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DIAMETRAL DESIGNS ARISING FROM HYPERGRAPH OF SOME CLASSES OF
DIAMETER 3 DISTANCE REGULAR GRAPHS

M. I. HUILGOL1∗, S. ASOK1, §

ABSTRACT. Hypergraph is a graph H = (V,E) where V is the set of vertices and E is the set
containing subsets of elements from set V . The elements of set E are called hyperedges and these
need not always be of order 2 as in the case of graphs. In this paper, we have considered 3 classes of
distance regular graphs (DRGs) of diameter 3 namely, crown graph, Johnson graph and Hamming
graph. We have considered hypergraph models of these graphs and obtained the parameters of
diametral designs arising from them. We have also obtained a condition when hypergraph H1 of
DRGs with diameter 3 forms a strongly regular graph with parameters (n, n− 2, n− 4, n− 2).
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1. INTRODUCTION

Hypergraph theory was introduced in 1960s as a generalization of graph theory. Hypergraph
theory considers family of sets as a generalized graph. The expository text, ‘Graphs and Hyper-
graphs’ by Berge [2] in 1973 introduces the concept lucidly. The generalization of graph problems
to hypergraphs brings a number of new perspectives to the field of graph theory. Research into the
theories of set systems and hypergraphs provide a valuable basis to various fields of mathematics
such as matroids, designs, combinatorial probability and Ramsey theory for infinite sets. Hyper-
graph theory studies a mathematical structure on a set of elements with a relation, as a recognised
discipline in a relatively new era. In recent years, theory of hypergraphs has proved to be of major
interest in applications to real world problems. Recent developments in this theory have played a
major part in revealing hypergraphs as a prominent mathematical tool in a variety of applications
[4]. A lot of applications of hypergraphs have been developed in the fields of engineering, particu-
larly in computer science, software engineering, image processing, molecular biology, and related
businesses and industries, chemistry and so on [4], [11], [12], [13].

Hypergraph theory is used to model cellular mobile communication systems, parallel data struc-
ture, and has been used in databases in order to model relational database schemes. For complete
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information on this application, readers can refer [14]. Properties of hypergraphs such as hy-
pergraph transversal computation has a large number of applications in many areas of computer
science such as distributed systems, databases and artificial intelligence [7]. Hypergraph partition-
ing is an interesting property which yields results in many areas such as VLSI designs and data
mining [1]. Bretto [4] has lucidly explained the application of hypergraphs in image processing.
Using hypergraph theory in image modeling seems to be a very natural way to study image pro-
cessing where in each digital image is associated with a hypergraph. This model includes several
features of image such as gray level, neighbourhood and so on which prove to be quite useful in
many aspects.

Usually, in chemistry, molecular structures are represented by (simple) graphs, where vertices
correspond to atoms and edges correspond to covalent bonds between them. A major drawback
of this model is the lack of convenient tools to represent organometalic compounds, benzenoid
systems and other molecules that have delocalized polycentric bonds. Graphical representation
of such bonds are not illustrative enough to model them which makes structural analysis incom-
plete. This drawback can be overcome, if hypergraph model is considered for structures containing
bonds like polycentric bonds, where such bonds are considered as one of the hyperedges. Thus
hypergraph theory plays an important role in chemistry which has been affirmatively explained in
[11], [12], [13] to name a few.

Distance regular graphs (DRGs) are a class of regular graphs that have an intersection array
(b0, b1, ..., bd−1; c1, c2, ..., cd) such that, for any two vertices u and v that are r distance apart,
d(u, v) = r, br is the number of vertices that are adjacent to u and at a distance r+1 to v, cr is the
number of vertices that are adjacent to u and at distance of r − 1 from v. These numbers depend
only on distance r and not on choice of pairs of vertices u and v. A monograph titled ‘Distance-
Regular graphs’ by Brouwer et al. [5] speaks volume of growth and depth of the subject. A detailed
survey on DRGs with the same title by van Dam et al. [18] gives an up to date information about
developments. It is well known that strongly regular graphs are a special class of distance regular
graphs with diameter 2.

Combinatorial design theory is a part of combinatorics that deals with existence, construction
and properties of systems of finite sets whose arrangements satisfy certain conditions. Balanced
incomplete block (BIB)-designs and partially balanced incomplete block (PBIB)-designs are two
major subfields finding a wide range of applications in group theory, graph theory, number theory,
information theory, combinatorial matrix theory, finite geometries, statistics, computer science,
biology, engineering, etc. In [10], Ionin and Shrikhande defined (v, k, λ, µ) designs over a regular
graph G with blocks as certain k-subsets of vertices and replication number r = 2λ−µ. Motivated
by this work, Walikar et al. in [19] introduced (v, β0, µ) design over regular graphs G where blocks
are maximum independent sets of G. Huilgol et al. introduced a new partially balanced incomplete
block (PBIB)-designs, called diametral designs with parameters (v, b, r, diam(G)+1, λ, µ) arising
from strongly regular graphs of order up to 50 and extended up to 100, where the blocks are
vertices of diametral paths of G [9], [8].

In this paper we consider the hypergraph model Hk where k ≥ 1 of distance regular graphs as
given in [11], [13]. In particular we have considered DRGs - Crown graph Kn,n−I , Johnson graph
J(n, k) (when k is 3) and Hamming graph H(d, q) (when d is 3) all of which are having diameter
3. On taking their hypergraph H1, the diameter of these graphs reduces to 2. Depending upon their
structure, H1(Kn,n − I) is a strongly regular graph hence a DRG, H1(J(n, 3)) and H1(H(3, q))
are neither strongly regular nor distance regular except H1(J(6, 3)) which is strongly regular. We
have constructed diametral designs arising from these hypergraphs and given composition of their
diametral paths by constructing each graph. Also we have given distance based association scheme
for the obtained designs.
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2. PRELIMINARIES

First we consider some basic definitions. Undefined graph theoretical terms are used in the
sense of Buckley and Harary [6].

Definition 2.1. [5] A connected graph G is called distance regular if there are integers bi, ci
(i ≥ 0) such that for any two vertices u, v ∈ G at distance i = d(u, v), there are precisely ci
neighbours of v in Gi−1(u) and bi neighbours of v in Gi+1(u). In particular, G is regular with
degree of each vertex k = b0.

The sequence ι(G) = (b0, b1, . . . , bd−1; c0, c1, . . . , cd), where d is diameter of G is called the
intersection array of G.

The numbers ci, bi and ai where ai = k− bi − ci (i = 0, 1, . . . , d) is the number of neighbours
of v in Gi(u) for d(u, v) = i, are called the intersection numbers of G.

Clearly, b0 = k, bd = c0 = 0,c1 = 1.

Definition 2.2. [5] A regular graph on v vertices and degree k is called a strongly regular graph
with parameters (v, k, λ, µ) if any two adjacent vertices have λ common neighbours and any two
non-adjacent vertices have µ common neighbours and these numbers are independent of the pair
of vertices chosen.

Remark 2.1. [5] All connected strongly regular graphs have diameter 2.

Remark 2.2. [6] If G is a strongly regular graph with parameters (v, k, λ, µ), then (v−k−1)µ =
k(k − 1− λ).

Definition 2.3. [15] A balanced incomplete block (BIB)-design is a set of v elements arranged in
b blocks of k elements each in such a way that each element occurs in exactly r blocks and every
pair of unordered elements in λ blocks. The combinatorial configuration so obtained is called a
(v, b, r, k, λ)-design. A BIB-design satisfies the following conditions.

(1) vr = bk
(2) λ(v − 1) = r(k − 1)
(3) b ≥ v

Definition 2.4. [16] Given a set {1, 2, 3, . . . , v} of v elements, a relation satisfying the following
conditions is said to be an association scheme with m classes.

• Any two elements α and β are ith associates for some i with 1 ≤ i ≤ m and this relation
of being ith associates is symmetric.

• The number of ith associates of each element is ni.
• If α and β are two elements which are ith associates, then the number of elements which

are jth associates of α and kth associates of β is pijk and is independent of the pair of ith

associates α and β.

Definition 2.5. [3] Consider a set V = {1, 2, . . . , v} and an association scheme with m classes
on V . A partially balanced incomplete block (PBIB)-design represented as (v, b, r, k, λ1, . . . , λm)
is a collection of b subsets of V called blocks, each of them containing k elements (k < v) such
that every element occurs in r blocks and any two elements α and β which are ith associates occur
together in λi blocks, numbers λi being independent of the choice of pairs α and β.

The numbers v, b, r, k, λi (i = 1, 2, . . . ,m) are called parameters of first kind and n′
is and

pijk are called parameters of second kind.

Definition 2.6. [9] A (v, b, r, k, λ, µ)-design, called a diametral design (in short) over a strongly
regular graph G = (V,E) of degree d, diameter diam(G), is an ordered pair D = (V,B), where
V = V (G) and B, the set of all diametral paths of G, called blocks, containing vertices belonging
to diametral paths, satisfying following conditions:
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(1) If x, y ∈ V and (x, y) ∈ E, then there are exactly λ-blocks containing {x, y}.
(2) If x, y ∈ V and (x, y) /∈ E, then there are exactly µ-blocks containing {x, y}.

Definition 2.7. [2] A hypergraph Hk = (V,E) consists of a non-empty set of vertices V =
{vi | i = 1, 2, . . . , p} and a family E = {hej | j = 1, 2, . . . , q} of different sized subsets of the set
of vertices. Sets hej are called edges of a hypergraph or hyperedges.
If vi ∈ hej then vertex vi is said to be incident to edge hej .
Cardinality of the set of edges incident to a vertex vi is called the degree of vi and is denoted as
dv.
Cardinality of set of vertices incident to an edge hej of a hypergraph gives the degree of the edge
hej and is denoted as deg(hej).
Any two vertices in a hypergraph Hk are adjacent if they belong to the same hyperedge.

Note: An ordinary graph is a special case of a hypergraph with degrees of all edges equal to
two.

Definition 2.8. [17] Let G = (V (G), E(G)) be a graph with n vertices numbered arbitrarily
by numbers 1, 2, 3, . . . , n, then a hypergraph Hk = (V (Hk), E(Hk)), k ≥ 1 is such that
V (Hk) = V (G) and E(Hk) = {e1, e2, e3, . . . , ep}, ei ={set of vertices j : d(i, j) ≤ k} where
d(i, j) is the distance between vertices i and j in G. In other words, hyperedge ei is a neighbour
of kth order of vertex i (i = 1, 2, 3, . . . , n).

In the next section we see how structure of a hypergraph model varies with the graph.

3. HYPERGRAPHS OF DRGS WITH DIAMETER 3

In this section, we consider hypergraphs H1 of three different families of distance regular graphs
of diameter 3, namely, Crown graph, Johnson graph and Hamming graph. Let G be a graph with
vertex set V (G) and edge set E(G). From Definition 2.8, it is clear that H1 = (V (H1), E(H1)) is
such that V (H1) = V (G) and E(H1) = {e1, e2, e3, . . . , ep}, ei ={set of vertices j : d(i, j) ≤ 1}
where d(i, j) is the distance between vertices i and j, that is, hyperedges are closed neighbours of
vertices of the underlying graph G. Thus from the construction, we see that for a vertex v in G,
all vertices which are at distance 1 and 2 be adjacent in H1(G), and vertices at distance 3 from v
in G becomes eccentric vertices of v in H1(G). Thus H1(G) are regular graphs of diameter 2.

Remark 3.1. Suppose G is a DRG on n vertices having diameter 3 and each vertex has a unique
eccentric vertex, then their hypergraph H1(G) is distance regular with intersection array (n −
2, 1; 1, n− 2) and is also strongly regular graph having parameters (n, n− 2, n− 4, n− 2).

4. DIAMETRAL DESIGNS ARISING FROM DRGS

4.1. Crown graph Kn,n − I . A crown graph on 2n vertices is an undirected graph with two sets
of vertices {u1, u2, . . . , un} and {v1, v2, . . . , vn} and with an edge from ui to vj whenever i ̸= j.
It can also be viewed as a complete bipartite graph from which the edges of a perfect matching
have been removed.

Example: In the following figure, we depict the Crown graph K(4, 4)− I . From the definition
of crown graph, vertex set of K4,4 − I is partitioned into two independent sets {u1, u2, u3, u4}
and {v1, v2, v3, v4}. There is an edge from one set to the other set whenever the subscripts of the
vertices are not same. For clarity see Figure 1.
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v1 v2 v3 v4

u1 u2 u3 u4

FIGURE 1. K4,4 − I

Here we give the generalized result obtained for the diametral design arising from hypergraph
H1 of crown graph Kn,n − I .

Theorem 4.1. The collection of all diametral paths in hypergraph H1 of Crown graph forms a
PBIB-design having parameters (v, b, r, k, λ1, λ2, µ) = (2n, n(2n− 2), (3n− 3), 3, 2, 2, 2n− 2).

Proof. Consider the crown graph Kn,n − I where i ≥ 2. Let the vertex set be partitioned into two
independent sets having labels {u1, u2, . . . , un} and {v1, v2, . . . , vn}. The edges in Kn,n − I are
of the form uivj where i ̸= j and j ≡ (i+ l)mod(n), 1 ≤ l ≤ n. Hence there are n(n− 1) edges
in Kn,n − I . For a vertex ui, all those vertices uk where k ̸= i and 1 ≤ k ≤ n (vertices that lie in
the same independent set) are at distance 2, and vi is at distance 3.

Consider the hypergraph H1(Kn,n−I). For a vertex vi, the vertex ui is at distance 2 and all the
remaining vertices are at distance 1. Hence there are 2n−2 vertices at distance 1 for any vertex in
H1(Kn,n − I) and a unique eccentric vertex. Thus from the structure of hypergraph it is evident
that between any pair of eccentric vertices, there are 2n − 2 diametral paths of length 2. Since
there are n such distinct pairs of eccentric vertices, there are n(2n− 2) distinct diametral paths in
H1(Kn,n − I).

There are (2n − 2) diametral paths starting with a particular vertex say vi. Since this vertex
is adjacent to all the other vertices except ui, the remaining (n − 1) pairs of eccentric vertices
will have a diametral path with vi as its intermediate vertex. Hence the repetition number is
2n− 2 + n− 1 = 3(n− 1). Since diametral paths are of length 2, block size k is 3.

Consider a pair of adjacent vertices in Kn,n − I say vi and uj (i ̸= j). Since H1(Kn,n − I)
is a unique eccentric vertex graph, we get two distinct diametral paths of the form vi − uj − ui
and uj − vi − vj where these vertices appear together, thus giving λ1 = 2. Similarly all those
vertices which are at distance 2 in Kn,n − I from vi are adjacent in H1(Kn,n − I). Hence due
to similar reasoning as above we get λ2 = 2. Between every pair of eccentric vertices there are
2n− 2 diametral paths giving µ = 2n− 2.

According to the distance between vertices in the graph Kn,n − I , we consider distance based
association scheme here. The above PBIB-design exhibits 3-class association scheme with param-

eters of second kind as n1 = n − 1, n2 = n − 1 and n3 = 1 with P1 =

 0 n− 2 0
n− 2 0 1
0 1 0

,

P2 =

n− 2 0 1
0 n− 2 0
1 0 0

 and P3 =

 0 n− 1 0
n− 1 0 0
0 0 0

. □

From Remark 3.1, it follows that crown graph Kn,n − I being unique eccentric vertex graph,
the hypergraph H1(Kn,n − I) is distance regular with intersection array (2n − 2, 1 : 1, 2n − 2)
and is also strongly regular with parameters (2n, 2n− 2, 2n− 4, 2n− 2).

Next subsection deals with Johnson graph which is another huge class of distance regular graphs
named after Selmer M. Johnson, which is defined from system of sets.
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4.2. Johnson Graph J(n, k). Johnson graphs are a special class of undirected graphs defined
from system of sets. The vertices of Johnson graph J(n, k) are the k-element subsets of an n-
element set where two vertices are adjacent when intersection of two vertices (subsets) contains
k − 1 elements.

Since we are considering graphs of diameter 3, we take Johnson graphs having k value 3.

Example: In the following figure we depict the Johnson graph J(6, 3) along with its labeling.
Vertices of the graph are 3-element subsets of the set {1, 2, 3, 4, 5, 6} and hence, are
{123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456}.
Any two vertices are adjacent if their labels differ by only one element. For example, the adjacen-
cies of vertex 123 are 124, 125, 126, 134, 135, 136, 234, 235 and 236.

346

356

456

256 156

126

125

124

123

134234

345

245

146

236 135

235 145

136246

FIGURE 2. J(6, 3)

Below we give a general result obtained for diametral design arising from hypergraph H1 of
Johnson graph J(n, 3).

Theorem 4.2. The collection of all diametral paths in hypergraph H1 of Johnson graph J(n, 3)

where n ≥ 6 forms a PBIB-design having parameters (v, b, r, k, λ1, λ2, µ) =
((

n
3

)
,(

n
3

)(
n−3
3

)
9(n− 4)

2
,
(
n−3
3

)
9(n−4)+

3(n− 3)(n− 4)2(n− 5)

4
, 3, (n−4)(n−5), 2(n−5)2, 9(n−

4)
)

.

Proof. As explained earlier, Johnson graph J(n, 3) has vertices as 3-element subsets of an n-
element set. Therefore, there are

(
n
3

)
such subsets or vertices in J(n, 3). There is an edge between

any two vertices if their Hamming distance is 1. Clearly, J(n, 3) is a regular graph of regulariy
3(n− 3), as the number of vertices at Hamming distance 1 from any 3-element subset is 3(n− 3).
Suppose N1 denotes the number of neighbours of each vertex, we get N1 = 3(n − 3). Let the

number of second neighbours of a vertex be denoted by N2 and is equal to

(
3
1

)
(n− 3)(n− 4)

2
.
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This can be realized by simple combinatorial choices allowed for labels of 3-element subsets as
vertices of J(n, 3). Hence, the remaining

(
n−3
3

)
vertices are third neighbours of a vertex, denoted

as N3, which are also its eccentric vertices.
Now consider the hypergraph model H1(J(n, 3)). Here all vertices at distance 1 and 2 from

a vertex, say, x in J(n, 3) forms neighbours of x in H1(J(n, 3)). Therefore, number of first

neighbours of x in H1(J(n, 3)) is 3(n−3)+

(
3
1

)
(n− 3)(n− 4)

2
and remaining

(
n−3
3

)
vertices are

second neighbours or eccentric vertices. Consider a diametral path between any pair of eccentric
vertices say x and z. Following cases arise depending on the label of intermediate vertex say y.

Case i) y has either two elements common with x (or z) and one element common with z (or x).
Two common elements can be chosen in

(
3
2

)
ways and the third element be any element of z giving

9 such vertices.
Case ii) one element common with x and one element common with z.

The element in the label of y common with x can be chosen in three ways. Similarly the element
common with z can also be chosen in three ways and the third element in the label of y can be
any of the remaining n − 6 elements. Hence there are 9(n − 6) possible ways of choosing such
intermediate vertex y.

Combining both cases, we get 9(n− 4) diametral paths between each pair of eccentric vertices.
Since each vertex has

(
n−3
3

)
eccentric vertices, there are

(
n−3
3

)
9(n−4) diametral paths with a fixed

initial vertex. Since there are
(
n
3

)
vertices in H1(J(n, 3)), we get a total of

(
n
3

)
(
(
n−3
3

)
9(n− 4))

2
distinct diametral paths in H1(J(n, 3)). Since diameter is 2, block size is 3.

Consider a diameteral path x− y − z.
Suppose x and y share two elements in common in their labels, then z will have one of the ele-
ments from y which is the non-common element between x and y and the remaining two elements
of z can take any of the remaining n − 4 and n − 5 elements respectively. Hence there are
(n− 4)(n− 5)

2
diametral paths with x and y together. Let this be denoted by λ∗

1. Similarly the
number of diametral paths of the form y − x − w can be counted. Hence we get the value of λ1

as (n− 4)(n− 5) which is the number of diametral paths containing both x and y where x and y
share two common elements.
Suppose x and y share one element in common then z can be chosen in three ways.

(1) Both the elements in y which are not present in x can be retained in z and the third element
of z can be chosen in n− 5 ways.

(2) One of the elements in y which is not in x can be retained in z and the other two elements
of z can be chosen in n− 5 and n− 6 ways respectively.

(3) Same as in (ii) wherein the other element of y which is not in x is retained in z.

Hence by counting we get (n − 5)2 diameteral paths of the form x − y − z which is denoted
as λ∗

2. Counting the number of diameteral paths of the form y − x − w on similar lines, we get
λ2 = 2(n− 5)2.
Clearly as explained above µ = 9(n − 4) which is the number of diametral paths containing any
pair of eccentric vertices.

Now let us count the repetition number of the design. There are
(
n−3
3

)
9(n− 5) diametral paths

with x as the end vertex and
N1λ

∗
1

2
+

N2λ
∗
2

2
diametral paths with x as intermediate vertex. Thus

the repetition number is
(
n−3
3

)
9(n− 4) +

3

4
(n− 3)(n− 4)2(n− 5). Thus the design parameters

obtained are as given in statement of the theorem.
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Now we give distance based association scheme for the design obtained. The above PBIB-
design exhibits 3-class association scheme with parameters of second kind as n1 = 3(n−3), n2 =

3(n− 3)(n− 4)

2
and n3 =

(
n−3
3

)
with P1 =


(n− 2) 2(n− 4) 0

2(n− 4) (n− 4)2
(n− 4)(n− 5)

2

0
(n− 4)(n− 5)

2

(
n−4
3

)
,

P2 =

 4 (2n− 8) (n− 5)

(2n− 8)
(n− 5)(n+ 2)

2
(n− 5)(n− 6)

(n− 5) (n− 5)(n− 6)
(
n−5
3

)
 and

P3 =


0 9 3(n− 6)

9 9(n− 6)
3(n− 6)(n− 7)

2

3(n− 6)
3(n− 6)(n− 7)

2

(
n−6
3

)
. □

Note: Johnson graph J(6, 3) is a unique eccentric vertex graph. Hence from Remark 3.1,
H1(J(6, 3)) is a strongly regular graph with parameters (20, 18, 16, 18).

The next subsection deals with one of the large class of distance regular graphs named after
the American mathematician Richard Hamming, which finds wide range of applications in several
fields of mathematics and computer science.

4.3. Hamming graph H(d, q). A Hamming graph H(d, q), sometimes also denoted qd is a carte-
sian product of d copies of complete graph Kq. Therefore, H(d, q) has qd vertices. These are
distance regular graphs with diameter d. Let S be a set of q elements and d a positive integer. The
Hamming graph H(d, q) has vertex set Sd, the set of ordered d-tuples of elements of S, or se-
quences of length d from S. Any two vertices are adjacent if they differ in precisely 1 coordinate,
that is, their Hamming distance is 1.

Since we are dealing with graphs of diameter 3, we consider Hamming graphs of the form
H(3, q).

Example: Consider Hamming graph H(3, 3). Let the set S be {0, 1, 2}. Now the vertex set of
H(3, 3) is the ordered 3-tuples of the elements of set S and hence,
S3 = {000, 001, 002, 010, 011, 012, 020, 021, 022, 100, 101, 102, 110, 111, 112, 120, 121, 122,
200, 201, 202, 210, 211, 212, 220, 221, 222}.
Any two vertices are adjacent if they differ in exactly one coordinate. For example, vertex 000 has
vertices 001, 002, 010, 020, 100 and 200 as its adjacent vertices.
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222 022 122

220 020 120

221 021 121

202 002 102

200 000 100

201 001 101

212 012 112

210 010 110

211 011 111

FIGURE 3. H(3, 3)

The following result gives the design parameters arising from hypergraph H1 of Hamming
graph H(3, q).

Theorem 4.3. The collection of all diametral paths in hypergraph H1 of Hamming graph H(3, q)
forms a PBIB-design having parameters (v, b, r, k, λ1, λ2, µ) = (q3, 3q3(q−1)4, 9(q−1)4, 3, 2(q−
1)2, 2(q − 1)(2q − 3), 6(q − 1)).

Proof. Hamming graph H(3, q) has q3 number of vertices which are 3-tuples and each coordinate
can take q values. Any two vertices are adjacent if their Hamming distance is 1. Consider a vertex
say, x in H(3, q). Its adjacent vertices are such that thier labels have any two coordinates same as
that of x and the third coordinate can take any of the remaining (q − 1) values. The coordinates
that remain unchanged can be chosen in

(
3
2

)
ways. Hence there are 3(q − 1) adjacencies for each

vertex. Similar counting yields the number of vertices at distance 2 in H(3, q) as 3(q − 1)2 and
the number of eccentric vertices or vertices at distance 3 as (q − 1)3.

Consider the hypergraph H1(H(3, q)). As mentioned earlier, the vertices which were at dis-
tance 1 and 2 in H(3, q) become adjacent in H1(H(3, q)). Hence each vertex has 3q(q − 1)
vertices at distance 1 and (q − 1)3 vertices at distance 2 in H1(H(3, q)). Consider a diametral
path x− y− z in H1(H(3, q)). Now we take different cases for counting the number of diametral
paths.

Case i) If y is at Hamming distance 1 (or 2) from x and at Hamming distance 2 (or 1) from z.
In this case the coordinates of y are such that they differ in just one coordinate from x and that
particular coordinate takes the respective coordinate value of z. Hence we can get only 3 such
diametral paths with y having this property.

Case ii) If y is at Hamming distance 2 from both x and z.
In this case, vertex y is such that two of its coordinates differ from x as well as from z and none of
the coordinates of x and z are similar, since they are eccentric to each other. Taking one coordinate
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each from both x and z in y, the third coordinate can take any of the remaining q−2 values. Totally,
there are 6(q − 2) such triple y possible.

Hence there are 3 + 3 + 6(q − 2) = 6(q − 1) diametral paths between any pair of ecentric
vertices. There are (q−1)3 number of eccentric vertices for each vertex and q3 vertices in H(3, q).
Thus, there are 6q3(q − 1)4 diametral paths in H1(H(3, q)). But each of them is counted twice.
Hence there are 3q3(q − 1)4 distinct diametral paths in H1(H(3, q)).

Consider a vertex x. Counting the number of diametral paths on similar lines as above, the
number of diametral paths with x as one of the terminal vertices is 6(q − 1)4 and with x as
intermediate vertex is 3(q − 1)4. Thus, repetition number of the design is 9(q − 1)4.

Now let us count the number of diametral paths in H1(H(3, q)) containing vertices x and y
where x and y are at Hamming distance 1 in H(3, q). The terminal vertex of such a diametral
path be vertex say, z which is eccentric to x. Clearly the label of z would be such that it has
one coordinate same as that of y which is not in x and other 2 coordinates can take any of the
remaining q − 1 values each. Hence there are (q − 1)2 diametral paths with x and y as terminal
and intermediate vertex respectively. Similarly there are (q − 1)2 diametral paths with y and x as
terminal and intermediate vertex respectively. Hence λ1 = 2(q − 1)2.

To get the value of λ2, we consider any two vertices say, x and y which are at Hamming
distance 2 in H(3, q). Now consider a diametral path with initial vertex x, intermediate vertex
y and terminal vertex z. While counting the number of such diametral paths, we encounter two
cases.

Case i) z is at Hamming distance 1 from y in H(3, q).
Clearly, labels of z and y has two same coordinates and the third coordinate of z can take any one
element from set S except the one that is common in both x and y. Hence, there are (q − 1) such
diametral paths x− y − z.

Case ii) z is at Hamming distance 2 from y in H(3, q).
In this case, labels of z and y share a common element. Of the remaining two coordinates of z,
one coordinate can take any element from S except the one that is common in both x and y and
the other coordinate can take (q− 2) values. Hence there are 2(q− 1)(q− 2) such diametral paths
x− y − z corresponding to each non-common element between labels of x and y.

Combining both cases, we get (q − 1)(2q − 3) diametral paths x − y − z in H1(H(3, q)).
Similar counting yields the number of diametral paths of the form y − x− w as (q − 1)(2q − 3).
Hence there are 2(q− 1)(2q− 3) diametral paths in H1(H(3, q)) conatining x and y which are at
Hamming distance 2 in H(3, q), thus giving the value of λ2 as 2(q − 1)(2q − 3).

Since there are 6(q−1) diametral paths between every pair of eccentric vertices in H1(H(3, q)),
the value of µ follows.

The above PBIB-design exhibits 3-class Hamming distance based association scheme with pa-
rameters of second kind as n1 = 3(q − 1), n2 = 3(q − 1)2 and n3 = (q − 1)3 with

P1 =

 q − 2 2(q − 1) 0
2(q − 1) 2(q − 1)(q − 2) (q − 1)2

0 (q − 1)2 (q − 1)2(q − 2)

,

P2 =

 2 2(q − 2) (q − 1)
2(q − 2) (q − 2)2 + 2(q − 1) 2(q − 1)(q − 2)
(q − 1) 2(q − 1)(q − 2) (q − 1)(q − 2)2

 and

P3 =

 0 3 3(q − 2)
3 6(q − 2) 3(q − 2)2

3(q − 2) 3(q − 2)2 (q − 2)3

. □
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5. CONCLUSION

Berge [2] introduced hypergraphs as a means to generalize the graph approach. Graphs only
support pairwise relationships, whereas hypergraphs preserve multi-adic relationships and there-
fore become a natural modeling of collaboration networks and various other situations. Due to
recent advancements in the field of hypergraph theory, it relatively finds a wide range of applica-
tions in mathematical modeling of real world problems, engineering, computer science, chemistry,
to name a few. As combinatorial design theory basically deals with set systems, we have in this
paper found the parameters of PBIB-designs arising from hypergraphs of some known families
of graphs. Here we have given construction of three families of graphs namely, Crown graph
K(n, n) − I , Johnson graph J(n, 3) and Hamming graph H(3, q) which are distance-regular
graphs of diameter 3. We have taken hypergraph H1 model of these graphs and obtained gener-
alized expressions for parameters of diametral designs obtained from these hypergraphs by taking
vertices belonging to diametral paths as blocks. We have also given the distance based association
scheme for each of the above designs.
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