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INTERVAL-VALUED FERMATEAN FUZZY SETS APPROACH FOR

THE SPEARMAN RANK CORRELATION COEFFICIENT

M. KIRIŞCI1∗, §

Abstract. Correlation is an important concept that can be used to analyze data sets
and assist business leaders in gaining valuable insights into the relationships between
business outcomes. When conducting a correlation analysis, the more data points avail-
able, the more accurate the analysis results will be. Having sufficient data before relying
on correlations is essential to make business decisions. Methods for calculating cor-
relation coefficients between sets have been developed and used in application areas.
Interval-valued Fermatean fuzzy-based Spearman rank correlation coefficients are given
in this study, and their basic features are examined. In order to demonstrate the appli-
cation of Interval-valued Fermatean fuzzy-based Spearman rank correlation coefficients
to real-world problems, the Hospital Disaster Preparedness application is studied ac-
cording to information from a university hospital. The disaster preparedness of four
hospital departments is evaluated using information obtained from the Hospital Disaster
Management unit. The preparedness status of the departments is determined using the
Interval-valued Fermatean fuzzy-Spearman rank correlation coefficients method. The
Interval-valued Fermatean fuzzy-Spearman rank correlation coefficients method is com-
pared with the previously known Fermatean fuzzy-based correlation coefficients methods.
In this comparison process, it is seen that the results of the new method are similar to
some previously known methods. This new method of Fermatean fuzzy-based correlation
coefficients could be used to discuss techniques for order preference that are similar to
ideal solutions and multi-criteria decision-making.

Keywords: Spearman rank correlation coefficient Decision-making approach, Pearson
correlation coefficients, interval-valued Fermatean fuzzy set.
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1. Introduction

1.1. Research Motivation. These days, with the challenges growing and extending, se-
lecting the best option from a range of workable options during the DM process is getting
harder and harder. In the context of today’s decision-making challenges, several experts
have assessed objects like crisp and interval differently, which may make decisions harder.
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M. KIRIŞCI: INTERVAL-VALUED FERMATEAN FUZZY SETS APPROACH... 905

Scholars often employ the theory of fuzzy sets (FS)[50] and its extensions, such as intu-
itionistic FSs (IFSs) [1], Pythagorean FSs (PFSs) [47], [48], and Fermatean FS (FFSs) [41],
[42], to handle data uncertainties. Scholars have investigated the various applications of
these sets using aggregation operators and information measures. Numerous studies have
been conducted on information measures, which are essential in integrating the diverse
preferences of the recipients. One of these many concepts is using correlation measures to
determine the optimal option.

The literature research uses several applications to handle DM difficulties. One method
for selecting the best option is using correlation coefficients (Cs), which measure the re-
liance level between two groups. In statistics, a correlation is any statistical relation-
ship—whether causal or not—between two random variables or bivariate data. The C is
the metric utilized in a correlation analysis to express the strength of the linear relation-
ship between two variables. By analyzing each data point’s distance from the variable
mean, the formula ascertains the degree to which the relationship between the variables
can be fit to an illustrative line drawn across the data for two variables.

Using Spearman’s rank C (SRC), one can assess rank correlation—the statistical de-
pendency of rank between two variables—in a non-parametric manner. The correlation
between two ordinal variables and their strength and direction are calculated. Under-
standing the PEAR is necessary for the SRC. The statistical indicator known as PEAR
quantifies how strongly two data sets have a linear relationship. The following data as-
sumptions must be valid in order to calculate the ranking variable and run the significance
test: (1) range or rate level, (2) linearly connected, and (3) bivariate distribution. If these
assumptions are not met, the Spearman coefficient will be needed. One must comprehend
the monotonic function to comprehend the SRC. When the independent variable rises, a
monotonic function never lowers or does not increase. Although the SRC does not need
monotony, if it is already known that the relationship between the variables is not mono-
tonic, it would be pointless to use the SRC without determining the strength and direction
of a monotonic relationship.

Finding a correlation between any two parameters or variables is common in statistics.
Pearson’s C(PEAR) has been applied in statistics research on medical diagnosis, DM,
pattern recognition, grouping, and data analysis and classification. It has been found
that classical correlation cannot handle data with ambiguous concerns. The main goal
of the fuzzy logic approach is to quantify the uncertainties in human perception and
reasoning. Scientists are used to using binary logic for data analysis. Because human logic
is complicated and imprecise, using binary logic to investigate human mental processes
can lead to some distortion. Fuzzy logic is based on cognitive processes that occur in
humans. Fuzzy logic is defined, for instance, as ”the modeling of thinking and decision
mechanisms that enable humans to make consistent and correct conclusions in the light of
comprehensive and imprecise information.” The fuzzy-type Cs have been extended based
on statistical Cs, fuzzy logic approach, and mathematical statistics. The C generated
for fuzzy data shows how strongly FSs are associated and whether FSs are favorably or
negatively related.

1.2. Literature. The complexity of the decision-making environment makes it harder
for experts to provide trustworthy assessment information. The ideas of IFS and PFS
have been advocated to mitigate the ambiguity and imprecision brought about by the
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intricate subjectivity of human cognition. Therefore, a more expansive information space
is required to meet their evaluation expectations for various goals and to consider the
decision-making time and knowledge base of professionals to make more appropriate judg-
ments. Consequently, the FFS was the first to expand the range of information expression
by incorporating the cubic sum of MD and ND in the interval. As a result, FFS han-
dles indeterminacy of choice problems more effectively and practically than IFS and PFS.
Senepati and Yager created the FFS [41]. Compared to IFSs and PFSs, FFSs are superior
at explaining uncertainty. Senapati and Yager followed this study [42], who examined
several additional operations and arithmetic mean processes over FFSs. They also used
the FF-weighted product model to handle MCDM problems. New aggregation operations
related to FFS have been defined, and their accompanying properties have been studied
[43]. A measure of entropy based on Fermatean fuzzy soft sets (FFSS) was also offered by
Kirisci[26].

In [30], new distance and cosine similarity metrics between FFSs are given. A novel
hesitant fuzzy set (HFS) has been introduced, dubbed the Fermatean hesitant fuzzy set
(FHFS), and some of its characteristics have been investigated [33]. The group DM de-
scribes the ELECTRE I technique in [29] with FFSs when multiple persons engage si-
multaneously. In [43], new weighted aggregated operators pertinent to FFSs are defined.
Shahzadi and Akram [44] created new aggregated operators and developed a novel FFSS
decision support method. New FFS-type aggregated operators described by t-norm and
t-conorm were proposed by Garg et al. [21]. Recent works on FFSs [2], [3], [4] show the use
of FFSs with applications like FF soft expert knowledge, FF N-soft sets, and COVID-19
applications. Ashraf and Akram [6] have provided several novel Fermatean fuzzy sets-
based information measures, including distance, similarity, entropy, and inclusion. In [38],
Onyeke and Ejegwa identified the inaccuracies of the Fermatean fuzzy distance measure-
ment defined by Senapati and Yager and its contradictions with the definition of distance
measurement. Thus, Onyeke and Ejegwa modified this distance measure. Ejegwa and
Onyeke, in [13], a novel similarity measure between Fermatean fuzzy sets is introduced
with a better and more reliable output than the dual of the existing Fermatean fuzzy
distance measure. Ejegwa et al. [14] presented an improved Fermatean fuzzy composition
relation with better performance based on the maximum mean approach.

Instruments such as information measurements and aggregation operators are frequently
used in decision-making tasks. Another tool for making the optimal decision is the C mea-
sure, which indicates the level of reliance between two groups. Cs are used to measure
the degree of connection between two variables. Since the information could be more
precise, complete, and imprecise, several scholars have established the Cs in fuzzy envi-
ronments. Chiang and Lin [9] have presented a solution for C based on FSs while fulfilling
the correlation for fuzzy information according to classical statistics. Liu and Kao [35]
have examined the C of fuzzy information by applying the traditional notion of Cs as an
approximation in mathematical programming. The association between interval-valued
intuitionistic fuzzy sets (IVIFSs) in finite universal sets was examined by Bustince and
Burillo [8]. Hong examined the correlation of IVIFSs in probability spaces [24]. Szmidt
and Kacprzyk established three parameters [45] to define the distance between IFSs and
provide a geometrical depiction of the IFS. Zeng and Li [51] proposed a new method to
calculate the correlation and C of IFSs, similar to the cosine of the intersectional angle in
the finite set and probability space, respectively. Based on the kind of geometrical back-
ground, they considered all three parameters describing IFSs. Mitchell defined Cs for IFSs
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[37]. Mitchell demonstrated how we could obtain a straightforward, logically satisfying C
between two IFSs by viewing an IFS as an ensemble of regular FSs. In [46], several oper-
ational rules of IVIF numbers, correlation, and C of IVIFSs are introduced about MCDM
problems with IVIF information. To correct the drawbacks in some existing techniques
in terms of mathematical presentation and the exclusion of the hesitation parameter to
enhance reasonable output, a new method of IFCC is developed [12]. In [17], a new ap-
proach to finding the partial C of IFSs was proposed by incorporating three parameters of
intuitionistic fuzzy data based on a modified C of IFSs approach.

The development of PFS to solve an IFS problem has allowed the publication of various
DM issues incorporating PF information in the literature. Garg [20] introduced a novel C
and weighted C formulation to quantify the link between two PFSs after pointing out the
flaws in the existing Cs between IFSs. Lin et al. [36] present a unique TOPSIS approach for
the linguistic PFS based on the entropy measure and C. The C is suggested to measure the
link between linguistic PFSs. Two techniques for calculating PFCC have been developed
to produce more trustworthy ways [19]. In [15], in the PF C, some techniques for calcu-
lating the C of PFSs from a statistical perspective have been proposed. However, since
these techniques have some limitations, some new statistical techniques have been given
to calculate the C of PFS using PF variance and covariance, which solve the limitations
with better performance indices. Zheng et al. [53] have defined four kinds of correlation
coefficients for Pythagorean hesitant fuzzy sets and extended them to the correlation coef-
ficients and the weighted correlation coefficients for interval-valued Pythagorean hesitant
fuzzy sets.

New Cs with FFS have been defined recently. In the first investigation on Cs, Kirisci
defined them based on FFSs [28], and their basic properties were examined. The article
of Amman et al. [5] presents the concept, representation, and pertinent characteristics
of the SRC within the context of FFSs. In this work, an MCDM technique, fortified by
incorporating FF-operators, is formulated based on the proposed SRC. New Cs were pre-
sented by Bhatia et al. [7] utilizing FFSs and well-defined statistical principles. These Cs
were used to obtain the weighted Cs. Demir [10] classified Fermatean hesitant FSs into
four categories of Cs. However, novel Cs have been discovered and applied to IVFHFSs.
Due to some deficiencies in FFCCs defined by Kirisci [28], Ejegwa and Sarkar [18] devel-
oped two new C operators based on FFs. A statistical concept-based reframing of this
initial investigation was done in [31]. This study further classified PEARs as associated
with FFSs. The least common multiple expansion approach has been proposed in [32] to
handle the problem when the cardinality of FHFEs and IVFHFEs differs for obtained Cs
with FHFS and IVFHFS during operations with new Cs. Ejegwa et al. [11] conducted
a new study that examined the Cs in the literature on FFSs and resolved the reliability
and precision issues in these methods. Kirisci [34], using the notions of variance and co-
variance, defined a three-way method for computing the Cs between FFSs. Therefore, the
potential of inaccuracy owing to information leakage has been reasonably mitigated by
the suggested technique’s inclusion of the three traditional FFS parameters.

1.3. Necessity. Techniques according to IFS and PFS cannot capture data in FFS type.
IFS and PFS-based DM procedures will fail when experts supply preference values in the
form of FFSs. Nonetheless, FFS-based techniques, such as this, can quickly review data
and rank viable solutions based on criterion values. Because it incorporates IFSs and
PFSs into a single platform, the FFS ecosystem will handle more data and cover various
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topics for processing uncertain data. As a result, additional information must be lost in
this collection. The proposed Cs are believed to be a particular instance of the existing Cs
under the IFS and PFS.

Additionally, the suggested Cs handle more information than the current ones. The
presented approach has far more information than the existing approaches to handle data
uncertainty in the IFS and PFS settings. It provides more precise and accurate infor-
mation on things. As a result, it is an effective instrument for dealing with cloudy and
confusing data throughout the DM process. These investigations present a new approach
to computing defined C with the help of FFSs based on a three-way statistical method.
As can be seen from the outputs of this work, the three-way Cs obtained using FFSs have
a structure that will facilitate the solution of MCDM problems.

1.4. Contribution. This study has made the following contributions:

1. Today’s fuzzy or non-standard fuzzy theory commonly uses Cs with values between
0 and 1, which only indicate the intensity of the relationship. A C with a value in [1, 1]
can be used to correlate uncertain notions easily.

2. For their comparison metrics, most studies on fuzzy and non-standard FSs rely on
faked data. The present Cs based on IF and PF do not meet all or part of these criteria.
Therefore, we suggest some new Cs for FFSs in this study that are higher than the current
Cs while considering these factors.

3. We propose four new Cs and discuss some of their appealing properties for FFSs with
values in [1, 1].

4. Data mining and medical diagnostics applications are examined using our proposed
FF-Cs. The suggested C FFSs also contrast compatibility metrics already existing under
FF conditions.

2. Preliminaries

For the initial universe set U , the set P = {(k,mP(k), nP(k)) : k ∈ U} is called
a FFS with mP, nP : U → [0, 1] and 0 ≤ m3

P(k) + n3
P(k) ≤ 1. The equation θP =(

1−m3
P(k)− n3

P(k)
)1/3

[41].

Definition 2.1. [25] Let Int[0, 1] show the set of all closed subintervals of [0, 1]. The set
F = {(k, αF (k), βF (k)) : k ∈ E} is called an IVFFS on a set E ̸= ∅, where αF (k), βF (k) ∈
Int[0, 1] with the condition 0 < supk(αF (k))

3 + supk(βF (k))
3 ≤ 1.

Furthermore, F can be expressed as:

F = {(k, [mFL
(k),mFU

(k)], [nFL
(k), nFU

(k)]) : k ∈ E}
with 0 ≤ (mFU

(k))3 + (nFU
(k))3 ≤ 1. The hesitation degree has been shown with

θF = [θFL, θFU ] = [(1−m3
FU − n3

FU )
1/3, (1−m3

FL − n3
FL)

1/3]. (1)

Definition 2.2. [25] Choose the three IVFFSs F = ([mFL
(k),mFU

(k)], [nFL
(k), nFU

(k)]),
F1 = ([mF1L

(k),mF1U
(k)], [nF1L

(k), nF1U
(k)]),

F2 = ([mF2L
(k),mF2U

(k)], [nF2L
(k), nF2U

(k)]). Then,
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• F1 ∪ F2 =

([
max(mF1L

,mF2L
),max(mF1U

,mF2U
)
]
,
[
min(mF1L

,mF2L
),

min(mF1U
,mF2U

)
])

• F1 ∩ F2 =

([
min(mF1L

,mF2L
),min(mF1U

,mF2U
)
]
,
[
max(mF1L

,mF2L
),

max(mF1U
,mF2U

)
])

• F c = ([nFL
, nFU

], [mFL
,mFU

])

• F1 ⊕ F2 =

([
3
√
(mF1L

(k))3 + (mF2L
(k))3 − (mF1L

(k))3.(mF2L
(k))3,

3
√

(mF1U
(k))3 + (mF2U

(k))3 − (mF1U
(k))3.(mF2U

(k))3
]
,

[nF1L
nF2L

, nF1U
nF2U

]

)

• F1 ⊗ F2 =

(
[mF1L

mF2L
,mF1U

mF2U
] ,[

3
√
(nF1L

(k))3 + (nF2L
(k))3 − (nF1L

(k))3.(nF2L
(k))3,

3
√

(nF1U
(k))3 + (nF2U

(k))3 − (nF1U
(k))3.(nF2U

(k))3
])

• λF =

([
3

√
1−

(
1−m3

FL

)λ
,

3

√
1−

(
1−m3

FU

)λ]
,
[
nλ
FL

, nλ
FU

])

• F λ =

([
mλ

FL
,mλ

FU

]
,

[
3

√
1−

(
1− n3

FL

)λ
,

3

√
1−

(
1− n3

FU

)λ])

Definition 2.3. [25] Let F = ([mFL
(k),mFU

(k)], [nFL
(k), nFU

(k)]),
F1 = ([mF1L

(k),mF1U
(k)], [nF1L

(k), nF1U
(k)]),

F2 = ([mF2L
(k),mF2U

(k)], [nF2L
(k), nF2U

(k)]) be three IVFFSs.
Then, for λ, λ1, λ2 > 0,

• F1 ⊕ F2 = F2 ⊕ F1

• F1 ⊗ F2 = F2 ⊗ F1

• λ(F1 ⊕ F2) = λF1 ⊕ λF2

• (λ1 + λ2)F = λ1F + λ2F
• (F1 ⊗ F2)

λ = F λ
1 ⊗ F λ

2

• F λ1 ⊗ F λ2 = F λ1+λ2

Let Fi = ([mFiL
(k),mFiU

(k)], [nFiL
(k), nFiU

(k)]), (i = 1, 2, · · · , n) be a category of
IVFFSs. The IVFF-weighted average and IVFF-weighted geometric operators are
IV FFWA, IV FFWG : Fn → F where
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IV FFWA(F1, F2, · · · , Fn) =

([(
1−

n∏
j=1

(1− (mFL
j )3)ωj

)1/3

,

(
1−

n∏
j=1

(1− (mFU
j )3)ωj

)1/3]
,

[
n∏

j=1

(nFL
j )ωj ,

n∏
j=1

(nFU
j )ωj

])

IV FFWG(F1, F2, · · · , Fn) =

([
n∏

j=1

(mFL
j )ωj ,

n∏
j=1

(mFU
j )ωj

]
,

[(
1−

n∏
j=1

(1− (nFL
j )3)ωj

)1/3

,

(
1−

n∏
j=1

(1− (nFU
j )3)ωj

)1/3]
,

)

Let F = ([mFL
,mFU

], [nFL
, nFU

]) be an IVFFN. The score and accuracy function of F
are defined as:

SC(F ) =
1

2

(
(mFL

)3 + (mFU
)3 − (nFL

)3 − (nFU
)3
)
,

AC(F ) =
1

2

(
(mFL

)3 + (mFU
)3 + (nFL

)3 + (nFU
)3
)
.

For two IVFFNs F1 = ([mF1L
,mF1U

], [nF1L
, nF1U

]), F2 = ([mF2L
,mF2U

], [nF2L
, nF2U

]),

i. If SC(F1) > SC(F2), then F1 > F2,
ii. If SC(F1) = SC(F2), then

a. If AC(F1) > AC(F2), then F1 > F2,
b. If AC(F1) < AC(F2), then F1 < F2,
c. If AC(F1) = AC(F2), then F1 = F2.

Existing correlation coefficient approaches for several fuzzy sets are given below:

The robust Cs based on PFSs [16] are given as:

Definition 2.4. For two PFS P,Q in U and the weight ω,

RPFS(P,Q) =
K(P,Q)√

V R(P)V R(Q)
(2)

RPFSω(P,Q) =
Kω(P,Q)√

V Rω(P)V Rω(Q)
(3)

where the deviations, variances and covariance are Di(P) = (α2
P − α2

P) − (β2
P − β2

P) −
(γ2P − γ2P), Di(Q) = (α2

Q − α2
Q) − (β2

Q − β2
Q) − (γ2Q − γ2Q), V R(P) = 1

n−1

∑n
i=1Di(P)2,

V R(Q) = 1
n−1

∑n
i=1Di(Q)2 and K(P,Q) = 1

n−1

∑n
i=1Di(P)Di(Q), respectively.

The Cs defined by Kirisci [28] based on FFSs are defined as follows:
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Definition 2.5. Choose two FFSs P and Q. Then

C(P, Q) =
C(P,Q)

[I(P).I(Q)]1/2
(4)

=

∑n
i=1

(
α3
P(ki)α

3
Q(ki) + β3

P(ki)β
3
Q(ki) + γ3P(ki)γ

3
Q(ki)

)
√∑n

i=1

(
α6
P(ki) + β6

P(ki) + γ6P(ki)
)
.
√∑n

i=1

(
α6
Q(ki) + β6

Q(ki) + γ6Q(ki)
)

D(P,Q) =
C(P,Q)

max [I(P).I(Q)]
(5)

Cω(P,Q) =
Cω(P,Q)

[Iω(P).Iω(Q)]1/2
(6)

Dω(P,Q) =
Cω(P,Q)

max [Iω(P).Iω(Q)]
. (7)

are called the Cs between P,Q.

The PEARs defined in [31] are:

Definition 2.6. For two FFSs P and Q, the PEARs are:

Cpearson(P,Q) =
1

2
(Z1 + Z2) (8)

Cpearson(P,Q) =
1

2
(Z1 + Z2 + Z3) (9)

where

Z1 =

∑m
j=1

{
[α3

P(kj)− αP
3]× [α3

Q(kj)− αQ
3]
}

√
[α3

P(kj)− αP
3]
√

[α3
Q(kj)− αQ

3]

Z2 =

∑m
j=1

{
[β3

P(kj)− βP
3
]× [β3

Q(kj)− βQ
3
]
}

√
[β3

P(kj)− βP
3
]

√
[β3

Q(kj)− βQ
3
]

Z3 =

∑m
j=1

{
[γ3P(kj)− γP

3]× [γ3Q(kj)− γQ
3]
}

√
[γ3P(kj)− γP

3]
√
[γ3Q(kj)− γQ

3]

Some statistical concepts will be given: Let a sample from a population be selected as
(O1, O2, · · · , On). In this sample, the sample observations are sorted in ascending order
(o1, o2, · · · , on), (o(1) < · · · < o(n)). When oi = o(m), then m is said to be rank of the
sample Oi, that is Si = m (m = 1, · · · , n).

Oi is a random variable in each sampling iteration. The average of their ranks can be
used to determine their ranks whenever a situation where some o is the same arises, such
as when oi = oj for i ̸= j.

The PEAR multiplied by the rankings O yields the SRC in statistics. When there are
no two values of O or P with the same rank (also known as ties), there is a simpler method
to get the SRC:
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RS = 1−
6
∑n

i=1 f
2
i

n(n2 − 1)
(10)

where fi are the differences in the ranks of o(1) and p(1) as fi = Rank(oi)−Rank(pi).

In the event of ties (two O values or two P values with the same rank), there are fewer
ties than n. Moreover, Equation 10 remains valid. The requirements of the correlation
measurements are satisfied by the SRC. Since Equation 10 is derived from the PEAR for
ranks, it shares the same characteristics as the PEAR:

i. RS(P,Q) = RS(Q,P)
ii. RS(P,Q) = 1, when P = QB
iii. |RS(P,Q)| ≤ 1.

Ejegwa et al. [11] published a new study that examined FF-based Cs found in the lit-
erature and corrected the errors in these studies.

Let P and Q be two FFSs. Then, FFCC based on Spearman correlation

Cejegwaetal(P,Q) =
1

3
(Dejegwa(P,Q)1 +Dejegwa(P,Q)2 +Dejegwa(P,Q)3) (11)

where

Dejegwaetal(P,Q)1 = 1−
6
∑k

i=1 |P3
1(xi)−Q3

1(xi)|3

k(k2 + 1)

Dejegwaetal(P,Q)2 = 1−
6
∑k

i=1 |P3
2(xi)−Q3

2(xi)|3

k(k2 + 1)

Dejegwaetal(P,Q)3 = 1−
6
∑k

i=1 |P3
3(xi)−Q3

3(xi)|3

k(k2 + 1)
.

The Equation (11) is equivalent to

Cejegwaetal(P,Q) = 1−

(6
∑k

i=1

(
|P3

1(xi)−Q3
1(xi)|3 + |P3

2(xi)−Q3
2(xi)|3

3k(k2 + 1)

+

|P3
3(xi)−Q3

3(xi)|3
)

3k(k2 + 1)

3. Spearman Rank Correlation Coefficients

Using the FFCC-based Spearman correlation equation (Equation 11) by Ejegwa et
al [11], we will define IVFF-Spearman correlation coefficients and examine their basic
properties.

Definition 3.1. For two IVFFSs P and Q, the SRCs are:

RSpearman(P,Q) =
1

3
(Z1 + Z2 + Z3) (12)
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where

Z1 = 1−
6
∑n

i=1 f
3
αi

n(n2 + 1)
,

Z2 = 1−
6
∑n

i=1 f
3
βi

n(n2 + 1)
,

Z3 = 1−
6
∑n

i=1 f
3
γi

n(n2 + 1)
,

where fαi , fβi
, fγi are the differences in the ranks concerning the MD, ND, and HD with

fαi =
∣∣∣Rank(αPL(oi) + αPU (oi))−Rank(αQL(oi) + αQU (oi))

∣∣∣,
fβi

=
∣∣∣Rank(βPL(oi) + βPU (oi))−Rank(βQL(oi) + βQU (oi))

∣∣∣,
fγi =

∣∣∣Rank(γPL(oi) + γPU (oi))−Rank(γQL(oi) + γQU (oi))
∣∣∣.

Theorem 3.1. The Equation (12) is equivalent to

RSpearman(P,Q) = 1−
6
∑k

i=1

(
f3
αi

+ f3
βi
+ f3

γi

)
3k(k2 + 1)

.

Proof. Since

RSpearman(P,Q) =
1

3

[
k(k2 + 1)− 6

∑n
i=1 f

3
αi

k(k2 + 1)
+

k(k2 + 1)− 6
∑n

i=1 f
3
βi

k(k2 + 1)

+
k(k2 + 1)− 6

∑n
i=1 f

3
γi

k(k2 + 1)

]
,

then

RSpearman(P,Q) =
1

3k(k2 + 1)

[
3k(k2 + 1)− 6

n∑
i=1

f3
αi

− 6
n∑

i=1

f3
βi
− 6

n∑
i=1

f3
γi

]

=
1

3k(k2 + 1)

[
3k(k2 + 1)− 6

n∑
i=1

f3
αi

+ f3
βi
+ f3

γi

]

= 1−
6
∑n

i=1 f
3
αi

+ f3
βi
+ f3

γi

3k(k2 + 1)
.

□

Theorem 3.2. Take two IVFFSs P and Q:

i. RSpearman(P,Q) = RSpearman(Q,P),
ii. −1 ≤ RSpearman(P,Q) ≤ 1,
iii. RSpearman(P,Q) = 1 if and only if P = Q.

Proof. (i.) Straighforward.
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(ii.) Its clear that
∑n

i=1 f
3
αi

+ f3
βi

+ f3
γi ≥ 0. From here it can be easily seen that

RSpearman(P,Q) ≥ 1. Further,

RSpearman(P,Q) = 1−
6
∑k

i=1

(
f3
αi

+ f3
βi
+ f3

γi

)
3k(k2 + 1)

≤ 1−
6
∑k

i=1

(
f3
αi

+ 6
∑k

i=1 f
3
βi
+ 6

∑k
i=1 f

3
γi

)
3k(k2 + 1)

and so

RSpearman(P,Q)− 1 = −
6
∑k

i=1

(
f3
αi

+ 6
∑k

i=1 f
3
βi
+ 6

∑k
i=1 f

3
γi

)
3k(k2 + 1)

≤ 0.

Therefore, RSpearman(P,Q)− 1 ≤ 0 ⇒ RSpearman(P,Q) ≤ 1.
That is, −1 ≤ RSpearman(P,Q) ≤ 1.

(iii.) Assumed that RSpearman(P,Q) = 1. Hence,

6
∑k

i=1

(
f3
αi

+ f3
βi
+ f3

γi

)
3k(k2 + 1)

= 0.

and

6

k∑
i=1

(
f3
αi

+ f3
βi
+ f3

γi

)
= 0 ⇒ f3

αi
= 0, f3

βi
= 0, f3

γi = 0.

Therefore, αPL(oi)
3+αPU (oi)

3 = αQL(oi)
3+αQU (oi)

3, βPL(oi)
3+βPU(oi)

3 = βQL(oi)
3+

βQU (oi)
3, and, γPL(oi)

3 + γPU (oi)
3 = γQL(oi)

3 + γQU (oi)
3.

Conversely, let P = Q, that is
∑k

i=1

(
f3
αi

+ f3
βi
+ f3

γi

)
= 0. Then, RSpearman(P,Q) =

0. □

As the RSpearman has these properties, the components of the RS, Z1, Z2 and Z3 have
the same properties.

4. Application

4.1. Problem Design. Consider alternatives Γ = {Γ1, · · · ,Γm}, for a given DM prob-
lem. Let Ω = {Ω1, · · · ,Ωn} be the set of criteria (without weights) measured by IVFFNs
Dij = (αij , βij). Let Σ = {Σ1, · · · ,Σk} be the set of professionals evaluating the criteria.

Let D
(l)
ij = (αl

ij , β
l
ij) shows a IVFFN evaluation matrix from the lth professional. A new

IVFF multi-criteria DM strategy is created based on the SRC between two IVFFSs and
begins by identifying the IVFF ideal solution. The accuracy and score functions are used
to get the IVFF-perfect solution. The real selection process typically lacks an optimal
IVFF solution. In other words, the viable alternative is typically not the Γ∗, the IVFF’s
ideal solution vector. If not, the best alternate vector for the selection problem is the
IVFF perfect solution vector Γ∗. A multi-criteria DM algorithm is suggested as a result of
the analysis above, and it gauges how closely each option is related to the ideal alternative
using the SRC. The following phases and selection procedures can be used to describe the
algorithm(Figure 1):
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1. Using IVFFWA, construct the decision matrix Dm×n = (Dij)m×n,

Dij = IV FFWA(D
(1)
ij , D

(2)
ij , · · · , D(k)

ij )

and D
(l)
ij is the evaluation value of the alternative Γi ∈ Γ w.r.t the criterion Ωj ∈ Ω from

the lth professional, and ωl is the lth professional’ weight.

2. Using the following equation, find the FF perfect solution Γ∗{
Γ∗ = {Γ∗

1, · · · ,Γm∗},whereΓ∗ = {Ωj ,maxi{Dij : j = 1, 2, · · · , n}} , for benefit criteria
Γ∗ = {Γ∗

1, · · · ,Γm∗},whereΓ∗ = {Ωj ,mini{Dij : j = 1, 2, · · · , n}} , for cost criteria

3. Compute the SRC between the ideal and each alternatives.

4. The greater the SRC obtained in Step 3, the better the matching option. As a result,
the ideal choice ranking order and selection are found.

4.2. Numerical Illustration. In Turkey, disaster preparedness drills are prepared and
carried out in hospitals annually by the Ministry of Health within the framework of Hos-
pital Disaster Management. Hospital disaster plans and drills are among the mandatory
works to be carried out in Turkey, according to the legal obligations of the Ministry of
Health. After the drills are completed, the hospital’s emergency competencies are deter-
mined. These competencies are reported and communicated to all units in the hospital
and the Ministry of Health. The numeric example below is related to the exercise of the
actual plan prepared by the Hospital Disaster Management Department of Cerrahpaşa
Medical Faculty Hospital.

The faculty dean and the hospital head of physician will coordinate a disaster exercise
to monitor potential crisis scenarios and issues at the hospital of medicine faculty and to
pinpoint any weaknesses. The goal of the practice’s final phase is for the director of the
hospital’s physician department and the dean of the faculty to assess the pertinent units’
emergency response skills to make future decisions. Γ1 Medical Observation, Examina-
tion, and Consultation, Γ2 Planning and Effective Communications, Γ3 Supply Chain and
Financial Structure, and Γ4 Transport, inventory and storage are the departments that
will participate in the Hospital Disaster Management research. Selected specialists inside
and outside the faculty hospital are invited to review these elements using the evaluation
phrases in the linguistic word set. The evaluation standards that were established include
Ω1 pre-disaster readiness, Ω2 process control during the calamity, Ω3 post-disaster loss
evaluation, Ω4 disaster assistance capacity, and Ω5 post-disaster building. The formula
for calculating Ωj (j = 1, · · · , 5) weights is ω = (0.2, 0.25, 0.1, 0.3, 0.15)T .

1. The four possible alternatives are evaluated by using the FFL data, and FFL decision
matrix Dm×n = (Dij)4×5 is built, which is shown in Tables 1, 2, and 3, for professionals
Σi, (i = 1, 2, 3). Aggregate all the Σi based on IVFFWA operator(Table 4). ,

D4×5 =

(
3∑

l=1

ωlα
(l)
ij ,

3∑
l=1

ωlβ
(l)
ij

)
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Figure 1. Decision-Making Pipeline

2. Using the properties (i.) and (ii.) of score function, the IVFF ideal solution vector
Γ∗:

Γ∗ =
(
[(0.743, 0.387), (0.356, 0.669)], [(0.588, 0.546), (0.417, 0.503)],

[(0.579, 0.655), (0.504, 0.678)], [(0.811, 0.453), (0.216, 0.733)],

[(0.850, 0.417), (0.362, 0.794)]
)
.

3.Let us find the SRC between each alternative and the ideal alternative:

For Γ1,

Z1 = 1− 6.12

130
= 0.45, Z2 = 1− 6.24

130
= −0.11, Z3 = 1− 6.8

130
= 0.63,

Z = 0.323.

Values related to Γ1 are shown in Tables 5 - 7. For Γ2, Γ3 and Γ4, Z = 0.82, Z = −0.56
and Z = 0.11, respectively.

4. From the results in Step 3,
RSpearman(Γ2) > RSpearman(Γ1) > RSpearman(Γ4) > RSpearman(Γ3).
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Table 5. MD ranks of Γ1

αΓ1 Rank(αΓ1) αΓ∗ Rank(αΓ∗) fα f2
α

1.130 2 1.130 1 1 1
1.134 3 1.134 2 1 1
1.006 1 1.234 4 3 9
1.197 4 1.182 3 1 1
1.217 5 1.267 5 0 0

Table 6. ND ranks of Γ1

βΓ1 Rank(βΓ1) βΓ∗ Rank(βΓ∗) fβ f2
β

1.025 5 1.025 3 2 4
0.920 2 0.920 1 2 4
0.868 1 1.182 5 4 16
0.955 3 0.949 2 1 1
0.974 4 1.156 4 0 0

Table 7. ND ranks of Γ1

γΓ1 Rank(γΓ1) γΓ∗ Rank(γΓ∗) fγ f2
γ

1.180 2 1.590 3 1 1
1.430 4 1.800 5 1 1
1.570 5 1.620 4 1 1
1.110 1 1.570 2 1 1
1.310 3 1.450 1 2 4

4.3. Comparison. Since the method we propose in our study is interval-valued type sets,
we will use the correlation coefficients suggested for interval-type sets in the comparison
analysis. For the comparison analysis, we will use the studies of Demir [10], Park et al.
[39], and Zheng et al. [53]. Table 8 provides the results obtained and compared. A
comparison will be made through the numerical example in Section 4 of our study.

Demir [10] have given IVFHF-C with informational intuitionistic energy, correlation,
and correlation coefficients as:

The set A = {(x, hA(x)) : x ∈ U} is called an interval-valued Fermatean hesitant fuzzy
set(IVFHFS), where

hA(x) =
{
(mA(x), nA(x)) : mA(x) = [m

(
A−),m

(
A+)] ∈ D[0, 1),

nA(x) = [n
(
A−), n

(
A+)] ∈ D[0, 1)

}
,

and (m
(
A+))(3) + (n

(
A+))(3) ≤ 1.
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EIV FHS(A) =
n∑

i=1

m6
AL(xi) +m6

AU (xi) + n6
AL(xi) + n6

AU (xi) + θ6AL(xi) + θ6AU (xi)

2
,

CIV FHS(A,B) =
1

2

n∑
i=1

[
mAL(xi)

3m3
BL(xi) +m3

AU (xi)m
3
BU (xi) + nAL(xi)

3n3
BL(xi)

+n3
AU (xi)n

3
BU (xi) + θAL(xi)θBL(xi) + θAU (xi)θBU (xi)

]
,

KIV FHS(A,B) =
CIV FHS(A,B)

(EIV FHS(A).EIV FHS(B))(1/2)
.

Park et al. [39] have given IVFF-C with informational intuitionistic energy, correlation,
and correlation coefficients as:

EIV IFS(A) =

n∑
i=1

m2
AL(xi) +m2

AU (xi) + n2
AL(xi) + n2

AU (xi) + θ2AL(xi) + θ2AU (xi)

2
,

CIV IFS(A,B) =
1

2

n∑
i=1

[
mAL(xi)mBL(xi) +mAU (xi)mBU (xi) + nAL(xi)nBL(xi)

+nAU (xi)nBU (xi) + θAL(xi)θBL(xi) + θAU (xi)θBU (xi)

]
,

KIV IFS(A,B) =
CIV IFS(A,B)

(EIV IFS(A).EIV IFS(B))(1/2)
.

Zheng et al. [53] have given IVPHF-C with informational intuitionistic energy, correla-
tion, and correlation coefficients as:

EIV PHS(A) =

n∑
i=1

m4
AL(xi) +m4

AU (xi) + n4
AL(xi) + n4

AU (xi) + θ4AL(xi) + θ4AU (xi)

2
,

CIV PFHS(A,B) =
1

2

n∑
i=1

[
mAL(xi)

2m2
BL(xi) +m2

AU (xi)m
2
BU (xi) + nAL(xi)

2n3
BL(xi)

+n2
AU (xi)n

2
BU (xi) + θAL(xi)θBL(xi) + θAU (xi)θBU (xi)

]
,

KIV IFHS(A,B) =
CIV IFHS(A,B)

(EIV IFHS(A).EIV IFHS(B))(1/2)
.

Table 8. Comparison Outputs

Methos Ranking outputs
Proposed Method RSpearman(Γ2) > RSpearman(Γ1) > RSpearman(Γ4) > RSpearman(Γ3)
Method in [10] RSpearman(Γ2) > RSpearman(Γ1) > RSpearman(Γ4) > RSpearman(Γ3)
Method in [39] RSpearman(Γ2) > RSpearman(Γ3) > RSpearman(Γ1) > RSpearman(Γ4)
Method in [53] RSpearman(Γ2) > RSpearman(Γ1) > RSpearman(Γ3) > RSpearman(Γ4)
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As seen from Table 8, the results of [10] are consistent with the results of our proposed
method. Although the results of the other two methods differ, Γ2 ranked first in each
technique.

4.4. Evaluation of Proposed Method. Advantages of new approach: The FFS,
an extension of the crispy set, comprises the other extensions of FS. PFS stands out as
one of the most commonly used extensions due to the MD and ND levels of the specific
option regarding the criterion. The decision-maker may occasionally offer the MD and
ND of a given characteristic so that the square sum is more significant than 1. Conse-
quently, the PFS must adequately handle this case. To address this problem, one of the
most renowned theories, FFS theory, can tolerate incomplete, uncertain, and inconsistent
information, typically present in real-world circumstances.

Making decisions on real-world issues or developing solutions is difficult and complex.
So, it is essential to reduce confusion while picking the best option. Efficient management
of the relationships between the inputs is also necessary for optimal decision-making. To
prove the existence of the link between the variables, we introduced a novel strategy that
combines the advantages of FFS and C.

A new version based on FFS, a generalization of the SRC for crisp sets, is proposed. The
SRC for FFSs provides all the properties of the given SRC for crisp sets, such as member-
ship values, nonmembership values, and hesitation margins. The proposed method shows
the critical role of each term in data analysis and DM.

Previous work has shown that some researchers have devised a technique that leverages
C for FFSs. C for PFSs is a specific instance of C for FFSs. As a result, compared to the
current C, the suggested C is more suitable for solving problems in the real world since it
can be applied to a wider range of scenarios.

Weakness of new approach: The suggested expansion of the C technique employs a
decision matrix with weights and criteria. Making decisions will become more complicated
if C is computed using the values discovered in the decision matrix and equal values are
produced. The weights and a few criteria values need to be re-evaluated in this situation.

5. Conclusion

MCDM is a difficult task due to the complexity of the objective world, and FFS is an
effective tool for depicting the uncertainty of the MCDM problems. This study aims to de-
velop an IVFF-MCDM approach to address DM problems under uncertain circumstances.
The contributions of this paper are as follows:

1. The concept, representation, and related properties of SRC originated from statis-
tical theory, and two IVFFSs are introduced, which measure the degree of closeness
between the ideal alternative and each alternative.

2. An MCDM approach with an IVFF environment is developed based on the pro-
posed SRC.

3. A novelty decision rule is provided from a new perfective using SRC, which can
reduce the complexity of the practical problem in the process of DM both in theory
and practice.

4. A real-world infrastructure project was demonstrated to illustrate the proposed
method’s applicability and effectiveness.
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Making decisions requires carefully weighing the significance of each evaluation criterion.
The weight can be determined using several techniques, including information entropy, the
AHP, and the Delphi method. Diverse weights possess unique mechanisms, and various
approaches to weighting cater to distinct decision-making contexts. As a result, selecting
a suitable technique for determining the weights requires thought and work. The SRC is
a notion that this study introduces, and it can be used to determine which option is most
appropriate. By avoiding the weight calculations in the real-world DM problem, solution
processes are made simpler, increasing computational performance.

In conclusion, the MCDM approach was established using SRC statistics. The weights
of the criteria can be calculated without it. The challenge of weighing the criteria in the
selection process is resolved. Based on SRC, the suggested model reduces the complexity
of the IVFFN form in computation and application while promoting intuitive thinking
and simple operation.
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