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IDEAL CONVERGENCE IN FUZZY METRIC SPACES

A. OR1, G. KARABACAK2∗, §

Abstract. In this paper, the concepts of K−convergence, K-Cauchy sequences, K∗-
convergence, and K∗-Cauchy sequences in fuzzy metric spaces is proposed. Also, a few
fundamental properties of these concepts are investigated. Then, the concepts of K-limit
and K-cluster points of a sequence in these spaces is defined. Afterwards, some of their
basic properties is examined. Finally, the need for further research is discussed.
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1. Introduction

Kostyrko et al. [11] have proposed the concept of ideal convergence (K−convergence)
in 2000, which is a generalization of the concepts of Cauchy and statistical convergence
[6], considering the ideal K of some subset of positive integers. Also, they have studied
the concept of convergence closely related to K−convergence (K∗−convergence).

Definition 1.1. [11] A class of subsets K ⊆ P (E), where E is a non-empty set, is called
an ideal on E, if

(1) ∅ ∈ K,
(2) R,U ∈ K ⇒ R ∪ U ∈ K,
(3) (R ∈ K ∧ U ⊆ R) ⇒ U ∈ K.

Definition 1.2. [11] K, is an ideal on E, is said to be a non-trivial ideal such that E /∈ K
and K ̸= ∅. In addition, the ideal K, which is a non-trivial ideal, is called an admissible
ideal, if {{a} : a ∈ E} ⊆ K.

Definition 1.3. [11] A class of subsets ∅ ̸= F ⊆ P (E), where E is a non-empty set, is
referred to as a filter on E, if

(1) ∅ /∈ F ,
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(2) R,U ∈ F ⇒ R ∩ U ∈ F ,
(3) (R ∈ F ∧R ⊆ U) ⇒ U ∈ F .

Remark 1.1. [11] The filter F(K) = {E \ S : S ∈ K} on E is said to be the associated
filter with K.

In the following part of the study, the ideal K is the ideal that satisfies the condition
K ⊆ P (N).

Definition 1.4. [11] Let (E, d) be a metric space, K be a non-trivial ideal, (ak) be
a sequence in E, and a0 ∈ E. Then, a sequence (ak) is said to be ideal convergent
(K−convergent) to a0, if, for all η > 0,

Aη = {k ∈ N : d(ak, a0) ≥ η} ∈ K,

and is denoted by K − lim
k→∞

ak = a0 or ak
K−→ a0 as k → ∞.

Remark 1.2. In Definition 1.4, convergence, in the Cauchy sense, means K−convergence
if K is an admissible ideal.

Definition 1.5. [11] Let (E, d) be a metric space, K be a non-trivial ideal, (ak) be a
sequence in E, and a0 ∈ E. Then, a sequence (ak) is called K∗−convergent to a0, if there
exists a set

T = {t1 < t2 < . . . < tn < . . .} ∈ F(K)

such that
lim
n→∞

d(atn , a0) = 0.

Besides, Dems [5] has studied the concept of ideal Cauchy (K−Cauchy) sequences by
extending the concept of Cauchy sequences to ideals. Afterwards, Nabiyev et al. [16] have
suggested K∗−Cauchy sequences. Also, they have proposed these sequences relation to
K−Cauchy sequences.

Definition 1.6. [16] Let (E, d) be a metric space, K be an admissible ideal, and (ak) be
a sequence in E. Then, a sequence (ak) is referred to as an ideal Cauchy (K−Cauchy)
sequence in E, if, for all η > 0, there exists an K = K(η) such that

Aη = {k ∈ N : d(ak, aK) ≥ η} ∈ K.

Definition 1.7. [16] Let (E, d) be a metric space, K be an admissible ideal, and (ak) be a
sequence in E. Then, a sequence (ak) is said to be a K∗−Cauchy sequence in E, if there
exists a set

T = {t1 < t2 < . . . < tn < . . .} ∈ F(K)

such that
lim

n,p→∞
d(atn , atp) = 0.

Fuzzy set theory was defined by Zadeh [20] in 1965. Since then, it has been applied to
a variety of domains, including artificial intelligence, decision making, and image analysis,
where uncertainty is handled precisely through degrees of membership, providing a flexible
approach to problem solving. In particular, the concept of fuzzy metric spaces (FMSs) was
first explored by Kramosil and Michalek [12] as well as by Kaleva and Seikkala [10]. George
and Veeramani [9] have redefined the original definition of fuzzy metrics to construct
Hausdorff topology. Now, we recall some basic definitions.

Definition 1.8. [10] A binary operation ♢ : [0, 1] × [0, 1] → [0, 1] is referred to as a
triangular norm (t-norm), if, for all a1, a2, a3 ∈ [0, 1],
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(1) a1♢a2 = a2♢a1,
(2) a1♢(a2♢a3) = (a1♢a2)♢a3,
(3) a1♢a2 ≤ a1♢a3 whenever a2 ≤ a3,
(4) a1♢1 = 1♢a1 = a1

are satisfied.

Example 1.1. [20] According to the Definition 1.8, the following operators are a t-norm:

(1) a♢b = ab,
(2) a♢b = min{a, b}.

Definition 1.9. [9] Let E be an arbitrary set, ♢ be a continuous t-norm, and ℧ be a fuzzy
set on E2 × (0,∞). Then, an FMS is the triplet (E,℧,♢), if the following conditions are
hold, for all an s, v > 0 and a1, a2, a3 ∈ E,

(1) ℧(a1, a2, 0) > 0,
(2) ℧(a1, a2, s) = 1 ⇔ a1 = a2,
(3) ℧(a1, a2, s) = ℧(a2, a1, s),
(4) ℧(a1, a3, s+ v) ≥ ℧(a1, a2, s)♢℧(a2, a3, v),
(5) The function (℧)a1a2 : (0,∞) → [0, 1], defined by (℧)a1a2 = ℧(a1, a2, s) for all

s ∈ (0, 1), is continuous.

Example 1.2. [12] Let x♢y = xy for x, y ∈ [0, 1]. Then, for all s > 0 and a, b ∈ R, the
triplet (R,℧,♢) is an FMS where

℧(a, b, s) =
(
e

|a−b|
s

)−1
.

Definition 1.10. [9] Let (E,℧,♢) be an FMS and a ∈ E. Then, for all η ∈ (0, 1) and
s > 0, the set

D(a, η, s) = {b ∈ E : ℧(a, b, s) > 1− η}
is said to be the η−disc about a.

Definition 1.11. [10] Let (E,℧,♢) be an FMS, (ak) be a sequence in E, and a0 ∈ E.
Then, a sequence (ak) is referred to as convergent to a0, if, for all η ∈ (0, 1) and s > 0,
there exists kη ∈ N such that k ≥ kη implies

℧(ak, a0, s) > 1− η

or equivalently

lim
k→∞

℧(ak, a0, s) = 1,

and is denoted by ℧− lim
k→∞

ak = a0 or ak
℧−→ a0 as k → ∞.

Definition 1.12. [10] Let (E,℧,♢) be an FMS and (ak) be a sequence in E. Then, a
sequence (ak) is said to be Cauchy sequence in E, if, for all η ∈ (0, 1) and s > 0, there
exists kη ∈ N such that k,K ≥ kη implies

℧(ak, aK , s) > 1− η

or equivalently

lim
k,K→∞

℧(ak, aK , s) = 1.

Recently, Mihet [14] examined the concept of pointwise convergence, which is less strong
than Cauchy convergence. Furthermore, the concept of s− convergence has been proposed
by Gregori et al. [7]. Morillas and Sapena [15] have introduced the concept of standard
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convergence. The concept of strong convergence, which is stronger than Cauchy conver-
gence, was introduced by Gregori and Miňana [8]. Li et al. [13] introduced the concepts
of statistical convergence and statistical Cauchy sequences in FMSs and analyzed their
fundamental properties.

The concept of convergence of sequences has always been a topic of interest in mathe-
matics, and much of the work in this area in the last 20 years has focused on the study of
fuzzy versions of fundamental concepts and properties of topology and functional analysis.
As a result of this motivation, researchers have studied ideal convergence and similar types
of convergence in various spaces [1, 2, 3, 4, 17, 18, 19]. With the same motivation, we
define the notion of ideal convergence, which is more general than statistical convergence,
in fuzzy metric spaces. The ideal convergence in FMSs is defined in this article, as a result
of previous research on this topic.

2. ℧(K)-convergence and ℧(K)-Cauchy sequence

In this section, we propose definitions and theorems for K−convergence and K−Cauchy
sequences in FMSs. Furthermore, we analyze some important characteristics. It must
be noted that in the remainder of the paper, unless otherwise stated, E is an FMS and
K ⊆ P (N). Also, the condition (AP) will be referred to in Definition 3.3 in [11].

Definition 2.1. Let K be a non-trivial ideal. Then, a sequence (ak) in E is referred to as
℧(K)−convergent to a0, if, for all η ∈ (0, 1) and s > 0,

As,η = {k ∈ N : ℧(ak, a0, s) ≤ 1− η} ∈ K,

and is denoted by ℧(K)− lim
k→∞

ak = a0 or ak
℧(K)−−−→ a0 as k → ∞. The element a0 is said

to be the K−limit of the sequence (ak).

Example 2.1.

(1) If choose K = Kf = {T ⊆ N : T is a finite set}, then K− convergence is the same
as Cauchy convergence in FMSs.

(2) If choose K = Kδ = {T ⊆ N : δ(T ) = 0}, then K− convergence is the same as
statistical convergence [6].

Example 2.2. Let the class of Tk, which is an infinite set for all k ∈ N, be a decomposition
in N. Then, K is an admissible ideal in N, where

K = {A ⊂ N : k ∈ N ∋ A ⊆ T1 ∪ T2 ∪ · · · ∪ Tk}.

Remark 2.1. The Cauchy convergence in FMSs means K-convergence, if K is an admis-
sible ideal.

The following theorem presents, well-known in Cauchy convergence, which gives whether
the following expressions satisfy at ideal convergence:
I. Every constant sequence {a0, a0, ..., a0, ...} is convergent to a0.
II. The limit of converge sequence’s can be determined by uniquely.
III. Each subsequence of the converge sequence converges to the same limit.

Theorem 2.1. Let (ak) is a sequence in E and a0, a1 ∈ E.
(1) Every constant sequence {a0, a0, ..., a0, ...} is ℧(K)-convergent to a0.
(2) If ℧(K)− lim

k→∞
ak = a0 and ℧(K)− lim

k→∞
ak = a1 are provided, then a0 = a1.

(3) If K contains an infinite set and ℧(K) − lim
k→∞

ak = a0 is satisfied, then sequence

(ak) has a subsequence (bk) that does not ℧(K)-converge to the element a0.
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Proof.

(1) It is obvious that every constant sequence {a0, a0, ..., a0, ...} is ℧(K)-convergent to
a0.

(2) Suppose that ℧(K) − lim
k→∞

ak = a0, ℧(K) − lim
k→∞

ak = a1, a0 ̸= a1. Choose s > 0

and η = 1
k , (k = 2, 3, . . .). Hence, from Remark 1.1 and assumption, the sets

H1 = N \A = {k ∈ N : ℧(ak, a0, s) > 1− η}, H2 = N \B = {k ∈ N : ℧(ak, a1, s) >
1 − η} ∈ F(K), and so H1 ∩H2 ∈ F(K), too. Therefore, there is an m ∈ N such
that

℧(am, a0, s) > 1− η and ℧(am, a1, s) > 1− η.

From this ℧(a0, a1, s) = 1 which is a contradiction to a0 ̸= a1.
(3) Assume that K = {k1 < k2 < . . . < kn < . . .} ⊆ N is an infinite set and it is

contained in K. Put

N \K = {t1 < t2 < . . . < tn < . . .}.

Since K is an admissible ideal, N can not belong to K, and so N \ T is infinite.
Define the sequence (ak) as follows

ak :=

{
a0, if k ∈ K,

a1, if k ∈ N \K.

Obviously ℧(K)− lim
k→∞

ak = a0. In addition, the subsequence (atn) of (ak) is sta-

tionary and therefore ℧(K)− lim
n→∞

atn = a1 (see proposition (1)). Hence, sequence

(ak) has a subsequence that does not ℧(K)-converge to the element a0.

□

Definition 2.2. Let K be an admissible ideal. Then, a sequence (ak) in E is referred to
as ℧(K)−Cauchy sequence in E, if, for all η ∈ (0, 1) and s > 0, there exists a K ∈ N such
that

As,η = {k ∈ N : ℧(ak, aK , s) ≤ 1− η} ∈ K.

Theorem 2.2. Let K is an admissible ideal. Then, every ℧(K)−convergent sequence in
E is an ℧(K)−Cauchy sequence in E.

Proof. Let a0 ∈ E and ℧(K)− lim
k→∞

ak = a0. Then, for all η ∈ (0, 1) and s > 0,

As,η = {k ∈ N : ℧(ak, a0, s) ≤ 1− η} ∈ K.

Given the definition of admissible ideal, there exists a K ∈ N such that K /∈ As,η.
Let

B = {k ∈ N : ℧(ak, aK , s) ≤ δ(η)}
such that δ(η) = (1− η)♢(1− η) and K /∈ As,η. Considering the following inequality

℧(ak, aK , s) ≥ ℧
(
ak, a0,

s

2

)
♢℧

(
aK , a0,

s

2

)
.

Therefore, if k ∈ B, then

δ(η) = (1− η)♢(1− η) ≥ ℧
(
ak, a0,

s

2

)
♢℧

(
aK , a0,

s

2

)
.

Moreover, ℧(aK , a0, s) > 1− η satisfies because K /∈ As,η. Therefore, ℧(ak, a0, s) ≤ 1− η,
then k ∈ As,η. In this case, B ⊆ As,η ∈ K for all η ∈ (0, 1) and s > 0. Hence, (ak) is a
℧(K)−Cauchy sequence. □
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Definition 2.3. Let K be an admissible ideal. Then, a sequence (ak) in E is called ℧(K∗)-
convergent to a0 ∈ E, if there exists a set

T = {t1 < t2 < . . . < tn < . . .} ∈ F(K)

such that
lim
n→∞

℧(atn , a0, s) = 1, (1)

and is denoted by ℧(K∗)− lim
k→∞

ak = a0 or ak
℧(K∗)−−−−→ a0 as k → ∞.

Theorem 2.3. Let K be an admissible ideal. Then, ℧(K∗) − lim
k→∞

ak = a0 implies that

℧(K)− lim
k→∞

ak = a0.

Proof. Let ℧(K∗)− lim
k→∞

ak = a0. Hence, there is a set T = N \K = {t1 < t2 < . . . < tn <

. . .} ∈ F(K) such that (1) holds. Then, K ∈ K.
Let η ∈ (0, 1) and s > 0. By (1), there exists a kη ∈ N such that ℧(ak, a0, s) > 1− η for

k > kη. Put As,η = {k ∈ N : ℧(ak, a0, s) ≤ 1− η}. Then,
As,η ⊆ K ∪ {t1, t2, . . . , tkη}. (2)

Since K ∈ K and K is an admissible ideal,

K ∪ {t1, t2, . . . , tkη} ∈ K
and hence As,η ∈ K. □

The following Example 2.3 states that the converse of Theorem 2.3 does not always
hold.

Example 2.3. Let (R, |.|) be a metric space and x♢y = xy for all x, y ∈ [0, 1]. Then, for
all s > 0 and a, b ∈ R, the triplet (R,℧,♢) is an FMS where

℧(a, b, s) =
s

s+ |a− b|
.

Put the FMS (R,℧,♢) and K = K (see Example 2.2). Assume that a0 is accumulation
point of R. Then, there exists a sequence (ak) in R such that lim

k→∞
℧(ak, a0, s) = 1. Define

bk :=

{
aj , if k ∈ Tj ,

a0, if k /∈ Tj .
for j = 1, 2, . . .

Choose s > 0 and n ∈ N such that 1
n < η for η ∈ (0, 1). Thus,

As,η = {k ∈ N : ℧(bk, a0, s) ≤ 1− η} ⊆
{
k ∈ N : ℧(bk, a0, s) ≤ 1− 1

n

}
⊆

n⋃
l=1

Tl.

Hence, according to the concept of ideal As,η ∈ K and so ℧(K) − lim
k→∞

bk = a0. Now,

assume that ℧(K∗)− lim
k→∞

bk = a0. Then, there exists a set T = {t1 < t2 < . . . tk} ∈ K
such that

lim
k→∞
tk∈T

℧(btk , a0, s) = 1.

Using of the concept of ideal K, there exists a l ∈ N such that

T ⊆ T1 ∪ T2 ∪ . . . ∪ Tl.

But by notation used in proof of Theorem 2.3 and Tl+1 ⊆ N \ T , btk = 1
l+1 for infinitely

many of k’s. As result, lim
k→∞

℧(btk , a0, s) = 1 can not be true.
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Theorem 2.4. Let K be an admissible ideal, (ak) is a sequence in E, and a0 ∈ E.
(1) If the K ideal has the condition (AP), then ℧(K)− lim

k→∞
ak = a0 implies ℧(K∗)−

lim
k→∞

ak = a0.

(2) If E has at least one accumulation point and ℧(K)− lim
k→∞

ak = a0 implies ℧(K∗)−
lim
k→∞

ak = a0, then K has the property (AP).

Proof.

(1) Let ak
℧(K)−−−→ a0 and K has the condition (AP). Hence, for all η ∈ (0, 1) and s > 0,

the set

As,η = {k ∈ N : ℧(ak, a0, s) ≤ 1− η} ∈ K.

Put

T1 =

{
k ∈ N : ℧(ak, a0, s) ≤

1

2

}
,

Tl =

{
k ∈ N :

l − 1

l
< ℧(ak, a0, s) ≤

l

l + 1

}
for l ≥ 2.

Obviously Tl ∩ Tn = ∅ for l ̸= n and Tl ∈ K (l = 1, 2, . . .). Since K satisfies
(AP), there are sets Sn ⊆ N such that, for all n ∈ N, Tn∆Sn is a finite set and

S =
∞⋃
n=1

Sn ∈ K. It suffices to prove that

lim
k→∞
k∈T

℧(ak, a0, s) = 1, (3)

where T = N \ S. Let µ ∈ (0, 1) and s > 0. Choose a m ∈ N such that 1
m < µ.

Then,

{k ∈ N : ℧(ak, a0, s) ≤ 1− µ} ⊆
m+1⋃
n=1

Tn.

From the additivity of K,
m+1⋃
n=1

Tn ∈ K. Since, for all n ∈ N, Tn∆Sn exists a finite

set, there is a kµ ∈ N such that

m+1⋃
n=1

Sn ∩ (kµ,∞) =

m+1⋃
n=1

Tn ∩ (kµ,∞).

If k /∈ S for k > kµ, then k /∈
m+1⋃
n=1

Sn. Hence, k /∈
m+1⋃
n=1

Tn. Since

{k ∈ N : ℧(ak, a0, s) ≤ 1− µ} ⊆
m+1⋃
n=1

Tn,

k ∈ {k ∈ N : ℧(ak, a0, s) > 1− µ}. Consequently, (3) hold.
(2) Suppose a0 ∈ E is an accumulation point of E and ℧(K) − lim

k→∞
ak = a0 implies

℧(K∗)− lim
k→∞

ak = a0. Hence, there exists a sequence (ak) of distinct elements of

E such that ak ̸= a0 for any k and lim
k→∞

℧(ak, a0, s) = 1. Let {T1, T2, . . .} be a

disjoint class of nonempty sets in K. Define a sequence (bk) in the following way:
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bk = aj if k ∈ Tj and bk = a0 if k /∈ Tj , for all j. Let η ∈ (0, 1) and s > 0. Choose
n ∈ N such that 1

n < η. Then,

As,η = {k ∈ N : ℧(bk, a0, s) ≤ 1− η} ⊂ T1 ∪ T2 ∪ · · · ∪ Tn.

Hence, As,η ∈ K and so ℧(K) − lim
k→∞

bk = a0. By virtue of our assumption,

℧(K∗)− lim
k→∞

bk = a0. Therefore, there exists a set S ∈ K such that N \ S ∈ F(K)

and

lim
n→∞

kn∈N\S
℧(bkn , a0, s) = 1. (4)

Put Sj = Tj ∩ S, for j ∈ N. Then, Sj ∈ K, for all j ∈ N. Moreover,
∞⋃
j=1

Sj =

S ∩
∞⋃
j=1

Tj ⊂ S and thus
∞⋃
j=1

Sj ∈ K. From (4), for all η ∈ (0, 1) and s > 0,

{kn ∈ N : ℧(bkn , a0, s) ≤ 1− η} ⊆ N \ S

has a finite number of elements. By

As,η ⊆ T1 ∪ T2 ∪ · · · ∪ Tn

the set Tj ∩ N \ S is a finite set. Then, there exists a kη ∈ N such that

Tj ⊆ (Tj ∩ S) ∪ {n1, n2, · · · , nkη}.

Hence,

Tj∆Sj ⊆ Tj ∩ (N \ S)

and we have Tj∆Sj is finite.

□

Theorem 2.5. If E has no accumulation point and K is an admissible ideal, then K- and
K∗-convergence are the same.

Proof. Let E has no accumulation points, K is an admissible ideal, and ak
℧(K)−−−→ a0. Hence,

there exists s > 0 and η ∈ (0, 1) such that

B(a0, η, s) = {b ∈ E : ℧(b, a0, s) > 1− η} = {a0}.

Also, thanks to Theorem 2.3, it suffices to prove that ak
℧(K∗)−−−−→ a0 as k → ∞. Now, from

the assumption {k ∈ N : ℧(ak, a0, s) ≤ 1− η} ∈ K. Hence,

{k ∈ N : ℧(ak, a0, s) > 1− η} = {k ∈ N : ak = a0} ∈ F(K),

and obviously ak
℧(K∗)−−−−→ a0. □

Theorem 2.6. Let K be an ideal which satisfies the condition (AP). Then, the following
situations are equivalent:

(1) ℧(K)− lim
k→∞

ak = a0,

(2) There exist b = (bk), c = (ck) ∈ E such that a = b + c, lim
k→∞

℧(bk, a0, s) = 1 and

suppc ∈ K, where suppc = {k ∈ N : ck ̸= θE}.
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Proof. Assume that ℧(K) − lim
k→∞

ak = a0. In that case, by Theorem 2.4, there exists a

set T ∈ F(K), T = {t1 < t2 < . . . < tk < . . .} such that lim
k→∞

℧(atk , a0, s) = 1. Put the

sequence b = (bk) ∈ E as

bk :=

{
ak, k ∈ T,

a0, k ∈ N \ T.
(5)

It is clear that lim
k→∞

℧(bk, a0, s) = 1. Further, let ck = ak−bk, k ∈ N. {k ∈ N : ck ̸= 0} ∈ K
is satisfied, because

suppc = {k ∈ N : xk ̸= yk} ⊂ N \ T ∈ K.

In addition, suppc ∈ K and by (5), a = b+ c is wrote.
Now, let b = (bk) and c = (ck) be two sequence in E. This sequences satisfy a = b+ c,

lim
k→∞

℧(bk, a0, s) = 1 and suppc ∈ K. It must be proved that

℧(K)− lim
k→∞

ak = a0. (6)

Assume that T = {tk ∈ N : ctk = 0} ⊂ N. T ∈ F(K) is satisfied, because suppc = {tk ∈
N : ctk ̸= 0} ∈ K. Hence, ak = bk if k ∈ T . Therefore, it is obtained that there exists a set
T = {t1 < t2 < . . .} ∈ F(K) such that

lim
k→∞
tk∈T

℧(atk , a0, s) = 1.

By Theorem 2.4, (6) is hold. □

Definition 2.4. Let K be an admissible ideal. Then, a sequence (ak) in E is said to be
℧(K∗)-Cauchy sequence in E, if there exists a set

T = {t1 < t2 < . . . < tk < . . .} ∈ F(K)

such that

lim
k,p→∞
tk,tp∈T

℧(atk , atp , s) = 1. (7)

Theorem 2.7. Let K be an admissible ideal. If a sequence (ak) in E is a ℧(K∗)-Cauchy
sequence in E, then it is a ℧(K)-Cauchy sequence.

Proof. Assume that (ak) be a ℧(K∗)-Cauchy sequence. Hence, there exists a set

T = N \K = {t1 < t2 < . . . < tk < . . .} ∈ F(K)

such that, for all η ∈ (0, 1) and s > 0, tk, tp > kη implies ℧(atk , atp , s) > 1− η.

Choose N = tkη+1. Then, for all η ∈ (0, 1) and s > 0,

tk > kη ⇒ ℧(atk , aN , s) > 1− η.

It must been note that K ∈ K and

As,η = {k ∈ N : ℧(ak, aN , s) ≤ 1− η} ⊂ K ∪ {t1 < t2 < . . . < tkη}. (8)

From here

K ∪ {t1 < t2 < . . . < tkη} ∈ K.

Hence, the sequence (ak) is a K−Cauchy sequence. □

Theorem 2.8. Let K be an admissible ideal. Then, ℧(K)−Cauchy sequence in E implies
that ℧(K∗)−Cauchy sequence in E if and only if the ideal K has the condition (AP).
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Proof. Let a sequence (ak) be a ℧(K)−Cauchy sequence in E and the ideal K has the
condition (AP). Hence, there exists a K such that, for all η ∈ (0, 1) and s > 0,

{k ∈ N : ℧(ak, aK , s) ≤ 1− η} ∈ K.

Choose

Tj =

{
k ∈ N : ℧(ak, amj , s) >

j − 1

j

}
for j = 1, 2, . . . ,

where mj = K( j−1
j ). For j = 1, 2, . . ., Tj ∈ F(K) is obvious. Since K has the condition

(AP), then by Lemma 4 in [16] there exists a set T such that T ∈ F(K) and T \Tj is finite
for all j.

Suppose that η ∈ (0, 1) and n ∈ N such that n > 1
η . Hence, there exists i(n) such that

k ∈ Tn and m ∈ Tn for all k,m > i(n), where k,m ∈ T . Therefore, ℧(ak, amn , s) >
n−1
n

and ℧(am, amn , s) >
n−1
n for all k,m > i(n). In that case,

℧(ak, am, s) ≥ ℧
(
ak, amn ,

s

2

)
♢℧

(
am, amn ,

s

2

)
> (1− η)♢(1− η) = δ(η) for m, k > i(n).

Consequently,
lim

k,m→∞
k,m∈T

℧(ak, am, s) = 1.

□

Theorem 2.9. Let K be an admissible ideal. If a sequence (ak) in E is a ℧(K∗)−convergent
sequence, then it is a ℧(K∗)− Cauchy sequence.

Proof. Let ak
℧(K∗)−−−−→ a0. Then, there exist a set T = {t1 < t2 < . . . < tk < . . .} ∈ F(K)

such that
lim
k→∞
tk∈T

℧(atk , a0, s) = 1.

Considering the following inequality

℧(atk , atp , s) ≥ ℧
(
atk , a0,

s

2

)
♢℧

(
atp , a0,

s

2

)
> (1− η)♢(1− η) = δ(η)

it is clear that
lim

k,p→∞
℧(atk , atp , s) = 1.

Consequently, there exists a set T ∈ F(K) such that lim
k,p→∞

℧(atk , atp , s) = 1, i.e., the

sequence (ak) is a ℧(K∗)− Cauchy sequence. □

3. ℧(K)−Limit Points and ℧(K)-Cluster Points

In this section, some introductory definitions, theorem, and proposition of the ℧(K)−limit
point and the ℧(K)−cluster point in the FMS are presented.

Definition 3.1. Let K be an admissible ideal, a = (ak) be a sequence in E, and a0 ∈ E.
(1) An element a0 is said to be a ℧(K)-limit point of a, if there is a set

T = {t1 < t2 < . . .} /∈ K
and

lim
k→∞
tk∈T

℧(atk , a0, s) = 1

and the set of all ℧(K)-limit points of a sequence a is denoted by ℧(K)(Λa).
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(2) An element a0 is called a ℧(K)-cluster point of a, if, for all η ∈ (0, 1) and s > 0,

{k ∈ N : ℧(ak, a0, s) > 1− η} /∈ K
and the set of all ℧(K)-cluster points of a sequence a is denoted by ℧(K)(Γa).

Proposition 3.1. Let K be an admissible ideal and a = (ak) be a sequence in E. Then,
℧(K)(Λa) ⊂ ℧(K)(Γa).

Proof. Let a0 ∈ ℧(K)(Λa), then there exists a set T = {t1 < t2 < . . .} /∈ K such that

lim
k→∞

℧(atk , a0, s) = 1. (9)

Take s > 0, η ∈ (0, 1). According to (9), there exists kη ∈ N such that for tk > kη,
℧(atk , a0, s) > 1− η. Hence

T \ {t1, t2, . . . , tkη} ⊂ {k ∈ N : ℧(ak, a0, s) > 1− η}
and thus {k ∈ N : ℧(ak, a0, s) > 1− η} /∈ K which means that a0 ∈ ℧(K)(Γa). □

Theorem 3.1. Let K be an admissible ideal. Then, the set ℧(K)(Γa) is closed in E.

Proof. Let b ∈ ℧(K)(Γa), η ∈ (0, 1), and s > 0. Then, a0 ∈ B(b, η, s)∩℧(K)(Γa). Suppose
that δ ∈ (0, 1), s > 0 such that

B(a0, δ, s) ⊂ B(b, η, s).

Hence,
{k ∈ N : ℧(a0, ak, s) > 1− δ} ⊂ {k ∈ N : ℧(b, ak, s) > 1− η}.

Consequently, {k ∈ N : ℧(b, ak, s) > 1− η} /∈ K and b ∈ ℧(K)(Γa). □

4. Conclusions

This study examines the notion of ideal convergence, which extends both statistical con-
vergence and Cauchy convergence in FMSs. It employs George and Veeramani’s definition
of an FMS [9]. Hence, this definition makes it possible to analyze the convergence of sta-
tistically non-convergent sequences. Additionally, this paper examines ℧(K)∗−convergent
and ℧(K)−Cauchy sequences, along with ℧(K)∗−Cauchy sequences, and analyses their
fundamental properties. Furthermore, it defines ℧(K)-limit points and ℧(K)−cluster
points in FMSs while exploring the correlation between these concepts.

In further work, we also believe that rough convergence in an FMS can be defined using
the concepts and results presented here, and its basic properties can be studied.
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