16, 17]. Several innovative concepts were introduced in [18], including in-
tuitionistic fuzzy Nb metric space, intuitionistic fuzzy quasi-Sb-metric space, intuitionistic
fuzzy pseudo-b-metric space, intuitionistic fuzzy quasi-N -metric space, and intuitionistic
fuzzy pseudo Nb fuzzy metric space and proved decomposition theorem and fixed-point
results in new setting. Garbiec [19] introduced the fuzzy version of the Banach fixed-point
result. Several aspects, including topological structure and convergence criteria in [20],
they provided a proof of a Banach fixed-point theorem within the context of graphical
fuzzy metric spaces. A method for constructing a Hausdorff intuitionistic fuzzy metric
on the set of nonempty compact subsets of a given intuitionistic fuzzy metric space was
presented by the authors in [21]. The concept of intuitionistic extended fuzzy b-metric-like
spaces was introduced, accompanied by the establishment of various fixed point theorems
within this framework [22]. Moreover, they applied fuzzy sets principles within met-
ric spaces to introduce fuzzy metric spaces (FMSs), using continuous t-norms (CTNs),
thereby expanding on the notion of probabilistic metric spaces. Furthermore, the authors
in [23, 24, 25] extended the concept of metric spaces to include intuitionistic fuzzy metric
spaces, the study focused on intuitionistic fuzzy real Banach spaces, which result from
combining fuzzy Banach spaces with intuitionistic fuzzy sets. The approach taken to ad-
dress this issue, Pexiderized quadratic functional equations defined within these spaces
exhibit stability according to the Hyers-Ulam-Rassias criteria, which was based on fixed-
point theory [26]. The research has identified the stability akin to the Hyers-Ulam-Rassias
theorem concerning the Pexiderized functional equation within intuitionistic fuzzy Banach
spaces. Given specific conditions, the study has confirmed the stability of the Pexiderized
functional equation in intuitionistic fuzzy Banach spaces following the Hyers-Ulam-Rassias
theorem [27].

The works mentioned above served as motivation and inspiration for this paper. We
propose a new complete intuitionistic fuzzy metric space to investigate the existence and
uniqueness of intuitionistic fuzzy solutions using the Banach fixed-point theorem for the
following second-order intuitionistic fuzzy differential equation:{

< u, v >′′ (t) = f (t, < u, v > (t), < u, v >′ (t)) , t ∈ [t0, T ],
< u, v > (t0) = k1, < u, v >′ (t0) = k2,

(1)

and the following nth-order intuitionistic fuzzy differential equation:{
⟨u, v⟩(n)(t) = f

(
t, ⟨u, v⟩(t), ⟨u, v⟩′(t), . . . , ⟨u, v⟩(n−1)(t)

)
, t ∈ [t0, T ],

⟨u, v⟩(t0) = k1, ⟨u, v⟩′(t0) = k2, . . . , ⟨u, v⟩(n−1)(t0) = kn,
(2)

where f : [t0, T ] × (IFn)
n → IFn and k1, k2, . . . , kn are intuitionistic fuzzy numbers.

We will prove that there exists a unique solution for these problems, if f is continuous
and satisfies a Lipschitz condition that involves all the variables but the temporal one.

The remaining sections of the paper are organized as follows: Some fundamental defini-
tions and results are presented in Section 2. The existence and uniqueness of an intuition-
istic fuzzy solution to the second-order and the nth-order intuitionistic fuzzy differential
equations are shown in Section 3. Section 4 contains computational examples to illustrate
the theory, Section 5 summarizes the results of research this paper, and suggests future
research directions.
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2. Preliminaries

Let’s start with a few definitions that are related to our research.
Throughout this paper, (Rn, B (Rn) , µ) denotes a complete finite measure space.

Let use Pk(Rn) the set of all nonempty compact convex subsets of Rn. We denote by

IFn = IF(Rn) =
{
⟨u, v⟩ : Rn → [0, 1]2 | ∀x ∈ Rn 0 ≤ u(x) + v(x) ≤ 1

}
.

An element ⟨u, v⟩ of IFn is said an intuitionistic fuzzy number if it satisfies the following
conditions:

(i) ⟨u, v⟩ is normal i.e there exists x0, x1 ∈ Rn such that u(x0) = 1 and v(x1) = 1.
(ii) u is fuzzy convex and v is fuzzy concave.
(iii) u is upper semi-continuous and v is lower semi-continuous.
(iv) supp⟨u, v⟩ = cl {x ∈ Rn | v(x) < 1} is bounded.

So we denote the collection of all intuitionistic fuzzy number by IFn. For α ∈ [0, 1] and
⟨u, v⟩ ∈ IFn, the upper and lower α-cuts of ⟨u, v⟩ are defined by,

[⟨u, v⟩]α = {x ∈ Rn : v(x) ≤ 1− α} ,

and,

[⟨u, v⟩]α = {x ∈ Rn : u(x) ≥ α} .

Remark 2.1. If ⟨u, v⟩ ∈ IFn, so we can see [⟨u, v⟩]α as [u]α and [⟨u, v⟩]α as [1 − v]α in
the fuzzy case. We define 0(1,0) ∈ IFn as,

0(1,0)(t) =

{
(1, 0) t = 0
(0, 1) t ̸= 0.

Let ⟨u, v⟩, ⟨u′, v′⟩ ∈ IFn and λ ∈ R, we define the following operations by:(
⟨u, v⟩+ ⟨u′, v⟩

)
(z) =

(
sup

z=x+y
min

(
u(x), u′(y)

)
; inf
z=x+y

max
(
v(x), v′(y)

))
,

λ⟨u, v⟩ =
{

⟨λu, λv⟩ if λ ̸= 0
0(1,0) if λ = 0.

For ⟨u, v⟩, ⟨z, w⟩ ∈ IFn and λ ∈ R, the addition and scalar-multiplication are defined as
follows:

[⟨u, v⟩+ ⟨z, w⟩]α = [⟨u, v⟩]α + [⟨z, w⟩]α , [λ⟨z, w⟩]α = λ [⟨z, w⟩]α ,

[⟨u, v⟩+ ⟨z, w⟩]α = [⟨u, v⟩]α + [⟨z, w⟩]α , [λ⟨z, w⟩]α = λ [⟨z, w⟩]α .

Definition 2.1. ( [10]) Let ⟨u, v⟩ an element of IFn and α ∈ [0, 1], we define the following
sets:

[⟨u, v⟩]+l (α) = inf {x ∈ Rn|u(x) ≥ α} , [⟨u, v⟩]+r (α) = sup {x ∈ Rn|u(x) ≥ α} ,

[⟨u, v⟩]−l (α) = inf{x ∈ Rn|v(x) ≤ 1− α}, [⟨u, v⟩]−r (α) = sup {x ∈ Rn|v(x) ≤ 1− α} .

Remark 2.2. ( [14])

[⟨u, v⟩]α =
[
[⟨u, v⟩]+l (α), [⟨u, v⟩]+r (α)

]
,

[⟨u, v⟩]α =
[
[⟨u, v⟩]−l (α), [⟨u, v⟩]−r (α)

]
.
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On the space IFn we will consider the following metric:

dn∞(⟨u, v⟩, ⟨z, w⟩) =1

4
sup

0<α≤1
∥[⟨u, v⟩]+r (α)− [⟨z, w⟩]+r (α)∥

+
1

4
sup

0<α≤1
∥[⟨u, v⟩]+l (α)− [⟨z, w⟩]+l (α)∥

+
1

4
sup

0<α≤1
∥[⟨u, v⟩]−r (α)− [⟨uz,w⟩]−r (α)∥

+
1

4
sup

0<α≤1
∥[⟨u, v⟩]−l (α)− [⟨z, w⟩]−l (α)∥.

where ∥.∥ denotes the usual Euclidean norm in Rn.

Theorem 2.1. ( [21]) dn∞ define a metric on IFn.

Theorem 2.2. ( [21]) The metric space (IFn, d
n
∞) is complete.

Definition 2.2. ( [10]) A mapping f : I → IFn is called continuous at t0 ∈ I provided
for any arbitrary ϵ > 0,

dn∞ (f(t), f(t0)) < ϵ,

for all t ∈ I.

Definition 2.3. ( [14]) A mapping f : I × IFn× IFn → IFn is called continuous at point
(t0, ⟨u, v⟩0, ⟨z, w⟩0) ∈ I × IFn × IFn provided for any arbitrary ϵ > 0, there exists an δ(ϵ)
such that

dn∞ (f(t, ⟨u, v⟩, ⟨z, w⟩), f(t0, ⟨u, v⟩0, ⟨z, w⟩0)) < ϵ,

whenever max | t− t0 | < δ(ϵ) and dn∞(⟨u, v⟩, ⟨u, v⟩0) < δ(ϵ) and dn∞(⟨z, w⟩, ⟨z, w⟩0) < δ(ϵ)
for all t ∈ I and ⟨u, v⟩, ⟨z, w⟩, ⟨u, v⟩0, ⟨z, w⟩0 ∈ IFn.

Definition 2.4. We say that a mapping f : I → IFn is strongly measurable if for all
α ∈ [0, 1] the set-valued mappings fα : I → Pk (Rn) defined by fα(t) = [f(t)]α and fα

: I → Pk(Rn) defined by fα(t) = [f(t)]α are (Lebesgue) measurable, when Pk (Rn) is
endowed with the topology generated by the Hausdorff metric dH .

Where dH is the Hausdorff metric defined in Pk(Rn) by

dH ([a, b] [c, d]) = max {||a− c||; ||b− d||} .

Definition 2.5. ( [10]) f : I → IFn is called integrably bounded if there exists an integrable
function h : I → Rn such that ∥y∥ ≤ h(t) holds for any y ∈ supp (f(t)) , t ∈ I.

Theorem 2.3. ( [10]) If f : I → IFn is strongly measurable and integrably bounded, then
f is integrable.

Definition 2.6. ( [10]) Supposes f : I → IFn is integrably bounded and strongly measur-
able for each α = (0, 1] write,∫

I
f(t)dt =

∫
I
fα(t)dt

=

{∫
I
F (t)dt|F : I → Rnis a measurable selection for fα

}
,∫

I
f(t)dt =

∫
I
fα(t)dt

=

{∫
I
F (t)dt|F : I → Rn is a measurable selection for fα

}
.
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Remark 2.3. If there exists ⟨u, v⟩ ∈ IFn such that

[⟨u, v⟩]α =

[∫
I
f(t)dt

]α
and [⟨u, v⟩]α =

[∫
I
f(t)dt

]
α

, ∀α ∈ (0, 1].

Then f is called integrable on T , write ⟨u, v⟩ =
∫
I
f(t)dt.

Definition 2.7. ( [?] ) Let ⟨u, v⟩ and ⟨u′, v′⟩ ∈ IF1, the Hukuhara difference is the intu-
itionistic fuzzy number ⟨z, w⟩ ∈ IF1, if it exists, such that

⟨u, v⟩ − ⟨u′, v′⟩ = ⟨z, w⟩ ⇔ ⟨u, v⟩ = ⟨u′, v′⟩+ ⟨z, w⟩.

Definition 2.8. ( [10]) A mapping F : I → IF1 is said to be Hukuhara derivable at t0 if
there exists F ′(t0) ∈ IF1 such that both limits:

lim
△t→0+

F (t0 +△t)− F (t0)

△t

and

lim
△t→0−

F (t0)− F (t0 −△t)

△t
,

exist and they are equal to F ′(t0) = ⟨u′(t0), v′(t0)⟩, which is called the Hukuhara derivative
of F at t0.

Definition 2.9. ( [10]) Let F : I → IF1. We define the n-th order differential of F as
follows. Let F : I → IF1 and t0 ∈ I. We say that F is differentiable of the n-th order at
t0, if there exist elements F s(t0) ∈ IF1, ∀s = 1, 2, . . . , n such that both limits

lim
△t→0+

F (s−1)(t0 +△t)− F (s−1)(t0)

△t

and

lim
△t→0−

F (s−1)(t0)− F (s−1)(t0 −△t)

△t
,

exist and they are equal to F (s)(t0) = ⟨u(s)(t0), v(s)(t0)⟩.

Definition 2.10. ([12]) Let C(I, IFn) be a metric space, and T : C(I, IFn) → C(I, IFn).
We will say that T is a contraction if there exists some 0 < k < 1 such that

H(T (⟨Ψ1,Ψ2⟩), T (⟨Ψ′
1,Ψ

′
2⟩)) ≤ kH(⟨Ψ1,Ψ2⟩, ⟨Ψ′

1,Ψ
′
2⟩),

for all ⟨Ψ1,Ψ2⟩, ⟨Ψ′
1,Ψ

′
2⟩ ∈ C(I, IFn).

Lemma 2.1. ([12]) Let
(
C(I, IFn), H

)
be a complete metric space and let T : C(I, IFn) →

C(I, IFn) be a contraction mapping. Then T has a unique fixed point ⟨Ψ1,Ψ2⟩ such that
T (⟨Ψ1,Ψ2⟩) = ⟨Ψ1,Ψ2⟩.

3. The main results

In this part of this section, we provide an existence and uniqueness result for the the
following intuitionistic fuzzy differential equation:
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3.1. Second-order intuitionistic fuzzy differential equation. We know that the
space C(I, IFn) of continuous functions ⟨u, v⟩ : I → IFn is a complete metric space
with the distance

H(⟨u, v⟩, ⟨z, w⟩) = sup
t∈I

{dn∞(⟨u, v⟩(t), ⟨z, w⟩(t))} ,

By C1(I, IFn) , we denote the set of continuous functions ⟨u, v⟩ : I → IFn such that
⟨u, v⟩′ : I → IFn exists as a continuous function. For ⟨u, v⟩, ⟨z, w⟩ ∈ C1(I, IFn), we define
the distance

H1 (⟨u, v⟩, ⟨z, w⟩) = H (⟨u, v⟩, ⟨z, w⟩) +H
(
⟨u, v⟩′, ⟨z, w⟩′

)
.

Lemma 3.1.
(
C1 (I, IFn) ,H1

)
is a complete metric space.

Proof. Let {⟨u, v⟩p}∞p=1 ⊂ C1(I, IFn) be a Cauchy sequence in
(
C1 (I, IFn) ,H1

)
, that is,

H1 (⟨u, v⟩p, ⟨u, v⟩q) = H (⟨u, v⟩p, ⟨u, v⟩q) +H
(
⟨u, v⟩′p, ⟨u, v⟩′q

)
→ 0 ; p, q → +∞.

Then the sequences {⟨u, v⟩p}∞p=1 and {⟨u, v⟩′p}∞p=1 are Cauchy sequences in (C(I, IFn) ,H),

which is complete. Then there exist ⟨u, v⟩, ⟨z, w⟩ ∈ C (I, IFn) such that {⟨u, v⟩p} → ⟨u, v⟩
and

{
⟨u, v⟩′p

}
→ ⟨z, w⟩ as p → +∞. We have to prove that ⟨u, v⟩ ∈ C1 (I, IFn) and that

⟨u, v⟩′ = ⟨z, w⟩. In that case,

H1(⟨u, v⟩p, ⟨u, v⟩) =H(⟨u, v⟩p, ⟨u, v⟩) +H(⟨u, v⟩′p, ⟨u, v⟩′)
=H(⟨u, v⟩p, ⟨u, v⟩) +H(⟨u, v⟩′p, ⟨z, w⟩) → 0, p → +∞,

which proves that {⟨u, v⟩p} → ⟨u, v⟩ in
(
C1 (I, IFn) ,H1

)
and C1 (I, IFn) is a complete

space. We know that ⟨u, v⟩(t) = ⟨u, v⟩(t0) +
∫ t

t0

⟨z, w⟩(s)ds, the continuity of ⟨z, w⟩ find

⟨u, v⟩ ∈ C1(I, IFn) and ⟨u, v⟩′ = ⟨z, w⟩.

We will use that ⟨u, v⟩p(t) = ⟨u, v⟩p(t0) +
∫ t

t0

⟨u, v⟩′p(s)ds.

Then

⟨u, v⟩(t) = ⟨u, v⟩(t0) +
∫ t

t0

⟨z, w⟩(s)ds, t ∈ [t0, T ],

and the complete character of C1 (I, IFn) is achieved. □

Theorem 3.1. Let

(1) A mapping f : [t0, T ]× IFn × IFn → IFn is continuous,
(2) Suppose that there exist M1,M2 > 0 such that

dn∞(f(t, ⟨u, v⟩1, ⟨u, v⟩2), f(t, ⟨z, w⟩1, ⟨z, w⟩2)) ≤
M1d

n
∞(⟨u, v⟩1, ⟨z, w⟩1) +M2d

n
∞(⟨u, v⟩2, ⟨z, w⟩2), (3)

for all t ∈ [t0, T ], ⟨u, v⟩1, ⟨u, v⟩2, ⟨z, w⟩1, ⟨z, w⟩2 ∈ IFn.

Then the initial value problem (1) has a unique solution on [t0, T ].

Proof. Let I = [t0, T ], and consider the complete metric space
(
C1 (I, IFn) ,H1

)
. Define

the operator

G : C1 (I, IFn) → C1 (I, IFn)

⟨u, v⟩ → G⟨u, v⟩,
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given by,

(G⟨u, v⟩) (t) = k1 + k2(t− t0) +

∫ t

t0

∫ z

t0

f
(
s, ⟨u, v⟩(s), ⟨u, v⟩′(s)

)
dsdz, t ∈ I.

We note that,

(G⟨u, v⟩)′(t) = k2 +

∫ t

t0

f
(
s, ⟨u, v⟩(s), ⟨u, v⟩′(s)

)
ds, t ∈ I.

Indeed,

H1 (G⟨u, v⟩, G⟨z, w⟩) = H (G⟨u, v⟩, G⟨z, w⟩) +H
(
(G⟨u, v⟩)′, (G⟨z, w⟩)′

)
=sup

t∈I

{
d

(∫ t

t0

∫ z

t0

f
(
s, ⟨u, v⟩(s), ⟨u, v⟩′(s)

)
dsdz,

∫ t

t0

∫ z

t0

f
(
s, ⟨z, w⟩(s), ⟨z, w⟩′(s)

)
dsdz

)}
+ sup

t∈I

{
d

(∫ t

t0

f
(
s, ⟨u, v⟩(s), ⟨u, v⟩′(s)

)
ds,

∫ t

t0

f
(
s, ⟨z, w⟩(s), ⟨z, w⟩′(s)

)
ds

)}
≤ sup

t∈I

{∫ t

t0

∫ z

t0

d
(
f
(
s, ⟨u, v⟩(s), ⟨u, v⟩′(s)

)
, f

(
s, ⟨z, w⟩(s), ⟨z, w⟩′(s)

))
dsdz

}
≤ sup

t∈I

{∫ t

t0

∫ z

t0

[
M1d (⟨u, v⟩(s), ⟨z, w⟩(s)) +M2d

(
⟨u, v⟩′(s), ⟨z, w⟩′(s)

)]
dsdz

}
+ sup

t∈I

{∫ t

t0

[
M1d (⟨u, v⟩(s), ⟨z, w⟩(s)) +M2d

(
⟨u, v⟩′(s), ⟨z, w⟩′(s)

)]
ds

}
≤ sup

t∈I

{∫ t

t0

∫ z

t0

[
M1H(⟨u, v⟩, ⟨z, w⟩) +M2H

(
⟨u, v⟩′, ⟨z, w⟩′

)]
dsdz

}
+ sup

t∈I

{∫ t

t0

[
M1H(⟨u, v⟩, ⟨z, w⟩) +M2H(⟨u, v⟩′, ⟨z, w⟩′

)]
ds

}
=
[
M1H (⟨u, v⟩, ⟨z, w⟩) +M2H

(
⟨u, v⟩′, ⟨z, w⟩

)′](
sup
t∈I

{∫ t

t0

∫ z

t0

dsdz

}
+ sup

t∈I

{∫ t

t0

ds

})
≤max {M1,M2}H1 (⟨u, v⟩, ⟨z, w⟩)

(
sup
t∈I

{∫ T

t0

∫ T

t0

dsdz

}
+ sup

t∈I

{∫ T

t0

ds

})
≤max {M1,M2}H1(⟨u, v⟩, ⟨z, w⟩)

(
(T − t0)

2 + (T − t0)
)

Therefore,

H1 (G⟨u, v⟩, G⟨z, w⟩) ≤ max{M1,M2}
(
(T − t0)

2 + (T − t0)
)
H1(⟨u, v⟩, ⟨z, w⟩).

We can choose,

max {M1,M2}
(
(T − t0)

2 + (T − t0)
)
< 1,

and G is a contractive mapping. We note that the unique fixed point of G is in the space C1(I, IFn) . Using
that G⟨u, v⟩ is the integral of a continuous function that we have actually in the space C2 (I, IFn) . □

3.2. Higher-order intuitionistic fuzzy differential equations. The results obtained
in the previous subsection admit a generalization for the case of nth-order intutionistic
fuzzy initial value problems of the type:{

⟨u, v⟩(n)(t) = f
(
t, ⟨u, v⟩(t), ⟨u, v⟩′(t), . . . , ⟨u, v⟩(n−1)(t)

)
, t ∈ [t0, T ],

⟨u, v⟩(t0) = k1, ⟨u, v⟩′(t0) = k2, . . . , ⟨u, v⟩(n−1)(t0) = kn,
(4)

where f : [t0, T ] × (IFn)
n → IFn, k1, k2, . . . , kn are intuitionistic fuzzy numbers, and

⟨u, v⟩(i) represents the ith-derivative of ⟨u, v⟩ in the sense of Hukuhara.

Lemma 3.2. Consider the space,

Cn (I, IFn) =
{
⟨u, v⟩ ∈ C (I, IFn) : ∃⟨u, v⟩′, . . . , ⟨u, v⟩(n) ∈ C (I, IFn)

}
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furnished with the distance,

Hn (⟨u, v⟩, ⟨z, w⟩) = H (⟨u, v⟩, ⟨z, w⟩) +H
(
⟨u, v⟩′, ⟨z, w⟩′

)
+ · · ·+H

(
⟨u, v⟩(n), ⟨z, w⟩(n)

)
=

n∑
i=0

H
(
⟨u, v⟩(i), ⟨z, w⟩(i)

)
,

where of course, ⟨u, v⟩(0) = ⟨u, v⟩. Then, for every n ∈ N, n ≥ 0, (Cn (I, IFn) ,Hn) is a
complete metric space.

Theorem 3.2. The function ⟨u, v⟩ ∈ Cn (I, IFn) is a solution to problem (4) if and only
if ⟨u, v⟩ satisfies the following integral equation, for all z1 ∈ [t0, T ],

⟨u, v⟩(z1) =k1 + k2 (z1 − t0) + k3

∫ z1

t0

(z2 − t0) dz2 + k4

∫ z1

t0

∫ z2

t0

(z3 − t0)dz3dz2

+ · · ·+ kn

∫ z1

t0

∫ z2

t0

· · ·
∫ zn−2

t0

(zn−1 − t0) dzn−1 . . . dz3dz2

+

∫ z1

t0

∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzn . . . dz3dz2 .

Proof. For zn ∈ [t0, T ], we have

⟨u, v⟩(n−1)(zn) = kn +

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
ds,

and, for zn−1 ∈ [t0, T ],

⟨u, v⟩(n−2)(zn−1) = kn−1+kn(zn−1−t0)+

∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzn.

By recurrence, for z2 ∈ [t0, T ], we get

⟨u, v⟩′(z2) =k2 + k3(z2 − t0) + k4

∫ z2

t0

(z3 − t0) dz3

+ · · ·+ kn

∫ z2

t0

· · ·
∫ zn−2

t0

(zn−1 − t0) dsdzn−1 . . . dz3

+

∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzn . . . dz3 .

The expression is obtained integrating last equality from t0 to z1 ∈ [t0, T ] with respect to
z2. □

Theorem 3.3. Let

(1) f : [t0, T ]× (IFn)
n → IFn is continuous,

(2) Suppose that there exist M1,M2, . . . , Mn > 0 such that

dn∞ (f (t, ⟨u, v⟩1, ⟨u, v⟩2 . . . , ⟨u, v⟩n) , f (t, ⟨z, w⟩1, ⟨z, w⟩2, . . . , ⟨z, w⟩n))

≤
n∑

i=1

Mid
n
∞ (⟨u, v⟩i, ⟨z, w⟩i) , (5)

for all t ∈ [t0, T ], ⟨u, v⟩1, ⟨u, v⟩2, . . . , ⟨u, v⟩n, ⟨z, w⟩1, ⟨z, w⟩2, . . . , ⟨z, w⟩n ∈ IFn.

Then the initial value problem (6) has a unique solution on [t0, T ].
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Proof. Let I = [t0, T ], consider the complete metric space
(
Cn−1 (I, IFn) ,Hn−1

)
, and

define the operator,

Gn−1 : C
n−1 (I, IFn) → Cn−1 (I, IFn)

⟨u, v⟩ → Gn−1⟨u, v⟩,

given by the right-hand side in the integral expression obtained in Theorem 3.2, that is,
for z1 ∈ [t0, T ],

(Gn−1⟨u, v⟩)(z1) =k1 + k2(z1 − t0) + k3

∫ z1

t0

(z2 − t0)dz2 + k4

∫ z1

t0

∫ z2

t0

(z3 − t0)dz3dz2

+ · · ·+ kn

∫ z1

t0

∫ z2

t0

· · ·
∫ zn−2

t0

(zn−1 − t0)dzn−1 . . . dz3dz2

+

∫ z1

t0

∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

f(s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s))dsdzn . . . dz3dz2 .

We note that Gn−1⟨u, v⟩ ∈ Cn(I, IFn) and the ith-derivative, for every i = 1, . . . , n−1, is
expressed in the proof of Theorem 3.2. Following the procedure of the proof of Theorem
3.1, we prove that Gn−1 is a contractive mapping.
Indeed, we choose,

max{M1, . . . ,Mn}
n−1∑
j=0

1

j!
(T − t0)

j+1 < 1,

Then, Hn−1 (Gn−1⟨u, v⟩, Gn−1⟨z, w⟩)

=

n−1∑
i=0

H
(
(Gn−1⟨u, v⟩)(i) , (Gn−1⟨z, w⟩)(i)

)
= sup

z1∈I

{
dn∞

(∫ z1

t0

∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzn . . . dz3dz2 ,∫ z1

t0

∫ z1

t0

. . .

∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨z, w⟩(s), ..., ⟨z, w⟩(n−1)(s)

)
dsdzn . . . dz3dz2

)}
∫ z2

t0

. . .

∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨z, w⟩(s), ..., ⟨z, w⟩(n−1)(s)

)
dsdzn . . . dz3

)}
+ · · ·+ sup

zn−2∈I

{
dn∞

(∫ zn−2

t0

∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzndzn−1,∫ zn−2

t0

∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨z, w⟩(s), ...⟨z, w⟩(n−1)(s)

)
dsdzndzn−1

)}
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+ sup
zn−1∈I

{
dn
∞

(∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
dsdzn,∫ zn−1

t0

∫ zn

t0

f
(
s, ⟨z, w⟩(s), . . . , ⟨z, w⟩(n−1)(s)

)
dsdzn

)}
+ sup

zn∈I

{
dn
∞

(∫ zn

t0

f
(
s, ⟨u, v⟩(s), . . . , ⟨u, v⟩(n−1)(s)

)
ds,

∫ zn

t0

f
(
s, ⟨z, w⟩(s), . . . , ⟨z, w⟩(n−1)(s)

)
ds

)}

≤ sup
z1∈I

{∫ z1

t0

· · ·
∫ zn−1

t0

∫ zn

t0

n−1∑
i=0

Mi+1d
n
∞

(
⟨u, v⟩(i)(s), ⟨z, w⟩(i)(s)

)
dsdzn . . .dz2

}

+ sup
z2∈I

{∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

n−1∑
i=0

Mi+1d
n
∞

(
⟨u, v⟩(i)(s), ⟨z, w⟩(i)(s)

)
dsdzn . . .dz3

}

+ · · ·+ sup
zn−2∈I

{∫ zn−2

t0

∫ zn−1

t0

∫ zn

t0

n−1∑
i=0

Mi+1d
n
∞

(
⟨u, v⟩(i)(s), ⟨z, w⟩(i)(s)

)
dsdzndzn−1

}

+ sup
zn−1∈I

{∫ zn−1

t0

∫ zn

t0

n−1∑
i=0

Mi+1d
n
∞

(
⟨u, v⟩(i)(s), ⟨z, w⟩(i)(s)

)
dsdzn

}

+ sup
zn∈I

{∫ zn

t0

n−1∑
i=0

Mi+1d
n
∞

(
⟨u, v⟩(i)(s), ⟨z, w⟩(i)(s)

)
ds

}

≤
n−1∑
i=0

Mi+1H
(
⟨u, v⟩(i), ⟨z, w⟩(i)

)[
sup
z1∈I

{∫ z1

t0

· · ·
∫ zn−1

t0

∫ zn

t0

dsdzn . . .dz2

}
+ sup

z2∈I

{∫ z2

t0

· · ·
∫ zn−1

t0

∫ zn

t0

dsdzn . . .dz3

}
+ · · ·+ sup

zn−2∈I

{∫ zn−2

t0

∫ zn−1

t0

∫ zn

t0

dsdzndzn−1

}
+ sup

zn−1∈I

{∫ zn−1

t0

∫ zn

t0

dsdzn

}
+ sup

zn∈I

{∫ zn

t0

ds

}]

≤max{M1, . . . ,Mn}Hn−1(⟨u, v⟩, ⟨z, w⟩)
n−1∑
j=0

sup
zn−j∈I

{∆j(zn−j)} .

Where,

∆j(zn−j) =

∫ zn−j

t0

∫ zn−(j−1)

t0

· · ·
∫ zn

t0

dsdzn . . .dzn−(j−2)dzn−(j−1).

Using that, for every F continuous on [a, b],∫ x

a

dxn

∫ xn

a

dxn−1 · · ·
∫ x3

a

dx2

∫ x2

a

F (x1)dx1 =
1

(n− 1)!

∫ x

a

(x− t)n−1F (t)dt,

Then, for the following expressions involving j + 1 integrals, we get, for zn−j ∈ I,

∆j(zn−j) =

∫ zn−j

t0

∫ zn−j+1

t0

· · ·
∫ zn

t0

dsdzn . . .dzn−(j)

=
1

j!

∫ zn−j

t0

(zn−j − s)jds for j = 0, 1, . . . , n− 1.

Then, for j = 0, 1, . . . , n− 1.

sup
zn−j∈l

{∆j(zn−j)} =
1

j!
sup

zn−j∈l

{∫ zn−j

t0

(zn−j − s)jds

}
≤ 1

j!
sup

zn−j∈l

{∫ zn−j

t0

(T − t0)
jds

}
=

1

j!
(T − t0)

j+1;

and,

Hn−1 (Gn−1⟨u, v⟩, Gn−1⟨z, w⟩) ≤ max{M1, . . . ,Mn}Hn−1 (⟨u, v⟩, ⟨z, w⟩)
n−1∑
j=0

1

j!
(T − t0)

j+1.

□
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4. Applications

To give a clear overview of our study and illustrate the above discussed concept, we
consider the following examples.

Example 4.1. We consider the second order intuitionistic fuzzy differential equation:{
⟨u, v⟩′′(t) = q1⟨u, v⟩(t) + q2⟨u, v⟩′(t) +A(t), t ∈ [t0, T ],
⟨u, v⟩(t0) = k1, ⟨u, v⟩′(t0) = k2,

(6)

with A ∈ C ([t0, T ], IFn) , q1, q2 ∈ R and k1, k2 ∈ IFn. Here

f(t, ⟨u, v⟩1, ⟨u, v⟩2) = q1⟨u, v⟩1 + q2⟨u, v⟩2 +A(t) ,

and hypothesis (3) holds. Indeed,

dn
∞ (f(t, ⟨u, v⟩1, ⟨u, v⟩2), f(t, ⟨z, w⟩1, ⟨z, w⟩2) ≤dn

∞ (q1⟨u, v⟩1 + q2⟨u, v⟩2 +A(t), q1⟨z, w⟩1 + q2⟨z, w⟩2 +A(t))

=dn
∞ (q1⟨u, v⟩1 + q2⟨u, v⟩2, q1⟨z, w⟩1 + q2⟨z, w⟩2)

≤dn
∞ (q1⟨u, v⟩1, q1⟨z, w⟩1) + dn

∞ (q2⟨u, v⟩2, q2⟨z, w⟩2)
=|q1|dn

∞ (⟨u, v⟩1, ⟨z, w⟩1) + |q2|dn
∞ (⟨u, v⟩2, ⟨z, w⟩2) ,

for all t ∈ [t0, T ], ⟨u, v⟩1, ⟨u, v⟩2, ⟨z, w⟩1, ⟨z, w⟩2 ∈ IFn. Then there exists a unique fixed point ⟨u, v⟩ ∈
C1(I, IFn) of G, which is the uniqueness solution ⟨u, v⟩ ∈ C2 (I, IFn) of (6).

Example 4.2. As an application of Theorem 3.3, Consider the nth-order intuitionistic
fuzzy differential equation:{

⟨u, v⟩(n)(t) = q1⟨u, v⟩(t) + q2⟨u, v⟩′(t) + · · ·+ qn⟨u, v⟩(n−1)(t) +A(t) , t ∈ [t0, T ],

⟨u, v⟩(t0) = k1, ⟨u, v⟩′(t0) = k2, . . . , ⟨u, v⟩(n−1)(t0) = kn,
(7)

with A ∈ C ([t0, T ] , IFn) , q1, q2, . . . , qn ∈ R and k1, k2, . . . , kn ∈ IFn.
Function f is given by,

f(t, ⟨u, v⟩1, ⟨u, v⟩2, · · · , ⟨u, v⟩n) = q1⟨u, v⟩1 + q2⟨u, v⟩2 + · · ·+ qn⟨u, v⟩n +A(t),

which trivially satisfies (4)

dn∞ (f (t, ⟨u, v⟩1, ⟨u, v⟩2, · · · , ⟨u, v⟩n) , f (t, ⟨z, w⟩1, ⟨z, w⟩2, · · · , ⟨z, w⟩n))

=dn∞ (q1⟨u, v⟩1 + q2⟨u, v⟩2 + · · ·+ qn⟨u, v⟩n +A(t), q1⟨z, w⟩1 + q2⟨z, w⟩2 + · · ·+ qn⟨z, w⟩n +A(t))

≤
n∑

i=1

dn∞ (qi⟨u, v⟩i, qi⟨z, w⟩i) =
n∑

i=1

|qi|dn∞ (⟨u, v⟩i, ⟨z, w⟩i) ,

for all t ∈ [t0, T ], ⟨u, v⟩1, ⟨u, v⟩2, . . . , ⟨u, v⟩n, ⟨z, w⟩1, ⟨z, w⟩2, . . . , ⟨z, w⟩n ∈ IFn. Theorem
3.3 shows that there exists a unique solution to problem (7) in Cn(I, IFn) .

5. Conclusions

In this paper, we have also derived the existence and uniqueness solutions of second-
order intuitionistic fuzzy differential equations using the Banach fixed point theorem.
Furthermore, we have generalized these results for nth-order intuitionistic fuzzy differential
equations, and examples have been provided to illustrate the findings. These ideas can be
applied to investigate non-local nth-order intuitionistic fuzzy differential equations in the
next phase of our future research, under weaker hypotheses than the Lipschitz condition.
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