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CONVERGENCE RESULTS FOR LUPAS-KANTOROVICH
OPERATORS INVOLVING POLYA DISTRIBUTION

S. BERWAL!, S. A. MOHIUDDINE?, A. KAJLA™ A. ALOTAIBI?, §

ABSTRACT. In this paper, we investigate the Lupag-Kantorovich operators with the
Pélya distribution introduced by Agrawal et al. in 2016. Our focus is on understanding
certain approximation properties. Specifically, we examine a Voronovskaya-type result
related to second moduli of continuity, the Chebyshev-Griiss inequality and two Griiss-
Voronovskaya theorems for Lupas-Kantorovich operators.
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1. INTRODUCTION

Kantorovich [19] presented the following significant modification of Bernstein polyno-
mials for £ € L1[0,1] (the class of Lebesgue integrable functions on [0, 1]):

m 1
Kan(¢5) = (m+1) ) pan () / i (DL (Ddr, %€ [0,1],
k=0 0

where pm k(%) = (7)%*(1-%)™"* and another function ¢m (¢) that represents a certain
interval [k/(m+ 1), (k+1)/(m+1)]. Many researchers have studied this topic and written
papers about it. Some of the related papers include references like [1,14,26,30,31]. One
particular set of operators, called Lupag operators [22], has been widely studied recently.

m m k-1 m—-k-1
PUM (£ = Zp]&/;n)(%)g(%) = % (“]Z‘) 1—[(1111%+v) ]_[ (m—m%+,u)§(£). (1)
k=0 k=0 u=0

v=0
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The Lupas operators (1), rooted in the fundamental basis pﬁ/ ;{m ), are derived from the
Pélya distribution and can be seen as a specialized instance of the operator class initially
introduced by Stancu [29]. Gupta and Rassias [17] examined a Durrmeyer type integral
modification of the operators (1) and provided insights into their local, asymptotic be-
havior and global characteristics. Additionally, Agrawal et al. [4] investigated the Bézier
variant of the Gupta and Rassias operators [17] and explored its direct approximation
outcomes.

Agrawal et al. [3] introduced a Kantorovich type modification of the Pélya distribution-
derived operators and previously studied by Lupas and Lupas [22], considering ¢ € C[0, 1].
The proposed modification is formulated as follows:

k+1

DM@ = )Y p e [T ewan xe 0.1, @)
k=0

m+1

where p]g/;(m ) (x) is defined above.

In their study, Gonska and Tachev [16] looked into Griiss-type inequalities that apply
to linear positive operators, using second-order moduli of smoothness. They also explored
the applications of these inequalities to Bernstein operators. Acu et al. [2] derived results
regarding the non-multiplicativity of positive linear operators that replicate constant func-
tions. Additionally, Gal and Gonska [11] utilized the Griiss-type inequality for Bernstein
operators to establish a theorem called the Griiss-Voronovskaja-type theorem. Rahman et
al. [28] presented Kantorovich variant of Lupag operators based on Pélya distribution with
shifted knots and obtained rate of convergence of these operators. In [24], the authors in-
troduced Stancu-Kantorovich operators based on inverse Pélya-Eggenberger distribution
in the polynomial weighted space and studied convergence properties of these operators by
using Korovkin’s theorem. Kilicman et al. [20] considered Stancu-Baskakov-Durrmeyer
type operators and obtained direct results.

This paper aims to investigate the quantitative Voronovskaya-type outcome concerning
second moduli of continuity, the Chebyshev-Griiss inequality, and two Griiss-Voronovskaya
theorems applicable to the operators (2).

2. BAsic RESULTS
Lemma 2.1. [3] Fore; =t,i =0,1,2,3,4 we have
(1) D™ (eqix) = 1;
#(1/m) 2mx + 1
2) D %) = ———
( ) m (6177‘) 2(m+1)»
3m3x%2 + 9m2x — 3m2»%2 + 3mx + m + 1 )
3(m + 1)3 ’

{4%3 (m® + 3m* + 2m?) + 6x2(m* + m® — 2m?) + 4x(m> + 9m? +

(3) D™ (e2;%) =

1

(4) D:n(l/m)(e:%%) = m

2m) + (m + 1)(m + 2) ¢;

cymy, o mixt (1) (60x*m” + 60mP%? + 180mSx — 60m®x + 130m® — 10m?)
(5) DIIII (941%) =
(m+ 1)4 5m(m + 1)3(m + 2)(m + 3)
N mx 2%?m?(m3 + 10m? — 3m — 10) + 8%2m?(1 + 2m) — 12m*x3
(m +1)4 (m + 1)%(m + 2) '
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Remark 2.1. By simple applications of Lemma 2.1, we have

#(1/m) . _ 1-2x

D (1 —x)52) = mr 1)
cm) e #(l—x)(2m® —m - 1) 1
Dy ((t=2)%%) = (m+1)3 3(m+1)27

(1+2m)(9m? + m — 2)53
(m + 1)4(m + 2)
(8 =2(1+2m)(-2+m +9m?) — 4m (-3 + m(11 + 18m))) »2
4(m +1)4(m +2)
+(—8 —2m(m + 3) +2m(-3 + m(11 + 18m))) » N (2+m(m +3))

D™ (1 - 2)%%) =

+

4(m+ )4 (m+2) Zm+ )i (m+2)’
WUm) 4l _ (1+2m)(6m* - 75m® - 64m? - m + 6)x*  2(1 + 2m)(6m* - 75m> - 64m? — m + 6)»>
D =) 5%) - = (m+1)5(m+2)(m+3) * (m+1)5(m+2)(m+3)
2(1 +2m) (3m* — 48m3 — 40m? — m + 6)2> 1
* (m+1)5(m+2)(m+3) 5(m+ )3

(1+2m)(21m? + 16m? + m — 6)x
(m +1)5(m + 2) (m + 3)

Lemma 2.2. For m € N, we have

+(1/m) 2 1
t_ . - .

DM =0%0) < g

D™ (1 = %)% %) 9

< ;
DL (1 =n)%2) — 2mAD)
D™ (=% _ 6(m+12)
Dp ™ (1 =02~ (mED?

The theorem by Paltanea [27] presented below serves as a crucial foundation for pro-
viding a more clear outcome in relation to classical moduli for continuous functions and
further elaboration, refer to [14].

Theorem 2.1. [27] Given a positive linear operator L : C(I) — F (I), where I represents
an arbitrary interval and F (I) denotes the space of real functions defined on I, the following
holds true for any € C(I), x € [ and 0 < h < %length(l)
1
IL(£5) = £(0)] < [L(eoy ) = 1] - [E ()] + - |L(ex —250) (L5 )

+

(Leo) () + 55 L((e1 - x)z;w] ws(E: h).

Theorem 2.2. For all { € C[0,1] and m > 3, we have

1D ™7 — ¢l <

+ —w2
8

| | 9 |
Srm (4’ Ja +1m)) (4’ \/(Im+1))'

3. A QUANTITATIVE VORONOVSKAYA RESULT

An early and highly significant result is the Voronovskaja theorem [3] for the Kantorovich-
type modification of operators is

tim m (D™ (£32) - £00) = 5 (1 =208 () + 21 = 21" ). (3)

m-—oo

This section origins can be traced back to a little-known booklet by Videnskij, where
a quantitative version of the renowned Voronovskaya theorem for the classical Bernstein
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operators is presented (refer to [32]). Subsequently, this estimate was further generalized
and enhanced in ( [15]). In another study ( [14]), an application of this result was demon-
strated for Kantorovich operators. In this paper, we aim to further improve upon the
previous findings.

Theorem 3.1. When m > 1 and ¢ € C?[0,1], The following is true.

Hm (D™~ ¢) - (“_2’;& ra(1- x)("(n))

< E{ 1 w (é,//, 1 )+w ((,,. 1 )}
- - S NERTE V) T
2(m+ 1y U lles + 117 lles) (4)

Proof. From [15, Thm. 3], we get
* m * m ’ 1 #(1/m "
‘D,m(” (30 = £ = DM (1 =00 (o) = S D™ ((e1 = 20%) ()

*(1/m) 3 *(1/m) 4
" D, e1 —x)%x)| 5 . 3 D e1 —x)*x 1 "
< Dm(l/lm)((el _%)2;%){| El/m)(( 1 )2 ”@wl(( ’h) + (Z + Tzl/]m)(( 1 )2 ) . 16h2)w2(é’ 7h)} .
D " ((e1 =) %;2) D" ((e1 = %)% %)

Applying Lemma 2.2 and Remark 2.1, we get

(1/m) , . 1 [#(1=%)(2m* —m - 1) 1 ” ‘
D " (&52) = £ () = 2( +1)(() [ (1) 3me 12 ¢ (%)
%(1—%)(2m2 —m - 1) 1 45 3 6(m+12)
= [ (m + 1)3 3(m + 1)2 {12h(1m+1)w1(§ ’h)+(71+ 16h2(1m+1)2)w2(§ ’h)}’
and for h = ! h By multiplying both sides by m, we obtain,
vim +
*(1/m) (po oy _.om ( 2%) 1 m(2m?-m-1) ] . ’
)m DR (¢~ L] - £ (%) [(1 O T Ryl

RS B
= w1 > w2 ; .
3 m+ 1 1+m 1+m
We may write

(1- 2%)

‘m D™ (g0 - 20| -

{7 (0) = (1 =) 0" (%)

m [ D™ (0 - 20| - m“j e

(1—2%) 1 m?
+ R R

m(2m? —m - 1)

= (m+1)3 +3(1m+1)2

' (x )—— #(1=2)

] " (%)

G + 1)2 " (x )‘

e oo
§ lvme1 U Vmat/) 2\ Vme1)] T 2m+ D)

<

(1" floo + 112" lleo) -

4. CHEBYSHEV-GRUSS INEQUALITY FOR LUPAS KANTOROVICH OPERATORS

Theorem 4.1. [2] Let H : Cla,b] — Cla,b] represent a positive, linear operator that
fulfills the condition Heg = eg. Now consider the following:

D(Z, B;x) = H(BL3 ) — H(B; %) - H({; 7).
Then for ¢,B € Cla, b] and » € [a, b] fixed one has

D&, i) < (é m/W) 'c?)(ﬁ; %/W)
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Here, @ represents the least concave majorant of the first-order modulus w1, which is
defined as follows

(1 —0wi({3y) + (y - Hwi({3%)
y—x
Therefore, the lack of multiplicativity observed in Lupas-Kantorovich operators can be
understood in a similar manner as described in

@(é;t)=sup{ :OSxStSySb—a,xiy}.

Theorem 4.2. Regarding the Lupas-Kantorovich operators Z):n(l/m) : C[0,1] —» CJ[0,1],
a uniform inequality is given by

+(1/m) _ye(1/m) i (1/m) [ 1 e 1
1251 (&p) - D™ ¢ D ﬁ||ms4w(4,2,/2(m+1))w(ﬁ,z 2(m+1)),m21,

(5)
forall £,B € C[0,1].

5. GRUSS-VORONOVSKAYA THEOREMS

Given ¢ and B as twice continuously differentiable functions on [0, 1], we seek to find
their limit

lim m [ D™ (B) 60) = D™ (B) ) D™ (0 66) | = 2X (0B (),

m-—oo

Given that X = %(1 — x) by straightforward calculation we have obtained a result,

m | D™ () ()~ Do ™ (B) () D™ () ()|

X’ X
(g + B0+ —(BC 2B + ﬂ”é))

=m {D:‘é”“)(m(%) —Z(0)B(x) - (

—B(x) [D;f”‘“)(o(x) (o) - ( iy 54")

2m m

D ) | D3 810 - o - 38+ 2]
8+ 28 [0 - D )] .

2X ,
+— " (%)B' () +(
m
passing to the limit it easily follows

lim m [ D™ (£8) () = D™ (O D™ (B)00) | = 2X¢ (0B (),

m-—oo
Theorem 5.1. Let £, € C?[0,1]. Then for each » € [0,1]
o(1), ¢,BeC?[0,1],

O(V%) LB e C.1],

0(1), Z, B e Cio,1].
m

2m

* m * m * m 2 sY4
195" (¢B) ~ Do ™ ¢ - D™ B~ —XB | =

Proof. The method described in [1] is followed, where we generate three Voronovskaya-
type expressions using the given difference, combined with other remaining terms. The
Voronovskaya limit for Kantorovich operators is, as a reminder,

1 /1_1 ” 1 7 ot
S(XEY = 35X () + 5X'L (),



884 TWMS J. APP. ENG. MATH. V.15, N.4, 2025
where X :=x(1 —x%),s0 X' =1-2x.

For £, € C%[0,1] one has

D™ () ~ D™ (L) D™ (B:) ~ S XL () )

DI (¢pi) = 2) ) = (5 + X (@B’
-0 [ D3 i) - o~ | X8| - o0 | D3 i - e - [T 4 x|

+ B0 - DR™ (80| [D;f”m)(g;%) - ¢

D:él/m)(g;%)ﬂ:él/m)(ﬁ; %) — X{,B +({B) (%) + — (
X/ﬁ/
2

X'(¢p)

+X(§,3)")

+ () [@;:f”‘“) (B:) = B(x) - ( +B() [@:;f”m)(g; %) = {(x) - (X'j -+ Xg")]
- [B00 = DR (B0 | [Dn ™ (8320 - 2]

+ X,B”)

Below, we will estimate the first three lines. Our goal is to demonstrate that the sum
of these three lines equates to 0.

At present, we will omit the argument ». The following expression holds:

( X'({p)

D™ (50 D™ (8 ) - 2 —X'B + (B)() +
Xlﬁ/
2

X({ﬂ)”)

+ (%) [@;f”‘“) (B;%) — B(x) — (

+ B [D:;f”m)@; 9 - (S x|
- |80 = D™ (B | [ D™ (£ - 20
*® m * m 2 el 1 524 ’ / 1 44 !’ ! 44
D™ DR~ —XUB A p+ o (XUBH XL ) + —X (P2 + B

+ X,B”)

#(1/m) 5 _ L 1t i ’” #*(1/m) . _ L 27 i ”
+ DRI~ B~ (5 CX'B 4 —CXB") 4 PO B - (5 BX'E + XL
- BOR™ ¢+ D™ B D™+ (B - (D™ g = 0.

We will use the Voronovskaya previously presented to estimate the first two lines previously
specified. Specifically, for h € C?[0, 1], the estimate states:

. xXw 15( 1 1 1
Hm(ﬂnfl/m)h—h) ( + Xh ) < —{ w1 (g : )+w2 (g : )}
2 00 8 m+ 1 m+ 1 m+ 1

1 44
*atm gy U s + 171l = U, m).

We will use Theorem 2.2, which establishes that for 4 € C?[0,1], to estimate the third
line., we obtain the following result:

*(1 1 ’ 9 77 1
1D™ h = hlleo < —I1lleo + ="l = O [ =] .
2m 8m m
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Combining these inequalities, we obtain the following result:

* m * m * m 1 1 ! 1
1D (6) = DI ¢ DV X e < @R + 11U B + 181U m) +0 [

o(1), ¢,B€C?[0,1],
0 i), £,B € C30,1],

m

4
0] —), Z,B € C4o,1].
O

Next, our goal is to provide a theorem like Griiss-Voronovskaya theorem, under the
condition that both ¢ and g are elements of C'[0,1].

Theorem 5.2. Assuming { and 8 belong to C'[0,1] and m > 1, it can be established that
a constant called C exists that is independent of m, £, B and x, satisfying the following

#(1/m) Cyrm) . e(m) ,  2X

<o tonlpn
+ 1 | ows (ﬁ',m‘%) + 18 lleows (g’,m—%)

+ max { ”glllm,wg ({’,m_é)} max { ||'8/|1|°°,w3 (B',lm_é)}} .

m32 m32
Proof. Let

En(Z.:7) = DA™ () = DA™ (L) D™ (820 - ZC T 0 G, (6)

Let C be a constant that remains independent of m, £, B, » and it is allowed to vary
throughout the proof.
For ¢, € C'[0,1] fixed and u,v € C*[0, 1] arbitrary, one has
|Em (¢, B;%)| = |[Em({ —u+u,B—v+v;x)| (7)
<|Em({ —u, B=v;#)| + |Em(u, B = vi%)| + |Em({ — u,vi%)| + [Em(u, v;2)| .

Considering the function h(x) = x for » € [0, 1], and utilizing [2, Theorem 4.1], it can be
deduced that there exist values  and 6 within the interval [0, 1] such that

D™ (%) = D™ (G50 D™ (B:2) = £ (B (0) | D™ (05 2) - (D™ s )]

2m? . 1
(m+1)3  12(m+1)2])°

_ B 6) {uu ) ®)

From (6) and (8) we get
3

m
+
(m+1)3  12(m+1)2

] 1" Neo 18" llco- 9)

ImEm (£, B;%)| < [%(1 — %) +2x(1 - %)] 1 leollB [0

1
S4[%(1-%>+m

Using Theorem 3.1 for £ € C*[0,1] we obtain

* m 1 ! ! 1 1 ! 17 s
‘m | D™ (g3 - £ 0] - (5x 00+ X¢ (z)) < C— (I8l + 18" lloo + 18 1o + 1D )

But, for £ € C™[a, b], m € N one has (see [12, Remark 2.15])
max {[[¢)} < Cmax {[1¢le 1™ [}

0<k<m
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Therefore,

< %maX{H{'”oo, 17} (10)

* ]‘ =24 44
m | D™ (¢) - )| - (5X {'(2) + X¢ m))
For u,v € C*[0, 1], employing the identical decomposition as in the proof of Theorem 5.1,
along with the relation (10) and Theorem 2.2, yields:

X' (uv)’
2

|Em (u,v;2)| <

D™ (i) = () ) = — ( ' X(”V)")

)l [ D) = v = o (T4 + x0y)
+ () | D™ m (s 2) — u(x) — % (X';”)' + X(u)")

+| D5 (w52 = w0 v o) = DA™ (93|
C ’ ’
< e {1l IV oo sl 1@ s} (1)

By utilizing the relationships (7), (9), and (11), we derive:

En(¢,fi)] < [x(l — )+ m] {1 =) llall (B = )l + 1l sll (B = vl

’ ’ C ’ ’
A =) lloollV Nl + ~—5 mase {1’ [loo, 11 floo} mase {[[v oo, 11y [}
m

Utilizing [13, Lemma 3.1] with the specific values r = 1, s = 2, {3 = u, and gp.3 = v, one
can conclude that for all & € (0,1] and any m € IN, the subsequent outcome ensues:

C 1 1
|Em (¢ B2 < — {ws(é', hws (B, h) + Zw1(¢ hws (B, h) + Zw1(B, hws(¢’, h)}

C 1 1 1 1

+ E max {Zwl(g’ h)? ﬁwl’)({,’ h)} s max {Ewl (B’ h)7 ﬁwi’)(ﬁ,’ h)}
C

< {ws(&", Wws (B, h) + 11 lwws (B, h) + 18 lows (&7, )}
C 1 1

+ E max {”g,llm’ ﬁwi’)(é’,’ h)} - max {Hﬁ,“w’ ﬁw3(ﬁ,’ h)} .

Choosing h = IIH_%, we obtain
C 1 1
Em(Z, B3] < — {wg (¢:m™F) wg (8, m™F)
41 lleows (B8 ) + 18 llwows (6778

+ max { Hglllw,wg ({',m_é)} max { ”ﬂlllloo,wg (ﬁ',m_é)}} .

m?2 m?2

o=

6. NUMERICAL EXAMPLES

Example 1 Let’s consider the function {(x) = x cos(2n%) (blue), and m takes on the
values of 20 (green), 40 (black) and 60 (red). To calculate the convergence of the operator
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1);;1(1/““)(4;%), we need to find the resulting values of Z);(()l/m)(f;%), Z)Z[()l/40)({;%) and
Dgél/ 60) (£;%) and plot them on a graph to observe the convergence (see Fig. 1).

In Fig. 2, we consider the function Z(x) = e*/?sin(2nx) (blue) over the interval [0,1].
We want to approximate {(x) using the operators Z):n(l/ Im)({ ;%) with the same values of

m as mentioned above.

0.5

0.5

0.2 0.4

-0.5

-0.54

FiGUuRE 2. Convergence
of 1);;1(1/“”(5;%) to the
function ¢ = e*/2sin(2nx)

Figure 1. Convergence of
Z);f”m(g;%) to the function
¢ = xcos(2mx)
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Example 2 The error of approximation of the operators Z)lfn(l/ m) (¢; %) for the function
(%) = e*/%sin(3nx) for the parameter values of m = 20(magenta), m = 40(red), m =
60(black) and m = 100(green) display in Fig 3.

In Fig 4. the error of approximation of the operators for these parametric values given
above and ¢ (x) = /%3 cos(2nx)

08 0.20
0.71
0.6 0.15
0.51
0.4 0.10
0.31
0.2 0.05 1
0.11
0 ; ) 0
0 0.2 0.4 0.6 038 1 0 0.2 0.4 0.6 0.8
X X

FiGure 4. Error Esti-
mation for (x) =

123 cos(2mx)

FIiGURE 3. Error Esti-
mation for (x) =

e*2sin(3mx)

In the following Table 1, we compute the error of approximation of our operators
Z);fl/m)({;%) for m = 10,12,15 and choosing ¢(x) = e*/%sin(3nx). It is clear that as
the value of m increase, the error in the approximation decreases.

In Table 2 the error of approximation of the operators for these parametric values given

above and (%) = e*/?x3cos(2mx)
Table 1
Error of Approximation

X m = 20 m = 40 m = 60 m = 100

0.1 0.1945025870 0.1033129686 0.0684706734 0.0402513756
0.2 0.4915419726 0.3125567724 0.2269116751 0.1459553959
0.3 0.2196810664 0.1662171768 0.1293796904 0.0884946036
0.4 0.4245874718 0.2522668128 0.1785494834 0.1123953306
0.5 0.8226269746 0.5246252843 0.3839043061 0.249519885
0.6 0.5534530758 0.3477578682 0.2526809541 0.1631100470
0.7 0.1572114733 0.1195320347 0.0935918499 0.0644665227
0.8 0.6067663002 0.390426022 0.285613593 0.185214316
0.9 0.3147213901 0.180371304 0.124308016 0.076008683

Table 2
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Error of Approximation

X m = 20 m = 40 m = 60 m = 100

0.1 0.002083614655 | 0.0001687009370 | 0.0001146988573 | 0.0001777434717
0.2 0.01574719572 0.007473866316 | 0.004659942057 | 0.002571991109
0.3 0.03193337888 0.02031423066 0.01448561258 0.009106804121
0.4 0.01857838831 0.01824155074 0.01478340294 0.01029813713
0.5 0.0503439904 0.0203904410 0.0117708627 0.0059396078
0.6 0.1522033031 0.0854503366 0.0593011557 0.0367544846
0.7 0.2040420394 0.1224020242 0.08743306548 0.05564851887
0.8 0.1190841417 0.0716987646 0.0511491561 0.0324780937
0.9 0.0782548446 0.0478337885 0.0347606458 0.0225255760

7. CONCLUSIONS

We investigated the Lupas-Kantorovich operators with the Pélya distribution. We stud-
ied an interesting results the quantitative Voronovskaya-type outcome concerning second
moduli of continuity, the Chebyshev-Griiss inequality, and two Griiss-Voronovskaya the-
orems applicable to the operators (2). In the end, we display graphical representations
illustrating the convergence of operators. As we increase the value of m, we observed a
reduction in error, bringing us closer to approximating our function.
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