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SELF CENTERED INTERVAL-VALUED PYTHAGOREAN FUZZY GRAPH
STRUCTURE WITH AN APPLICATION

S. N. S. BATHUSHA1∗, M. MAHAMUD2,5, S. JAYAKUMAR3, AND S. A. KAVITHA RAJ4, §

ABSTRACT. The Interval-valued Pythagorean Fuzzy Set (IVPFS), an extension of the Pythagorean
Fuzzy Set (PFS), offers a more accurate description of uncertainty than traditional fuzzy sets. It
helps us to discourse about the inestimable values of human life. In this paper, we introduce the no-
tion of Interval-Valued Pythagorean Fuzzy graph Structure (IVPFGS), further we introduce the def-
inition of λJ − strength, λJ − length, λJ −distance, λJ − eccentricity, λJ − radius, λJ −diameter,
λJ − centered, λJ − sel f centered, λJ − path cover, λJ − edge cover. Moreover we investigate
some properties of λJ −Sel f centered IVPFGS with illustration and we have discussed application
in IPFGS

Keywords: λJ − Sel f centered IVPFGS, λJ − path cover, λJ − edge cover, application. (Four or
five keywords)

AMS Subject Classification: 83-02, 99A00

1. INTRODUCTION

Fuzzy Sets (FSs), which expressed the uncertainty of the FSs, were initially introduced by
L.A. Zadeh [27] in 1965. In these conditions, identifying and resolving uncertainties in science
and medicine as well as ambiguities in our daily lives are important roles played by the business
community. Fuzzy graph theory was created by Rosenfeld [2] in 1975 as a derivation of the Eu-
ler graph, whose core idea was previously presented by Kauffmann (1973). In order to extend
the idea of a FS, Zadeh [26] invented the concept of an interval valued fuzzy subset of a set in
1975. In this concept, membership degrees are represented by intervals of numbers rather than
by real numbers. The author first developed this concept in FSs by Turksen [21] in 1986. Then
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Interval-Valued Fuzzy Sets (IVFSs) were introduced. It contains the values of intervals of num-
bers to accommodate uncertainty rather than utilising numbers as the membership function. It
is usually represented by the symbol [µ−

AL(x),µ
+
AU ] Use the formula 0 ≤ µ

−
AL(x)+ µ

+
AU(x) ≤ 1 to

characterise the degree of membership of the FS A. In 2009, Hongmei and Lianhua [3] defined
Interval-Valued Fuzzy Graphs (IVFGs). Muhammad Akram and Wieslaw A. Dudek [4] presented
some operations on IVFSs in 2011. FGs with irregular interval values were studied by Rashman-
lou [[10], [12], [13], [14]]. Furthermore, they provided definitions for balanced, antipodal, and
IVFGs as well as a few characteristics of very irregular IVFGs. The idea was initially put up in
2011 by M.G. Karunambigai and O.K. Kalaivani [11] as a self-centered intuitionistic FG. Muham-
mad Akram, M. Murtaza Yousaf [5], and Self-centered IVFG initially developed the concept in
2015. The research papers Applications of graph’s total degree with bipolar fuzzy information
and Estimation of most effected cycles and busiest network route based on complexity function
of graph in fuzzy environment in 2022 by Soumitra Poulik and Ganesh Ghorai [[6], [17], [18]]
is worth being referred to for more information. Also, in 2021 proposed the idea of Determining
the order of journeys based on a graph’s Wiener absolute index using bipolar fuzzy information.
In (2019), K. Ullah, T. Mahmood, Z. Ali, and N. Jan [22] describe the notion of various dis-
tance measurements of complicated Pythagorean FSs and its applications in pattern recognition.
Pythagorean fuzzy subsets are a concept introduced by R.R. Yager[[23], [24], [25]] in 2013. He
also introduces the concepts of Pythagorean membership grades, complex numbers, and decision-
making, as well as Pythagorean membership grades in multi-criteria decision-making. A graph
structure is a generalisation of an undirected graph, which was first described by Sampathkumar
[15]. It is quite useful for analysing different structures, including graphs, signed graphs, and
graphs with labelled or coloured edges.With the use of a graph structure, the different relations
and the corresponding edges may be examined simultaneously. T. Dinesh and T. V. Ramakrishnan
[1] first proposed the concept of a fuzzy graph structure in 2011. Some similarity of rough interval
Pythagorean fuzzy sets was recently proposed by V. S. Subha and P. Dhanalakshmi [[19], [20]],
and An Introduction to Pythagorean Fuzzy Hyper Ideals in Hypersemigroups contains some help-
ful information about these kinds of structures. Muhammad Akram recently introduced the con-
cepts of certain operations on bipolar fuzzy graph structures and intuitionistic FGSs [[6], [7], [8],
[9]]. Introduce further the ideas of Simplified IVPFGs and A Novel Decision-Making Approach
under Complex Pythagorean Fuzzy Environment with Applications. In the future, the ideas of
Complex Pythagorean Fuzzy Planar Graphs and Simplified IVPFGs with Application were devel-
oped. In this study, we present the idea of an IVPFGS. We also give a definition λJ − strength,
λJ − length, λJ −distance, λJ −eccentricity, λJ −radius, λJ −diameter, λJ −centered, λJ −sel f
centered, λJ − path cover, λJ −edge cover. Moreover, using an illustration, we investigate certain
characteristics of the λJ−Sel f centered IVPFGS.

2. PRELIMINARIES

The development of the main results will be helped by the review of some fundamental defini-
tions and properties in this section.[ [4], [5], [11]]
A graph is an ordered pair G∗ = (Q,R), where Q is the set of vertices of G∗. Two vertices a and
b in a graph G∗ are said to be adjacent in G∗ if {a,b} is in an edge of G∗. we write ab ∈ R to
mean {a,b} ∈ R. A simple graph is considered complete if an edge connects each pair of unique
vertices in it. Path P : a1a2....an+1(n > 0)in G∗has a length of n. If a1 = an+1and n ≥ 3, a path
P : a1a2....an+1 in G∗is referred to as a cycle. Recall the path graph. By eliminating any edge
from the cycle graph, Cn, Pn, which contains n− 1 edges, can be obtained. If there is a path be-
tween every pair of unique vertices in an undirected graph G∗, the graph is said to be linked. If
there is a path between every pair of different vertices in a connected graph G∗, then for a pair
of vertices a,b, the distance d(a,b) between a and b is equal to the length of the shortest path
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linking a and b. The eccentricity e(a) = max{d(a,b)/a ∈ Q}. The formula for the radius of a
connected graph G∗is r(G) = min{e(a)/a ∈ Q}. The definition of a connected graph’s diameter
is d(G) = max{e(a)/a ∈ Q}. The eccentric set S of a graph is its set of eccentricities. A graph’s
C(G∗)centre is made up of the collection of vertices with the least amount of eccentricity. A graph
is said to be self-centered if all of its nodes are located in the middle. Because every vertex has
the same eccentricity, there is only one element in the eccentric set of a self-centered graph. A
self-centered graph is equivalently defined as one with a diameter equal to its radius.

Definition 2.1 (7). A Pythagorean fuzzy relation in Y is described as a PFS X in Y ×Y and is
characterised by

X = {(rs,µX(rs),λX(rs))|rs ∈ Y ×Y}

where the membership and non-membership functions of X are represented by µX : Y ×Y → [0,1]
and λX : Y ×Y → [0,1], respectively, such that 0 ≤ µ2

X(rs)+λ 2
X(rs)≤ 1 for all rs ∈ Y ×Y .

Definition 2.2 (7). On a non-empty set X , a Pythagorean fuzzy graph is a pair G = (A,B), where
A and B are Pythagorean fuzzy sets on X and a Pythagorean fuzzy relation on X , respectively,
such that:

µB(rs) ≤ min{µA(r),µA(s)}
λB(rs) ≤ max{λA(r),λA(s)}

0 ≤ µ2
B(rs)+λ 2

B(rs)≤ 1 for all r,s ∈ X . We call A and B the Pythagorean fuzzy vertex set and the
Pythagorean fuzzy edge set of G, respectively.

Definition 2.3 (15). A graph structure G∗ = (Q,R11,R12, ...,R1k), where V is a non-empty set
together with mutually disjoint, irreflexive and symmetric relations R11,R12, ...,
R1k on Q.

3. INTERVAL VALUED PYTHAGOREAN FUZZY GRAPH STRUCTURE

This section defines IVPFGS and goes on to define useful tools that are used to create the
major results. We also discuss some of the properties of the λJ − sel f centered IVPFGS using
illustrations.

Definition 3.1. Let G̃ = {µ,λ1,λ2, ...,λk} is referred to as an IVPFGS of graph structure (GS)
G∗= {Q,R1,R2, ...,Rk} if µ =(µ1,µ2)= ([µ−

1 ,µ+
1 ], [µ−

2 ,µ+
2 ]) is an IVPFS on Q and λJ =(λ1J,λ2J)

= ([λ−
1J,λ

+
1J], [λ

−
2J,λ

+
2J]) are IVPFSs on Q and RJ such that

(i) λ
−
1J(a,b)≤ min{µ

−
1 (a),µ−

1 (b)} and λ
+
1J(a,b)≤ min{µ

+
1 (a),µ+

1 (b)}
(ii) λ

−
2J(a,b)≤ max{µ

−
2 (a),µ−

2 (b)} and
λ
+
2J(a,b)≤ max{µ

+
2 (a),µ+

2 (b)} and (λ+
1J(a,b))

2 +(λ+
2J(a,b))

2 ≤ 1, ∀ ab ∈ RJ,J = 1,2, ...,k.
Note: λ

−
1J, λ

+
1J, λ

−
2J and λ

+
2J are function from RJ to [0,1] such that λ

−
1J(a,b) ≤ λ

+
1J(a,b) and

λ
−
2J(a,b)≤ λ

+
2J(a,b) for all (a,b) ∈ RJ,J = 1,2, ...,k.

Definition 3.2. An IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of a GS G∗ = {Q,R1,R2, ...,Rk} is called a
complete if (i) λ

−
1J(a,b) = min{µ

−
1 (a),µ−

1 (b)} and λ
+
1J(a,b) = min{µ

+
1 (a),µ+

1 (b)},
(ii)λ−

2J(a,b) = max{µ
−
2 (a),µ−

2 (b)} and λ
+
2J(a,b) = max{µ

+
2 (a),µ+

2 (b)},∀ ab ∈ RJ,J = 1,2, ...,k.

Example 3.3. Let V = {u1,u2,u3,u4}. Let R1 = {u1u2,u2,u4,u3u4},R2 = {u2u3,u4u1} be two
disjoint symmetric relation on V . Then G∗ = (Q,R1,R2) graph structure. Let G̃ = (µ,λ1,λ2) is a
IVPFGS of GS G∗ such that, µ = {u1([0.4,0.5][0.3,0.4]),
u2([0.3,0.4][0.2,0.4]),u3([0.3,0.4][0.3,0.5]),u4([0.2,0.3][0.4,0.6])} as shown in Figure-1.
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FIGURE 1. G̃ = (µ,λ1,λ2) is a complete IVPFGS of GS G∗

Definition 3.4. Let P : u1,u2, ...,un be a path in IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of GS G∗ =
{Q,R1,R2, ...,Rk}. The λ s

1J − strength of the paths are only selected the λ s
1J − edge in the paths is

defined as max(λ s
1J(ui,u j)) for all (ui,u j) ∈ RJ,s =−,+. The λ s

2J − strength of the paths are only
selected the λ s

2J − edge in the paths is defined as max(λ s
2J(ui,u j)) for all (ui,u j) ∈ RJ,s = −,+.

The strength of the strongest path in P is indicated by SλJ = ([λ−
1J(ui,u j),λ

+
1J(ui,u j)]

[λ−
2J(ui,u j),λ

+
2J(ui,u j)]) for all J = 1,2, ...,k. if the same λJ − edge possesses both the λ s

1J −
strength and λ s

2J − strength values.

Example 3.5. Consider a IVPFGS G̃ = {µ,λ1,λ2} as shown in Figure-1 in Example-3.3. Here,
u1,u2 is a path of length 1 and the λ1−strength is ([0.3,0.4], [0.3,0.4]), u1,u2,u3 is a path of length
2 and the λ1−strength is ([0.3,0.4], [0.3,0.4]) and λ2−strength is ([0.3,0.4], [0.3,0.5]), u1,u2,u4,
is a path of length 2 and the λ1 − strength is
([0.3,0.4], [0.4,0.6]), u1,u2,u3,u4 is a path of length 3 and the λ1 − strength is
([0.3,0.4], [0.4,0.6]) and λ2 − strength is ([0.3,0.4], [0.4,0.6]).

Definition 3.6. Let G̃ = {µ,λ1,λ2, ...,λk} be a connected IVPFGS of GS G∗ = {Q,R1,R2,
...,Rk}. The λ s

J − length of a path P : u1u2...un in G∗, lλ s
1J
(p), is defined as lλ s

1J
(p) =

∑(ui,u j)∈RJ λ s
1J(ui,u j). The λ s

2J − length of a path P : u1u2...un in G∗, lλ s
2J
(p), is defined as

lλ s
2J
(p) = ∑(ui,u j)∈RJ λ s

2J(ui,u j). The λ1Jλ2J − length of a path P : u1u2...un in G∗, lλ1Jλ2J (p), is
defined as lλ1Jλ2J (p) = ([l

λ
−
1J
, lλ+

1J
], [l

λ
−
2J
, lλ+

2J
]) for all J = 1,2, ...k,s =−,+.

Example 3.7. Consider a connected IVPFGS G̃ = {µ,λ1,λ2} as shown in Figure-1 in Example-
3.3. Here, u1u4 is a path of λ2 − length and lλ12λ22 = ([0.2,0.3], [0.4,0.6]), u1u2 is a path of λ1 −
length and lλ11λ21 = ([0.3,0.4], [0.3,0.4]), u1u2u3 is a path of λ1 − length and lλ11λ21 = ([0.3,0.4],
[0.3,0.4]) and u1u2u3 is a path of λ2 − length and lλ12λ22 = ([0.3,0.4], [0.3,0.5]), u1u2u4 is a path
of λ1 − length and lλ11λ12 = ([0.5,0.7], [0.7,1.0]), u1u2u3u4 is a path of λ1 − length and lλ11λ21 =
([0.5,0.7], [0.7,1.0]) and u1u2u3u4 is a path of λ2 − length and lλ12λ22 = ([0.3,0.4], [0.3,0.5]).

Definition 3.8. Let G̃ = {µ,λ1,λ2, ...,λk} be a connected IVPFGS of GS G∗ = {Q,R1,R2,
...,Rk}. The λ s

1J − distance, δλ s
1J
(ui,u j), is the smallest λ s

1J − length of any ui − u j path P in G̃,
where uiu j ∈ RJ . That is, δλ s

1J
(ui,u j) = min(l

λ
−
1J
(p)). The λ s

2J −distance, δλ s
2J
(ui,u j), is the small-

est λ s
2J − length of any ui − u j path P in G̃, where uiu j ∈ RJ . That is, δλ

+
2J
(ui,u j) = min(lλ s

2J
(p))

for all s =−,+. The distance, δ (ui,u j), is defined as δλJ (ui,u j) = ([δ
λ
−
1J
(ui,u j),δλ

+
1J
(ui,u j)],

[δ
λ
−
2J
(ui,u j),δλ

+
2J
(ui,u j)]) for all J = 1,2, ...,k.

Example 3.9. Consider a connected IVPFGS G̃ = {µ,λ1,λ2} as shown in Figure-1 in Example-
3.3. Here, δ

λ
−
12
(u1,u4) = 0.2,δλ

+
12
(u1,u4) = 0.4,δ

λ
−
22
(u1,u4) = 0.4,δλ

+
22
(u1,u4) = 0.6. That is

δλ2(u1,u4) = ([0.2,0.4], [0.4,0.6]). Similarly, we calculate δλ1(u1,u2) = ([0.3,0.4], [0.3,0.4]),
δλ1(u1,u3) = ([0.3,0.4], [0.3,0.4]) and δλ2(u1,u3) = ([0.3,0.4], [0.3,0.5]),
δλ2(u2,u3) = ([0.3,0.4], [0.3,0.5]), δλ1(u2,u4) = ([0.2,0.3], [0.4,0.6]),
δλ2(u2,u4) = ([0.3,0.4], [0.3,0.5]), δλ1(u3,u4) = ([0.2,0.3], [0.4,0.6]).

Definition 3.10. Let G̃= {µ,λ1,λ2, ...,λk} be a connected IVPFGS of GS G∗= {Q,R1,R2, ...,Rk}.
For each ui ∈ Q, the λ s

1J − eccentricity of ui, denoted by eλ s
1J
(ui), is defined as eλ s

1J
(ui) =

max{δλ s
1J
(ui,u j)/ui ∈ Q,(ui,u j) ∈ RJ} for all s = −,+. For each ui ∈ Q, the λ s

2J − eccentricity
of ui, denoted by eλ s

2J
(ui), is defined as eλ s

2J
(ui) = max{δλ s

2J
(ui,u j)/ui ∈ Q,(ui,u j) ∈ RJ} for

all s = −,+. For each ui ∈ Q, the λJ − eccentricity of ui, denoted by eλJ (ui), is defined as
eλJ (ui) = ([e

λ
−
1J
(ui),eλ

+
1J
(ui)], [eλ

−
2J
(ui),eλ

+
2J
(ui)]) for all J = 1,2, ...,k.
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Definition 3.11. Let G̃= {µ,λ1,λ2, ...,λk} be a connected IVPFGS of GS G∗= {Q,R1,R2, ...,Rk}.
The λ s

1J − radius of G̃ is denoted by rλ s
1J
(G) and is defined as rλ s

1J
(G) = min{eλ s

1J
(ui)/ui ∈ Q}

for all s = −,+. The λ s
2J − radius of G̃ is denoted by rλ s

2J
(G) and is defined as rλ s

2J
(G) =

min{eλ s
2J
(ui)/ui ∈ Q} for all s = −,+. The λJ − radius of G̃ is denoted by rλJ (G) and is defined

as rλJ (G) = ([r
λ
−
1J
(G),rλ

+
1J
(G)], [r

λ
−
2J
(G),rλ

+
2J
(G)]) for all J = 1,2, ...,k.

Definition 3.12. Let G̃ = {µ,λ1,λ2, ...,λk} be a connected IVPFGS of graph structure G∗ =
{Q,R1,R2, ...,Rk}. The λ s

1J − diameter of G̃ is denoted by dλ s
1J
(G) and is defined as dλ s

1J
(G) =

max{eλ s
1J
(ui)/ui ∈ Q} for all s = −,+. The λ s

2J − diameter of G̃ is denoted by dλ s
2J
(G) and is

defined as dλ s
2J
(G) = max{eλ s

2J
(ui)/ui ∈ Q} for all s = −,+. The λJ − diameter of G̃ is denoted

by dλJ (G) and is defined as dλJ (G) = ([d
λ
−
1J
(G),dλ

+
1J
(G)], [d

λ
−
2J
(G),dλ

+
2J
(G)]) for all J = 1,2, ...,k.

Example 3.13. From the above Examples-3.3, 3.7, 3.9. By routine computations, it is easy to see
that: e

λ
−
J
− eccentricity and eλ

+
J
− eccentricity of each vertex is

e
λ
−
11
(u1) = 0.3, e

λ
−
12
(u1) = 0.3, e

λ
−
11
(u2) = 0.3, e

λ
−
12
(u2) = 0.3,

e
λ
−
11
(u3) = 0.3, e

λ
−
12
(u3) = 0.3, e

λ
−
11
(u4) = 0.2, e

λ
−
12
(u4) = 0.3,

eλ
+
11
(u1) = 0.4, eλ

+
12
(u1) = 0.4, eλ

+
11
(u2) = 0.4, eλ

+
12
(u2) = 0.3,

eλ
+
11
(u3) = 0.4, eλ

+
12
(u3) = 0.4, eλ

+
11
(u4) = 0.3, eλ

+
12
(u4) = 0.4

e
λ
−
21
(u1) = 0.3, e

λ
−
22
(u1) = 0.4, e

λ
−
21
(u2) = 0.4, e

λ
−
22
(u2) = 0.3,

e
λ
−
21
(u3) = 0.4, e

λ
−
22
(u3) = 0.3, e

λ
−
21
(u4) = 0.4, e

λ
−
22
(u4) = 0.4,

eλ
+
21
(u1) = 0.4, eλ

+
22
(u1) = 0.6, eλ

+
21
(u2) = 0.6, eλ

+
22
(u2) = 0.5,

eλ
+
21
(u3) = 0.6, eλ

+
22
(u3) = 0.5, eλ

+
21
(u4) = 0.6, eλ

+
22
(u4) = 0.6

λJ − eccentricity of each vertex is
eλ1(u1) = ([0.3,0.4], [0.3,0.4]) eλ2(u1) = ([0.3,0.4], [0.4,0.6]),
eλ1(u2) = ([0.3,0.4], [0.4,0.6]), eλ2(u2) = ([0.3,0.3], [0.3,0.5]),
eλ1(u3) = ([0.3,0.4], [0.4,0.6]), eλ2(u3) = ([0.3,0.4], [0.3,0.5]),
eλ1(u4) = ([0.2,0.3], [0.4,0.6]), eλ2(u4) = ([0.3,0.4], [0.4,0.6]),
λ1 − radius of G̃ is rλ1(G) = ([0.2,0.3], [0.3,0.4]) and
λ2 − radius of G̃ is rλ2(G) = ([0.3,0.3], [0.3,0.5])
λ1 −diameter of G̃ is dλ1(G) = ([0.3,0.4], [0.4,0.6]) and
λ2 −diameter of G̃ is dλ2(G) = ([0.3,0.4], [0.4,0.6]) for all J = 1,2.

Definition 3.14. A vertex ui ∈ Q is called a λJ − central vertex of a connected IVPFGS G̃ =
{µ,λ1,λ2, ...,λk} of GS G∗ = {Q,R1,R2, ...,Rk}, if rλ s

1J
(G) = eλ s

1J
(ui) and rλ s

2J
(G) = eλ s

2J
(ui) for

all s =−,+ and the set of all λJ − central vertices of an IVPFGS is denoted by C(G̃).

Definition 3.15. A connected IVPFGS G̃ = {µ,λ1,λ2, ...,λk} is a λJ − sel f centered GS, if every
vertex of G̃ is a λJ −central vertex, that is rλ s

1J
(G) = eλ s

1J
(ui) and rλ s

11
(G) = rλ s

12
(G) = ...= rλ s

1k
(G)

and rλ s
2J
(G) = eλ s

2J
(ui) and rλ s

21
(G) = rλ s

22
(G) = ...= rλ s

2k
(G) ∀ ui ∈ Q, J = 1,2, ...,k, s =−,+ .

Example 3.16. Consider a connected IVPFGS G̃ = {µ,λ1,λ2,λ3} of GS G∗ = {Q,R1,
R2,R3} such that µ = {u1([0.3,0.4], [0.4,0.5]),u2([0.4,0.5], [0.3,0.4]),u3([0.3,0.5], [0.4,0.6])} as
shown in Figure-2. By routine computations, it is easy to see that:

FIGURE 2. G̃ = (µ,λ1,λ2,λ3) is λJ − sel f centered IVPFGS of G∗

(i) λJ −distance
δλ1(u1,u2) = ([0.3,0.4], [0.4,0.5]), δλ2(u2,u3) = ([0.3,0.4], [0.4,0.5]),
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δλ3(u1,u3) = ([0.3,0.4], [0.4,0.5])
(ii) λJ − eccentricity of each vertex is
eλ1(u1) = ([0.3,0.4], [0.4,0.5]), eλ3(u1) = ([0.3,0.4], [0.4,0.5]),
eλ1(u2) = ([0.3,0.4], [0.4,0.5]), eλ2(u3) = ([0.3,0.4], [0.4,0.5]),
eλ3(u3) = ([0.3,0.4], [0.4,0.5])
(iii)λJ − radius of G̃ is rλJ (G) = ([0.3,0.4], [0.4,0.5]) for all J = 1,2,3.
Hence, G̃ is λ − sel f centered interval-valued fuzzy graph structure.

Definition 3.17. A λJ− path cover of an IVPFGS G̃= {µ,λ1,λ2, ...,λk} of GS G∗= {Q,R1,R2, ...,
Rk} is a set P of λJ − paths such that every vertex of G̃ is incident to some λJ − path of P for all
J = 1,2, ...,k.

Example 3.18. Consider a connected IVPFGS G̃ = {µ,λ1,λ2} of GS G∗ = {Q,R1,R2} such that
µ = {u1([0.1,0.3], [0.4,0.6]),u2([0.3,0.4], [0.5,0.7]),u3([0.2,0.3], [0.3,0.5]),
u4([0.1,0.2], [0.2,0.3]),u5([0.4,0.5], [0.3,0.6]),u6([0.2,0.4], [0.4,0.8])} as shown in Figure-3. In

FIGURE 3. G̃ = (µ,λ1,λ2) is IVPFGS of G∗

this example, the some λ1− path covers of an interval-valued fuzzy graph structure G̃=(µ,λ1,λ2)
are M1

λ1
= {u1u2u3,u4u5,u5u6}, M2

λ1
= {u1u2u3,u4u5u6}, M3

λ1
= {u1u2,u2u3,u4u5u6}, M4

λ1
=

{u5u6,u5u4,u1u2,u2u3}. Similarly, we can calculate λ2 − path covers of G̃.

Definition 3.19. An λJ−edge covers of an IVPFGS G̃= {µ,λ1,λ2, ...,λk} of GS G∗= {Q,R1,R2, ...,
Rk} is a set EλJ of λJ − edge such that every vertex of G̃ is incident to some λJ − edge of E for all
J = 1,2, ...,k.

Example 3.20. In above example-3.18, as shown in figure-3. The some of the λJ − edge covers
of an IVPFGS G̃ = {µ,λ1,λ2} are Eλ1 = {(u1,u2),(u2,u3),(u4,u5),(u5,u6)},
Eλ2 = {(u1,u6),(u2,u4),(u3,u5)}

Theorem 3.21. Every complete IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of GS G∗ = {Q,R1,R2,
...,Rk} is a λ − sel f centered IVPFGS and r

λ
−
1J
(G) = 1

µ
−
1
, rλ

+
1J
= 1

µ
+
1

and r
λ
−
2J
(G) = 1

µ
−
2
, rλ

+
2J
= 1

µ
+
2

,

where µ
−
1 is the least vertex membership, µ

+
1 is the greatest vertex membership and µ

−
2 is the least

vertex membership, µ
+
2 is the greatest vertex membership for all J = 1,2, ...,k.

Proof. Let G̃ = {µ,λ1,λ2, ...,λk} be a complete IVPFGS. To prove that G̃ is a λ1J − sel f centered
IVPFGS. That is we have to show that every vertex is a λ1J −central vertex. First we claim that G̃
is a λ1J-self centered IVPFG. Then r

λ
−
1J
(G) = 1

µ
−
1 (ui)

and rλ
+
1J
(G) = 1

µ
+
1 (ui)

, where µ
−
1 (ui) is the least

and µ
+
1 (ui) is the greatest. Now fix a vertex ui ∈ Q such that µ

−
1 (ui) is least vertex membership

value of G̃ and µ
+
1 (ui) is greatest vertex membership value of G̃.

Case1: Consider all the ui −u j paths P of length n in G̃, ∀ u j ∈ Q.

(i) If n = 1, then λ
−
1J(ui) = min{µ

−
1 (ui),µ

−
1 (u j)}. Therefore, λ

−
1J − length of P = l

λ
−
1J
(P) = 1

µ
−
1 (ui)

and λ
+
1J(ui,u j) = min{µ

+
1 (ui),µ

+
1 (u j)}. Therefore, λ

+
1J − length of P = lλ+

1J
(P) = 1

µ
+
1 (ui)

.

(ii) If n > 1, then one of the edges of P possesses the λ
−
1J − strength of µ

−
1 (ui) and hence, λ

−
1J −

length of a ui −u j path will exceed 1
µ
−
1 (ui)

. So that, λ
−
1J − length of P = l

λ
−
1J
(P)> 1

µ
−
1 (ui)

.

Hence, δ
λ
−
1J
(ui,u j) = min(l

λ
−
1J
(p)) =

1
µ
−
1 (ui)

, ∀u j ∈ Q. (3.1)
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Also one of the edges of P possesses the λ
+
1J − strength of µ

+
1 (ui) and hence, λ

+
1J − length of P

will exceed 1
µ
+
1 (ui)

. that is, λ
+
1J − length of P = lλ+

1J
(P)> 1

µ
+
1 (ui)

.

Hence, δλ
+
1 (ui)

(ui,u j) = min(lλ+
1J
(p)) =

1
µ
+
1 (ui)

, ∀u j ∈ Q (3.2)

Case 2: Let uk ̸= ui ∈ Q. Consider all uk −u j paths X of length n in G̃, ∀ u j ∈ Q.
(i) If n = 1, then λ

−
1J(uk,u j) = min{µ

−
1 (uk),µ

−
1 (u j)} ≥ µ

−
1 (ui), since µ

−
1 (ui) is the least. Hence,

λ
−
1J − length (Q) = l

λ
−
1J
(X) = 1

λ
−
1J(uk,u j)

≤ 1
µ
−
1 (ui)

.

Also λ
+
1J(uk,u j) = min{µ

+
1 (uk),µ

+
1 (u j)} ≤ µ

+
1 (ui), since µ

+
1 (ui) is the greatest. Hence, λ

+
1J −

length (Q) = lλ+
1J
(X) = 1

λ
+
1J(uk,u j)

≥ 1
µ
+
1 (ui)

.

(ii) If n = 2, then l
λ
−
1J
(X) = 1

λ
−
1J(uk,uk+1)

+ 1
λ
−
1J(uk+1,u j)

≤ 2
µ
−
1 (ui)

, Since, µ
−
1 (ui) is the least.

Also lλ+
1J
(X) = 1

λ
+
1J(uk,uk+1)

+ 1
λ
+
1J(uk+1,u j)

≥ 2
µ
+
1 (ui)

, Since, µ
+
1 (ui) is the greatest.

(iii) If n > 2, then l
λ
−
1J
(X)≤ n

µ
−
1 (ui)

, since µ
−
1 (ui) is the least.

Also lλ+
1J
(X)≥ n

µ
+
1 (ui)

, since µ
+
1 (ui) is the greatest.

Hence, δ
λ
−
1J
(uk,u j) = min(l

λ
−
1J
(X))≤ 1

µ
−
1 (ui)

, ∀uk,u j ∈ Q. and

δλ
+
1J
(uk,u j) = min(lλ+

1J
(X))≥ 1

µ
+
1 (ui)

, ∀uk,u j ∈ Q (3.3)

From equation 3.1, 3.2 and 3.3, we have,
e

λ
−
1J
(ui) = min(δ

λ
−
1J
(ui,u j)) =

1
µ
−
1 (ui)

, ∀ui ∈ Q and

eλ
+
1J
(ui) = min(δλ

+
1J
(ui,u j)) =

1
µ
+
1 (ui)

, ∀ui ∈ Q. (3.4)

Hence, G̃ is a λ
−
1J and λ

+
1J self centered IVPFG.

Now, r
λ
−
1J
(G) = min(e

λ
−
1J
(ui)) =

1
µ
−
1 (ui)

, since by 3.4 r
λ
−
1J
(G) = 1

µ
−
1 (ui)

, where µ
−
1 (ui) is the least

and rλ
+
1J
(G) = min(eλ

+
1J
(ui)) =

1
µ
+
1 (ui)

, since by 3.4 rλ
+
1J
(G) = 1

µ
+
1 (ui)

, where µ
+
1 (ui) is the greatest.

Next, we claim that G̃ is a λ2J-self centered IVPFGS. Then r
λ
−
2J
(G) = 1

µ
−
2 (ui)

and rλ
+
2J
(G) = 1

µ
+
2 (ui)

,

where µ
−
2 (ui) is the least and µ

+
2 (ui) is the greatest. Now fix a vertex ui ∈ Q such that µ

−
2 (ui) is

least vertex membership value of G̃ and µ
+
2 (ui) is greatest vertex membership value of G̃.

Case 1: Consider all the ui −u j paths P of length n in G̃, ∀ u j ∈ Q.
(i) If n = 1, then λ

−
2J(ui,u j) = max{µ

−
2 (ui),µ

−
2 (u j)} = µ

−
2 (ui). Therefore, λ

−
2 − length of P =

l
λ
−
2
(P) = 1

µ
−
2 (ui)

and λ
+
2J(ui,u j) = max{µ

+
2 (ui),µ

+
2 (u j)} = µ

+
2 (ui). Therefore, λ

+
2J − length of

P = lλ+
2J
(P) = 1

µ
+
2 (ui)

.

(ii) If n > 1, then one of the edges of P possesses the λ
−
2J − strength of µ

−
2 (ui) and hence, λ

−
2J −

length of a ui −u j path will exceed 1
µ
−
2 (ui)

. So that, λ
−
2J − length of P = l

λ
−
2J
(P)> 1

µ
−
2 (ui)

.

Hence, δ
λ
−
2J
(ui,u j) = max(l

λ
−
2J
(p)) =

1
µ
−
2 (ui)

, ∀u j ∈ Q. (3.5)

Also one of the edges of P possesses the λ
+
2J − strength of µ

+
2 (ui) and hence, λ

+
2J − length of P

will exceed 1
µ
+
2 (ui)

. that is, λ
+
2J − length of P = lλ+

2J
(P)> 1

µ
+
2 (ui)

.

Hence, δλ
+
2J
(ui,u j) = max(lλ+

2J
(p)) =

1
µ
+
2 (ui)

, ∀u j ∈ Q. (3.6)
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Case 2: Let uk ̸= ui ∈ Q. Consider all uk −u j paths X of length n in G̃, ∀ u j ∈ Q.
(i) If n = 1, then λ

−
2J(uk,u j) = max{µ

−
2 (uk),µ

−
2 (u j)} ≥ µ

−
2 (ui), since µ

−
2 (ui) is the least. Hence,

λ
−
2J − length (Q) = l

λ
−
2J
(X) = 1

λ
−
2J(uk,u j)

≤ 1
µ
−
2 (ui)

.

Also λ
+
2J(uk,u j) = max{µ2(uk)

+,µ+
2 (u j)} ≤ µ

+
2 (ui), since µ

+
2 (ui) is the greatest. Hence, λ

+
2J −

length (Q) = lλ+
2J
(P) = 1

λ
+
2J(uk,u j)

≥ 1
µ
+
2 (ui)

.

(ii) If n = 2, then l
λ
−
2J
(X) = 1

λ
−
2J(uk,uk+1)

+ 1
λ
−
2J(uk+1,u j)

≤ 2
µ
−
2 (ui)

, Since, µ
−
2 (ui) is the least.

Also lλ+
2J
(X) = 1

λ
+
2J(uk,uk+1)

+ 1
λ
+
2J(uk+1,u j)

≥ 2
µ
+
2 (ui)

, Since, µ
+
2 (ui) is the greatest.

(iii) If n > 2, then l
λ
−
2J
(X)≤ n

µ
−
2 (ui)

, since µ
−
2 (ui) is the least.

Also lλ+
2J
(X)≥ n

µ2(ui)+
, since µ

+
2 (ui) is the greatest.

Hence, δ
λ
−
2J
(uk,u j) = max(l

λ
−
2
(X))≤ 1

µ
−
2 (ui)

, ∀uk,u j ∈ Q. and

δλ
+
2J
(uk,u j) = max(lλ+

2J
(X))≥ 1

µ
+
2 (ui)

, ∀uk,u j ∈ Q. (3.7)

From equation 3.5, 3.6 and 3.7, we have,
e

λ
−
2J
(ui) = max(δ

λ
−
2J
(ui,u j)) =

1
µ
−
2 (ui)

, ∀ui ∈ Q and

eλ
+
2J
(ui) = max(δλ

+
2J
(ui,u j)) =

1
µ
+
2 (ui)

, ∀ui ∈ Q. (3.8)

Hence, G̃ is a λ
−
2J and λ

+
2J self centered IVPFG.

Now, r
λ
−
2J
(G) = min(e

λ
−
2J
(ui)) =

1
µ
−
2 (ui)

, since by (7) r
λ
−
2J
(G) = 1

µ
−
2 (ui)

, where µ
−
2 (ui) is the least

and rλ
+
2J
(G) = max(eλ

+
2J
(ui)) =

1
µ
+
2 (ui)

, since by (8) rλ
+
2J
(G) = 1

µ
+
2 (ui)

, where µ
+
2 (ui) is the greatest.

From equation 3.4 and 3.8, every vertex of G̃ is a central vertex. Hence G̃ is a self centered
IVPFGS. □

Corollary 3.22. Every complete IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of GS G∗ = {Q,R1,R2,
...,Rk} is a self centered IVPFGS and rλ1J ,λ2J (G) = ([ 1

µ
−
1 (ui)

, 1
µ
+
1 (ui)

], [ 1
µ
−
2 (ui)

, 1
µ
+
2 (ui)

]) where, µ
−
1 (ui)

is the least vertex membership and µ
+
1 (ui) is the greatest vertex membership. µ

−
2 (ui) is the least

vertex membership and µ
+
2 (ui) is the greatest vertex membership.

Proof. By above theorem-3.21, every complete IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of GS
G∗ = {Q,R1,R2, ...,Rk} is a self centered IVPFGS.
rλ1J ,λ2J (G) = (rλ1J (G),rλ2J (G)) = ([min{r

λ
−
1J(G)},min{rλ

+
1J(G)}], [min{r

λ
−
2J(G)},

min{rλ
+
2J(G)}]). rλ1J ,λ2J (G) = ([ 1

µ
−
1 (ui)

, 1
µ
+
1 (ui)

], [ 1
µ
−
2 (ui)

, 1
µ
+
2 (ui)

]), since µ
−
1 (ui) is the least membership

value and µ
+
1 (ui) is the greatest membership value. µ

−
2 (ui) is the least membership value and

µ
+
2 (ui) is the greatest membership value. □

Remark 3.23. Converse of the above theorem-3.21 is not true. By Example-3.16. Then G̃ is self
centered IVPFG but not complete.

Lemma 3.24. An IVPFGS G̃ = {µ,λ1,λ2, ...,λk} of GS G∗ = {Q,R1,R2, ...,Rk} is a self centered
IVPFGS if and only if r

λ
−
1J
(G) = d

λ
−
1J
(G), rλ

+
1J
(G) = dλ

+
1J
(G) and r

λ
−
2J
(G) = d

λ
−
2J
(G), rλ

+
2J
(G) =

dλ
+
2J
(G).

Theorem 3.25. Let G̃ = {µ,λ1,λ2, ...,λk} is a connected IVPFGS. Then for at least one edge
max(λ−

1J(ui,u j)) = λ
−
1J(ui,u j), max(λ+

1J(ui,u j)) = λ
+
1J(ui,u j) and max(λ−

2J(ui,u j)) = λ
−
2J(ui,u j),

max(λ+
2J(ui,u j)) = λ

+
2J(ui,u j)
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Proof. If G̃ = {µ,λ1,λ2, ...,λk} be a connected IVPFGS. Consider a vertex ui whose least mem-
bership value µ

−
1 (ui) and greatest membership value is µ

+
1 (ui) and least membership value µ

−
2 (ui)

and greatest membership value is µ
+
2 (ui).

Case 1: Let µ
−
1 (ui) be the least value and µ

+
1 (ui) be the greatest value and

µ
−
2 (ui) be the least value and µ

+
2 (ui) be the greatest value and in the vertex ui ∈ Q. Let ui,u j ∈ Q,

then ([λ−
1J(ui,u j),λ

+
1J(ui,u j)], [λ

−
2J(ui,u j),λ

+
2J(ui,u j)]) = ([µ−

1 (ui),µ
+
1 (ui)], [µ

−
2 (ui),µ

+
2 (ui)]) and

([max(λ−
1J(ui,u j)),max(λ+

1J(ui,u j))], [max(λ−
2J(ui,u j)),max(λ+

2J(ui,u j))]) =
([µ−

1 (ui),µ
+
1 (ui)], [µ

−
2 (ui),µ

+
2i (ui)]). The strength of all the edges which are incident on the vertex

ui is ([µ−
1 (ui),µ

+
1 (ui)], [µ

−
2 (ui),µ

+
2 (ui)]). Since G̃ is a connected IVPFGS.

Case 2: Let µ
−
1 (uk) be the least value and µ

+
1 (ui) be the greatest value and µ

−
2 (uk) be the least

value and µ
+
2 (ui) be the greatest value in the vertex ui,uk ∈ Q. Then ([λ−

1J(ui,uk),λ
+
1J(ui,uk)],

[λ−
2J(ui,uk),λ

+
2J(ui,uk)]) = ([µ−

1 (uk),µ
+
1 (ui)], [µ

−
2 (uk),µ

+
2 (ui)]). Since, it is a connected IVPFGS,

there will be an edge between ui and uk, max(λ−
1J(ui,uk)) = µ

−
1 (uk), max(λ+

1J(ui,uk)) = µ
+
1 (ui)

and max(λ−
2J(ui,uk)) = µ

−
2 (uk), max(λ+

2 (ui,uk)) = µ
+
2 (ui). □

Theorem 3.26. Let G̃ = {µ,λ1,λ2, ...,λk} be a connected IVPFGS of GS G∗ = {Q,R1,R2,
...,Rk} with λJ − paths covers P1 and P2 of G̃. Then the necessary and sufficient condition
for an IVPFGS to be self centered IVPFGS is δ

λ
−
1J(ui,u j)

= r
λ
−
1J
(G), ∀ (ui,u j) ∈ P1, δλ

+
1J(ui,u j)

=

dλ
+
1J
(G), ∀ (ui,u j) ∈ P2, and

δ
λ
−
2J(ui,u j)

= r
λ
−
2J
(G), ∀ (ui,u j) ∈ P1, δλ

+
2J(ui,u j)

= dλ
+
2J
(G), ∀ (ui,u j) ∈ P2. (3.9)

Proof. Necessary Condition: We now assume that G̃= {µ,λ1,λ2, ...,λk} is a self centered IVPFGS
and we have to prove that equation 3.9 holds. Suppose equation 3.9 does not holds. then we have,
δ

λ
−
1J
(ui,u j) ̸= r

λ
−
1J
(G), for some (ui,u j) ∈ P1 and δλ

+
1J
(ui,u j) ̸= dλ

+
1J
(G), for some (ui,u j) ∈ P2 and

δ
λ
−
2J
(ui,u j) ̸= r

λ
−
2J
(G), for some (ui,u j) ∈ P1 and δλ

+
2J
(ui,u j) ̸= dλ

+
2J
(G), for some (ui,u j) ∈ P2. By

using Lemma-3.24, the above inequality becomes δ
λ
−
1J
(ui,u j) ̸= r

λ
−
1J
(G), for some (ui,u j) ∈ P1

and δλ
+
1J
(ui,u j) ̸= dλ

+
1J
(G), for some (ui,u j) ∈ P2 and δ

λ
−
2J
(ui,u j) ̸= r

λ
−
2J
(G), for some (ui,u j) ∈ P1

and δλ
+
2J
(ui,u j) ̸= dλ

+
2J
(G), for some (ui,u j) ∈ P2. Then e

λ
−
1J
(ui) ̸= r

λ
−
1J
(G), eλ

+
1J
(ui) ̸= rλ

+
1J
(G)

and e
λ
−
2J
(ui) ̸= r

λ
−
2J
(G), eλ

+
2J
(ui) ̸= rλ

+
2J
(G) for some ui ∈ Q, which implies G̃ is not self centered

IVIFG, which is contradiction. Hence, δ
λ
−
1J
(ui,u j) = r

λ
−
1J
(G), ∀ (ui,u j) ∈ P1 and δλ

+
1J
(ui,u j) =

dλ
+
1J
(G), ∀ (ui,u j) ∈ P2 and δ

λ
−
2J
(ui,u j) = r

λ
−
2J
(G), ∀ (ui,u j) ∈ P1 and δλ

+
2J
(ui,u j) = dλ

+
2J
(G),

∀ (ui,u j) ∈ P2.
Sufficient Condition: We now assume that equation 3.9 holds and we have to prove that G̃ is a
self centered IVPFGS. If equation 3.9 holds, then we’ve e

λ
−
1J
(ui) = δ

λ
−
1J
(ui,u j), for all (ui,u j) ∈

P1, eλ
+
1J
(ui) = δλ

+
1J
(ui,u j), for all (ui,u j) ∈ P2 and e

λ
−
2J
(ui) = δ

λ
−
2J
(ui,u j), for all (ui,u j) ∈ P1,

eλ
+
2J
(ui) = δλ

+
2J
(ui,u j), for all (ui,u j) ∈ P2. Which implies e

λ
−
1J
(ui) = r

λ
−
1J
(G), eλ

+
1J
(ui) = rλ

+
1J
(G)

and e
λ
−
2J
(ui) = r

λ
−
2J
(G), eλ

+
2J
(ui) = rλ

+
2J
(G) for all ui ∈ Q, J = 1,2, ...,k. Hence, G̃ is not self cen-

tered IVPFGS. □

Corollary 3.27. If G̃ = {µ,λ1,λ2, ...,λk} is a connected IVPFGS of GS G∗ = {Q,R1,R2,
...,Rk} with an λJ − edge cover EλJ of G̃. Then the necessary and sufficient condition for an
IVPFGS to be λJ − sel f centered IVPFGS is δ

λ
−
1J
(ui,u j) = r

λ
−
1J
(G), ∀ (ui,u j) ∈ Eλ1 , δλ

+
1J
(ui,u j) =

dλ
+
1J
(G), ∀ (ui,u j) ∈ Eλ2 and δ

λ
−
2J
(ui,u j) = r

λ
−
2J
(G), ∀ (ui,u j) ∈ Eλ1 ,

δλ
+
2J
(ui,u j) = dλ

+
2J
(G), ∀ (ui,u j) ∈ Eλ2 . (3.10)
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Theorem 3.28. Embedding Theorem: Let H̃ = {µ
′
,λ

′
1,λ

′
2, ...,λ

′
k} is a connected λJ − sel f cen-

tered IVPFGS. Then there exist a connected IVPFGS G̃ such that < C(G̃) > is isomorphic to H̃.
Also d

λ
−
1J
(G) = 2r

λ
−
1J
(G), dλ

+
1J
(G) = 2rλ

+
1J
(G) and d

λ
−
2J
(G) = 2r

λ
−
2J
(G), dλ

+
2J
(G) = 2rλ

+
2J
(G).

Proof. Given that H̃ = {µ
′
,λ

′
1,λ

′
2, ...,λ

′
k} is a connected λJ−sel f centered IVPFGS. Let d

λ
−
1J
(H)=

p1, dλ
+
1J
(H) = q1 and d

λ
−
2J
(H) = p2, dλ

+
2J
(H) = q2. Then construct G̃ from H̃ as follows:

Take two vertices ui,u j ∈ Q with µ
−
1 (ui) = µ

−
1 (u j) =

1
p1
,µ+

1 (ui) = µ
+
1 (u j) =

1
2q1

and µ
−
2 (ui) =

µ
−
2 (u j)=

1
p2
,µ+

2 (ui)= µ
+
2 (u j)=

1
2q2

and join all the vertices of H̃ to both ui and u j with λ
−
1J(ui,uk)=

λ
−
1J(u j,uk) =

1
p1
, λ

+
1J(u j,uk) = λ

+
1J(u j,uk) =

1
2q1

and λ
−
2J(u j,uk) = λ

−
2J(u j,uk) =

1
p2
, λ

+
2J(u j,uk) =

λ
+
2J(u j,uk) =

1
2q2

for all uk ∈ Q
′
. Put µ

−
1 (ui) = (µ−

1 )
′
(ui), µ

+
1 (ui) = (µ+

1 )
′
(ui) and µ

−
2 (ui) =

(µ−
2 )

′
(ui), µ

+
2 (ui) = (µ+

2 )
′
(ui) for all vertices in H̃. and λ

−
1J(ui,u j) = (λ−

1J)
′
(ui,u j),

λ
+
1J(ui,u j) = (λ+

1J)
′
(ui,u j) for all edges in H̃ and λ

−
2J(ui,u j) = (λ−

2J)
′
(ui,u j), λ

+
2J(ui,u j) =

(λ+
2J)

′
(ui,u j) for all -edges in H̃.

Claim: G̃ is an IVPFGS. First note that µ
−
1 (ui) ≤ µ

−
1 (uk), µ

−
2 (ui) ≤ µ

−
2 (uk) for all uk ∈ H̃.

If possible, let µ
−
1 (ui) > µ

−
1 (uk) and µ

−
2 (ui) > µ

−
2 (uk) for at least one vertex uk ∈ H̃. Then

1
p1

> µ
−
1 (uk),

1
p2

> µ
−
2 (uk), that is p1 <

1
µ
−
1 (uk)

≤ 1
λ
−
1J(uk,ul)

, p2 <
1

µ
−
2 (uk)

≤ 1
λ
−
2J(uk,ul)

, where the last

inequality holds for every ul ∈ Q
′
, since H̃ is an IVPFGS. That is 1

λ
−
1J(uk,ul)

> p1,
1

λ
−
2J(uk,ul)

> p2 for

all uk ∈ H̃ which contradicts that d
λ
−
1J
(H̃)= p1, d

λ
−
2J
(H̃)= p2. Therefore µ

−
1 (ui)≤ µ

−
1 (uk),µ

−
2 (ui)≤

µ
−
2 (uk) for all uk ∈ Q

′
and λ

−
1J(ui,uk)≤ min{µ

−
1 (ui),µ

−
1 (uk)}= 1

p1
, λ

−
2J(ui,uk)≤

max{µ
−
2 (ui),µ

−
2 (uk)} = 1

p2
, similarly, λ

−
1J(u j,uk) ≤ min{µ

−
1 (u j),µ

−
1 (uk)} = 1

p1
, λ

−
2J(u j,uk) ≤

max{µ
−
2 (u j),

µ
−
2 (uk)} = 1

p2
for all uk ∈ Q

′
. Note that µ

+
1 (ui) ≤ µ

+
1 (uk), µ

+
1 (u j) ≤ µ

−
1 (uk) and µ

+
2 (ui) ≤

µ
+
2 (uk), µ

+
2 (u j) ≤ µ

−
2 (uk) for all uk ∈ Q

′
, since dλ

+
1J
(H) = q1J and dλ

+
2J
(H) = q2. Therefore

λ
+
1J(ui,uk) ≤ min{µ

+
1 (ui),µ

+
1 (uk)} = 1

2q1
, λ

+
2J(ui,uk) ≤ max{µ

+
2 (ui),µ

+
2 (uk)} = 1

2q2
, similarly,

λ
+
1J(u j,uk)≤ min{µ

+
1 (u j),µ

+
1 (uk)}= 1

2q1
and λ

+
2J(u j,uk)≤ max{µ

+
2 (u j),µ

+
2 (uk)}

= 1
2q2

. Hence, G̃ is an IVPFGS. Also, e
λ
−
1J
(uk) = p1, e

λ
−
1J
(uk) = p2 for all uk ∈ Q

′
and e

λ
−
1J
(ui) =

e
λ
−
1J
(u j) =

1
λ
−
1J(ui,uk)

+ 1
λ
−
1J(uk,ul)

= 2p1, r
λ
−
1J
(G) = p1, d

λ
−
1J
(G) = 2p1 and e

λ
−
2J
(ui) = e

λ
−
2J
(u j) =

1
λ
−
2J(ui,uk)

+ 1
λ
−
2J(uk,ul)

= 2p2, r
λ
−
2J
(G) = p2, d

λ
−
2J
(G) = 2p2. Next, eλ

+
1J
(uk) = q1, eλ

+
2J
(uk) = q2 for

all uk ∈ Q
′

and eλ
+
1J
(ui) = eλ

+
1J
(u j) =

1
λ
+
1J(ul ,uk)

= 2q1, eλ
+
2J
(ui) = eλ

+
2J
(u j) =

1
λ
+
2J(ul ,uk)

= 2q2 for

all uk ∈ Q
′
. Therefore, rλ

+
1J
(G) = q1, dλ

+
1J
(G) = 2q1 and rλ

+
2J
(G) = q2, dλ

+
2J
(G) = 2q2. Hence,

<C(G̃)> is isomorphic to H̃. □

Theorem 3.29. An IVPFGS G̃= {µ,λ1,λ2, ...,λk} is a λJ−sel f centered if and only if δ
λ
−
1J
(ui,u j)≤

r
λ
−
1J
(G), δλ

+
1J
(ui,u j) ≥ rλ

+
1J
(G) and δ

λ
−
2J
(ui,u j) ≤ r

λ
−
2J
(G), δλ

+
2J
(ui,u j) ≥ rλ

+
2J
(G) for all ui,u j ∈

Q, J = 1,2, ...,k

Proof. We assume that G̃ = {µ,λ1,λ2, ...,λk} is a λJ − sel f centered IVPFGS. That is, e
λ
−
1J
(ui) =

e
λ
−
1J
(u j),eλ

+
1J
(ui) = eλ

+
1J
(u j) and e

λ
−
2J
(ui) = e

λ
−
2J
(u j), eλ

+
2J
(ui) = eλ

+
2J
(u j) for all ui,u j ∈ Q, r

λ
−
1J
(G) =

e
λ
−
1J
(ui), rλ

+
1J
(G) = eλ

+
1J
(ui) and r

λ
−
2J
(G) = e

λ
−
2J
(ui), rλ

+
2J
(G) = eλ

+
2J
(ui) for all ui ∈ Q. Now we wish

to show that δ
λ
−
1J
(ui,u j)≤ r

λ
−
1J
(G), δλ

+
1J
(ui,u j)≥ rλ

+
1J
(G) and δ

λ
−
2J
(ui,u j)≤ r

λ
−
2J
(G), δλ

+
2J
(ui,u j)≥

rλ
+
2J
(G) for all ui,u j ∈ Q. By the definition of λJ − eccentricity, we obtain, δ

λ
−
1J
(ui,u j)≤ e

λ
−
1J
(ui),

δλ
+
1J
(ui,u j) ≥ eλ

+
1J
(ui) and δ

λ
−
2J
(ui,u j) ≤ e

λ
−
2J
(ui), δλ

+
2J
(ui,u j) ≥ eλ

+
2J
(ui) for all ui,vi ∈ Q. This

is possible only when e
λ
−
1J
(ui) = e

λ
−
1J
(u j), eλ

+
1J
(ui) = eλ

+
1J
(u j) and e

λ
−
2J
(ui) = e

λ
−
2J
(u j), eλ

+
2J
(ui) =
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eλ
+
2J
(u j) for all ui,u j ∈ Q. Since, G̃ is a λJ − sel f centered IVPFGS, the above inequality becomes

δ
λ
−
1J
(ui,u j)≤ r

λ
−
1J
(G),δλ

+
1J
(ui,u j)≥ rλ

+
1J
(G) and δ

λ
−
2J
(ui,u j)≤ r

λ
−
2J
(G),

δλ
+
2J
(ui,u j)≥ rλ

+
2J
(G). Conversely, we now assume that δ

λ
−
1J
(ui,u j)≤ r

λ
−
1J
(G), δλ

+
1J
(ui,u j)≥ rλ

+
1J
(G)

and δ
λ
−
2J
(ui,u j)≤ r

λ
−
2J
(G), δλ

+
2J
(ui,u j)≥ rλ

+
2J
(G) for all ui,u j ∈ Q. Then we have to prove that G̃ is

a λJ − sel f centered IVPFGS. Suppose that G̃ is not λJ − sel f centered IVPFGS. Then r
λ
−
1J
(G) ̸=

e
λ
−
1J
(ui),rλ

+
1J
(G) ̸= eλ

+
1J
(ui) and r

λ
−
2J
(G) ̸= e

λ
−
2J
(ui),rλ

+
2J
(G) ̸= eλ

+
2J
(ui) for some ui ∈ Q. Let us as-

sume that e
λ
−
1J
(ui), eλ

+
1J
(ui) and e

λ
−
2J
(ui), eλ

+
2J
(ui) is the least value among all other λJ −eccentricity.

That is, r
λ
−
1J
(G) = e

λ
−
1J
(ui),rλ

+
1J
(G) = eλ

+
1J
(ui) and r

λ
−
2J
(G) = e

λ
−
2J
(ui),rλ

+
2J
(G) = eλ

+
2J
(ui). (i)

where e
λ
−
1J
(ui) < e

λ
−
1J
(u j),eλ

+
1J
(ui) < eλ

+
1J
(u j) and e

λ
−
2J
(ui) < e

λ
−
2J
(u j),eλ

+
2J
(ui) < eλ

+
2J
(u j) for some

ui,u j ∈ Q and δ
λ
−
1J
(ui,u j) = e

λ
−
1J
(u j)> e

λ
−
1J
(ui), δλ

+
1J
(ui,u j) = eλ

+
1J
(u j)> eλ

+
1J
(ui) and δ

λ
−
2J
(ui,u j) =

e
λ
−
2J
(u j)> e

λ
−
2J
(ui), δλ

+
2J
(ui,u j) = eλ

+
2J
(u j)> eλ

+
2J
(ui) for some ui,u j ∈ Q. (ii)

Hence, from equation (i) and (ii), we have, δ
λ
−
1J
(ui,u j) > r

λ
−
1J
(G), δλ

+
1J
(ui,u j) > rλ

+
1J
(G), and

δ
λ
−
2J
(ui,u j) > r

λ
−
2J
(G), δλ

+
2J
(ui,u j) > rλ

+
2J
(G), for some ui,u j ∈ Q, which is a contradiction to

the fact that δ
λ
−
1J
(ui,u j)≤ r

λ
−
1J
(G), δλ

+
1J
(ui,u j)≥ rλ

+
1J
(G) and δ

λ
−
2J
(ui,u j)≤ r

λ
−
2J
(G), δλ

+
2J
(ui,u j)≥

rλ
+
2J
(G) for all ui,u j ∈ Q. Hence, G̃ = {µ,λ1,λ2, ...,λk} is a λJ − sel f centered IVPFGS. □

4. APPLICATION

The results of this study can be used in many applications in human life. In this article, we’ll use
our findings to helf people live in ways that will keep them safe during times of epidemic. Recent
events have made us acutely aware of the Covid-19 virus’s effects. Take this as an illustration. In
these circumstances, we shall make use of our methods to reduce the spread of disease. We need to
strengthen security between all states in our country because of the spread of this infectious disease
from one person to another and because it can affect many people. We will estimate the proportion
of people infected with an infectious disease and the proportion of people who have fully recovered
in the cities of our nation by using uncertainty values. Consider Q as the nation, and u1, u2, u3,
and u4 as its cities. By using IVPFGS 3.1, we will evaluate this study. Assume that µ

−
1 represents

people who are most vulnerable to infectious diseases and assume µ
+
1 to be a representation of

those who have recovered from infectious diseases. Assume µ
−
2 is a representation of those who

are most vulnerable to other ailments, and µ
+
2 is a representation of those who have recovered

from other ailments. Let us consider the IVPFGS vertex set Q = {u1,u2,u3,u4}. Assume that R1

TABLE 1.

Q [µ−
1 , µ

+
1 ] [µ−

2 , µ
+
2 ]

u1 [0.4,0.5] [0.3,0.4]
u2 [0.3,0.4] [0.2,0.4]
u3 [0.3,0.4] [0.3,0.5]
u4 [0.2,0.3] [0.4,0.6]

is a measurement of the contagion effect between two states. Assume that R2 measures the rate at

TABLE 2. The R1 relation is responsible for IVPFGS.

R1 [λ−
11, λ

+
11] [λ−

21, λ
+
21]

u1u2 [0.3,0.4] [0.3,0.4]
u2u4 [0.2,0.3] [0.4,0.6]
u3u4 [0.2,0.3] [0.4,0.6]
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which two states may recover from the effects of contagion. Consider IVPFGS G̃ = {µ,λ1,λ2}

TABLE 3. The R2 relation is responsible for IVPFGS.

R2 [λ−
12, λ

+
12] [λ−

22, λ
+
22]

u1u4 [0.2,0.3] [0.4,0.6]
u2u3 [0.3,0.4] [0.3,0.5]

from Example-3.3, which is depicted in Figure-1. The effect of R1 and R2 spread between two
states in a nation can be ascertained using the definition-3.4. The maximum amount of affect

TABLE 4.

R1 λ1-strength
u1,u2 ([0.3,0.4],[0.3,0.4])

u1,u2,u3 ([0.3,0.4],[0.3,0.4])
u1,u2,u4 ([0.3,0.4],[0.4,0.6])

u1,u2,u3,u4 ([0.3,0.4],[0.4,0.6])
R2 λ2-strength

u1,u2,u3 ([0.3,0.4],[0.3,0.5])
u1,u2,u3,u4 ([0.3,0.4],[0.3,0.5])

reflected in the Table-5 is the impact of R1 and R2 on the states of the nation. According to

TABLE 5.

eλ1(ui) ([e
λ
−
11
(ui),eλ

+
11
(ui)], [eλ

−
21
(ui),eλ

+
21
(ui)])

eλ1(u1) ([0.3,0.4],[0.3,0.4])
eλ1(u2) ([0.3,0.4],[0.4,0.6])
eλ1(u3) ([0.3,0.4],[0.4,0.6])
eλ1(u4) ([0.2,0.3],[0.4,0.6])
eλ2(ui) ([e

λ
−
12
(ui),eλ

+
12
(ui)], [eλ

−
22
(ui),eλ

+
22
(ui)])

eλ2(u1) ([0.3,0.4],[0.4,0.6])
eλ2(u2) ([0.3,0.3],[0.3,0.5])
eλ2(u3) ([0.3,0.4],[0.3,0.5])
eλ2(u4) ([0.3,0.4],[0.4,0.6])

the table-4 and table-5 above, dλ1(G) = ([0.3,0.4], [0.4,0.6]), dλ2(G) = ([0.3,0.4], [0.4,0.6]) has
a higher number of vulnerabilities and the defenses’ recover effect for R1 and R2, while rλ1 =
([0.2,0.3], [0.3,0.4]), rλ2 = ([0.3,0.3], [0.3,0.5]) have the lowest number of vulnerabilities and
defenses’ recover effect for R1 and R2. These applications have the purpose to improve our nation’s
defenses more robust to the degree of its vulnerabilities.

5. CONCLUSIONS

IVPFGS is a notion that the researcher has introduced in this study article. Many other fields
are affected by it. Most often, certain aspects of a graph-theoretical problem can be hazy or
ambiguous. We have introduced the definition of λJ − strength, λJ − length, λJ −distance, λJ −
eccentricity, λJ − radius, λJ −diameter, λJ −centered, λJ − sel f centered, λJ − path cover, λJ −
edge cover. With examples, we also go over some of the characteristics of the λJ − sel f centered
IVPFGS.
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