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STRESS-STRENGTH MODEL OF m-COMPONENTS SYSTEM IN

CENSORED DATA

A. KOHANSAL1∗, §

Abstract. In this paper, we consider the statistical estimation using Bayesian inference
for a multi-component stress-strength parameter. This involves non-identical component
strengths under a progressive censoring scheme, within the context of the exponentiated
Weibull distribution. The paper addresses the problem in three scenarios. Firstly, it
assumes that stress and strength share two common and unknown parameters, along
with one unknown different parameter. To obtain the Bayes estimate, the paper utilizes
the Markov Chain Monte Carlo (MCMC) method. Secondly, in the scenario where stress
and strength share two common and known parameters, along with one unknown dif-
ferent parameter, the paper employs the MCMC method and Lindley’s approximation.
Thirdly, in the general case, the paper utilizes the MCMC method to obtain the Bayes
estimate. A Monte Carlo simulation study is used to compare various estimates. An
application concerning monthly water capacities of the Shasta reservoir in California is
finally provided.

Keywords: Progressive censoring scheme, Multi-component stress-strength parameter,
MCMC method, Lindley’s approximation
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1. Introduction

A simple modification of the two-parameter Weibull distribution, called the exponen-
tiated Weibull (EW) distribution, was proposed by [18] and further studied by [19] and
[20] with applications to bus-motor failure data and flood data. They added a new shape
parameter λ to the Weibull distribution. The probability density function (pdf) and cu-
mulative distribution function (cdf) of the EW distribution are respectively, as follows:

f(x) = λαθxθ−1e−αx
θ
(1− e−αx

θ
)λ−1, x > 0, (1)

F (x) = (1− e−αx
θ
)λ, x > 0, (2)
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where α, θ, λ > 0, α is a scale parameter and θ and λ are shape parameters. In fol-
lowing, a EW with the pdf in (1) is denoted by EW (α, θ, λ). The particular case for
λ = 1 is the Weibull distribution. The particular case for θ = 2 is the generalized
Rayleigh (GR) distribution. The particular case for θ = 1 is generalized exponential (GE)
distribution due to [16]. The particular cases for λ = 1 and θ = 1, 2 are the expo-
nential and Rayleigh distributions. The hazard function (hf) of the EW distribution is

h(x) = λαθxθ−1e−αxθ (1−e−αxθ )λ−1

1−(1−e−αxθ )λ
, x > 0, which is monotonically increasing when θ > 1 and

θλ > 1, monotonically decreasing when θ < 1 and θλ < 1, bathtub shaped when θ > 1
and θλ < 1 and unimodal shaped when θ < 1 and θλ > 1. Figure 1 shows possible shapes
of the pdf and the hf of the EW distribution. The exponentiated Weibull distribution is a
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Figure 1. The shape of hf (right) and pdf (left) of EW distribution.

good distribution in context of reliability and censoring data. [21] considered the Bayesian
estimation for this distribution. Bayesian estimation for the exponentiated Weibull model
under Type-II progressive censoring is studied by [6]. [1] discussed the estimation for
the exponentiated Weibull model with adaptive Type-II progressive censored schemes.
[22] obtained the estimation of reliability in multicomponent stress-strength based on two
parameter exponentiated Weibull Distribution. Finally, reliability investigation of expo-
nentiated Weibull distribution using IPL through numerical and artificial neural network
modeling is considered by [25].

In reliability theory, the statistical inference on the reliability parameter is so important
for the researchers. The stress-strength parameter is defined by:

R = P (X > Y ) =

∫ ∞

−∞

(
1− FX(y)

)
dFY (y),

where Y is the stress variable with cdf FY (·) and X is the strength variable with cdf FX(·).
While the applied strength is greater than its stress, the system is reliable. This model,
for the first time, is introduced by [4].

A system with more that component is called the multi-component system. This system
has one common stress component and k strength components, which are independent
and identical. While at least s from k strength components exceed its stress, the system
is reliable. The multi-component stress-strength parameter, firstly, is defined by [3] as
follows:

Rs,k =

k∑
p=s

(
k

p

)∫ ∞

−∞

(
1− FX(y)

)p(
FX(y)

)k−p
dFY (y),

where, Y is the stress variable with cdf FY (·) and (X1, . . . , Xk) are independent and
identically distributed (i.i.d) random variables as the strength variables with cdf FX(·).
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Recently, this model has been studied by some researchers such as [7] (bivariate Ku-
maraswamy distribution), [13] (progressive censored of Kumaraswamy distribution), [14]
(adaptive progressive censored of Weibull distribution), [26] (progressive censoring of Burr
III distribution), [24] (progressive censoring of Topp-Leone distribution), [15] (progres-
sive censoring of power Lindley distribution). In such system, [23] developed the multi-
component stress-strength parameter with k = (k1, k2, . . . , km) components as

Rs,k =

k1∑
p1=s1

· · ·
km∑

pm=sm

(
m∏
i=1

(
ki
pi

))∫ ∞

−∞

m∏
i=1

((
1− Fi(y)

)pi(Fi(y))ki−pi) dFY (y), (3)

where, ki components are of i, i = 1, . . . ,m type and Fi(·) is cdf of the strengths for the
i-th type components. In this condition, it is assumed that all strength components are
affected by one common stress Y with cdf FY (·), so, the system is available as long as at
least s = (s1, . . . , sm) of k strength components exceed its stress. Recently, inference on
Rs,k have been studied by [12], for two components of strength variables. Also, this model
is studied by [11] for the modified Weibull extension distribution, in progressive censored
data. Moreover, [10] have studied Rs,k for progressive first failure censoring samples, when
the strengths and stress variables follow the modified Kumaraswamy distribution. Very
recently, [8] considered family of Kumaraswamy generalized distribution in estimation of
multi-component reliability under the adaptive hybrid progressive censoring schemes. In
this paper, this model is considered for the EW distribution.

Type-I and Type-II censoring schemes are two most important censoring schemes and
hybrid scheme is derived by mixing of theses two schemes. As the active units cannot be
removed during the experiment by these schemes, so, the progressive censoring scheme
is introduced. The monograph by [2] is a complete and comprehensive reference on this
scheme. The progressive censoring scheme is described as follows. During the test, assum-
ing that N units are placed on the experiment, R1 units randomly are removed from the
test, at the first failure time, R2 units randomly are removed from the test, at the second
failure time and so on. Consequently, Rn units randomly are removed from the test along,
at the n-th failure time. So, in this scheme, progressive censoring scheme is {R1, · · · , Rn}
and the progressive sample is {X1:n:N , · · · , Xn:n:N}, such that R1 + · · · + Rn + n = N .
Here after, the progressive censoring sample is presented by {X1, · · · , Xn}. The joint pdf
for the censoring sample X1 < · · · < Xn with the pdf f(·) and cdf F (·) is given by

f(x1, · · · , xn) ∝
n∏
i=1

f(xi)
(
1− F (xi)

)Ri , 0 < x1 < · · · < xn <∞.

In this paper, we study the Bayesian inference for Rs,k parameter when the progressive
censoring samples follows the EW distribution. This problem is quite general, and it
encompasses various scenarios, including:

• TheRs,k parameter can be transformed intoRs,k with two non-identical-component
case when k = (k1, k2, 0, · · · , 0).

• TheRs,k parameter can be transformed intoRs,k parameter when k = (k, 0, · · · , 0).
• The Rs,k parameter can be transformed into R = P (X < Y ) parameter when
k = (1, 0, · · · , 0).

• The progressive censoring scheme can be adapted into Type-II censoring when
R1 = · · · = Rn−1 = 0, Rn = N − n,w = 1.

• The progressive censoring scheme can be adapted into complete sample case when
R1 = · · · = Rn = 0, w = 1.
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• The exponentiated Weibull distribution can be reduced to the Weibull distribution
when λ = 1.

• The exponentiated Weibull distribution can be reduced to the generalized Rayleigh
distribution when θ = 2.

• The exponentiated Weibull distribution can be reduced to the generalized expo-
nential distribution when θ = 1.

• The exponentiated Weibull distribution can be reduced to the exponential distri-
bution when λ = 1, θ = 1

• The exponentiatedWeibull distribution can be reduced to the Rayleigh distribution
when λ = 1, θ = 2.

Along with all the advantages of this model, the most important benefit of it is the
generality, so that, by addressing this problem, we can automatically tackle several related
problems and scenarios (about 30 cases). About the limitation of this model, we should say
that MCMC method which is widely used in this paper has limited resources depending
on personal computer. So, though accuracy is important, but the speed comparisons show
that the MCMC method has a very slow speed and this point is the most important
limitation of this model.

In fact, similar works published by some authors. But each work has spacial unique
properties. For example, [11] considered multi-component reliability inference in modified
Weibull extension distribution and progressive censoring scheme. Also, [9] studied m-
component reliability model in Bayesian inference on modified Weibull distribution. We
should note that combination of progressive censoring, multi-component stress-strength
parameter and exponentiated Weibull distribution is not considered in any works and this
is the most important difference between this works and other papers.

The layout of this paper is as follows. In Section 2, we consider the Bayesian inference
of Rs,k, when the common parameters α and θ are unknown. For this aim, the Bayes
estimates of Rs,k have been developed by using the Markov Chain Monte Carlo (MCMC)
method due to the lack of explicit forms and the highest posterior density (HPD) credible
intervals is constructed. In Section 3, we consider the Bayesian inference of Rs,k, when the
common parameters α and θ are known. For this aim, the Bayes estimates of Rs,k have
been developed by using MCMC and Lindley’s approximation methods and HPD credible
intervals is constructed. In Section 4, we considered the Bayesian inference of Rs,k in
general case. In Section 5, we compare different methods using the simulation study and
analyze one real data, for illustrative aims.

2. Inference on Rs,k with unknown common α and θ

Let X1 ∼ EW (α, θ, λ1), . . . , Xm ∼ EW (α, θ, λm) and Y ∼ EW (α, θ, λ) be the inde-
pendent random variables. So, we obtain the multi-component stress-strength parameter,
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Rs,k, from (1) and (2), as follows:

Rs,k =

k1∑
p1=s1

. . .

km∑
pm=sm

(
k1
p1

)
. . .

(
km
pm

)∫ ∞

0
λαθyθ−1e−αy

θ
(1− e−αy

θ
)

m∑
l=1

λl(kl−pl)+λ−1

×
m∏
l=1

(
1− (1− e−αy

θ
)λl
)pldy Put : t = 1− e−αy

θ

=

k1∑
p1=s1

. . .

km∑
pm=sm

(
k1
p1

)
. . .

(
km
pm

)
λ

∫ 1

0
t

m∑
l=1

λl(kl−pl)+λ−1
m∏
l=1

(1− tλl)pldt

=

k1∑
p1=s1

. . .

km∑
pm=sm

p1∑
q1=0

. . .

pm∑
qm=0

(
k1
p1

)
. . .

(
km
pm

)(
p1
q1

)
. . .

(
pm
qm

)

× (−1)

m∑
l=1

ql
λ

∫ 1

0
t

m∑
l=1

λl(kl−pl+ql)+λ−1
dt =

s∑
k

q∑
p

(−1)

m∑
l=1

ql
λ

m∑
l=1

λl(kl − pl + ql) + λ

. (4)

where
s∑
k

=
k1∑

p1=s1

. . .
km∑

pm=sm

(
k1
p1

)
. . .
(
km
pm

)
,

q∑
p

=
p1∑
q1=0

. . .
pm∑
qm=0

(
p1
q1

)
. . .
(
pm
qm

)
. As we know, in

multi-component system, the likelihood function can be derived by the following samples:

Xl =

Observed strength variables
X

(l)
11 . . . X

(l)
1kl

...
. . .

...

X
(l)
n1 . . . X

(l)
nkl

 , l = 1, . . . ,m, and

Observed stress variables

Y =

 Y1
...
Yn

 ,

where {X(l)
i1 , . . . , X

(l)
ik1

}, i = 1, . . . , n, l = 1, . . . ,m are l progressive censoring samples from

EW (α, θ, λl) with schemes {kl, R
(l)
1 , . . . , R

(l)
kl
}. Also, {Y1, . . . , Yn} is a progressive censoring

sample from EW (α, θ, λ) with scheme {n, S1, . . . , Sn}. The above matrix representation
shows that the observed strength variables is presented in a n × kl matrix, so that the
sample size in strength Xl is nkl, l = 1, · · · ,m. Also, the observed stress variable is
presented in a n-dimensional vector, so that the sample size in stress Y is n. Now, we can
obtained the likelihood function of the parameters as

L(α, θ, λ1, . . . , λm, λ|data) ∝
n∏
i=1

( m∏
l=1

( kl∏
jl=1

fl(x
(l)
ijl
)
(
1− Fl(x

(l)
ijl
)
)R(l)

j

))
f(yi)

(
1− F (yi)

)Si .

In this section, under squared error loss functions, we study the Bayesian inference of
Rs,k where α, θ and λ1, . . . , λm, as the random variables, follow the independent gamma
distributions. As we know, the joint posterior density function, based on the observed
censoring samples, can be derived as follows:

π(α, θ, λ1, . . . , λm, λ|data) ∝ L(data|α, θ, λ1, . . . , λm, λ)× π(α)π(θ)
( m∏
l=1

π(λl)
)
π(λ) (5)
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where

π(α) ∝ αa1−1e−b1α, α, a1, b1 > 0, π(θ) ∝ θc1−1e−d1θ, θ, c1, d1 > 0,

π(λl) ∝ λel−1
l e−flλl , λl, el, fl > 0, l = 1, . . . ,m, π(λ) ∝ λem+1−1e−fm+1λ, λ, em+1, fm+1 > 0.

The reasons, for choosing the gamma priors, can be explained as follows. The range
of the unknown model parameters is positive. Also, because given α, θ and progressive
censoring data, the full conditional distributions of λl, l = 1, · · · ,m and λ are gamma
distributions, so they are conjugated priors. Finally, by selecting these gamma priors, the
calculations become a little bit easier. The equation (5) shows that we cannot derived
the Bayes estimate of Rs,k in the closed form. So, in following, it is approximated via the
MCMC method. From the equation (5), the posterior pdfs of α, θ, λ1, . . . , λm and λ can
be derived as follows:

π(α|θ, λ1, . . . , λm, λ,data) ∝
n∏
i=1

m∏
l=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

(
1− e−αy

θ
i
)λ−1

×
n∏
i=1

m∏
l=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θ)λl)R(l)

j
n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si

× α
n(

m∑
l=1

kl+1)+a1−1
e
−α
(
b1+

n∑
i=1

m∑
l=1

kl∑
j=1

(x
(l)
ij )θ+

n∑
i=1

yθi

)
,

π(θ|α, λ1, . . . , λm, λ,data) ∝
n∏
i=1

m∏
l=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

(
1− e−αy

θ
i
)λ−1

×
n∏
i=1

m∏
l=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θ)λl)R(l)

j
n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si( n∏

i=1

m∏
l=1

kl∏
j=1

(x
(l)
ij )

θ−1
)

×
( n∏
i=1

yθ−1
i

)
× θ

n(
m∑
l=1

kl+1)+c1−1
e
−d1θ−α

( n∑
i=1

m∑
l=1

kl∑
j=1

(x
(l)
ij )θ+

n∑
i=1

yθi

)
,

π(λl|α, θ, data) ∝
n∏
i=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θ)λl)R(l)

j
,

× λnkl+el−1
l e−flλl , l = 1, . . . ,m,

π(λ|α, θ, data) ∝
n∏
i=1

(
1− e−αy

θ
i
)λ−1

n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si

λn+em+1−1e−fm+1λ.

It is notable that as the posterior pdfs of all parameters are not the well known distribu-
tions, so generating samples from them should be done by using the Metropolis-Hastings
method. So, the following algorithm of Gibbs sampling cab be proposed:

1. Begin with (α(0), θ(0), λ1(0), . . . , λm(0), λ(0)).
2. Set t = 1.
3. Generate α(t) from π(α|θ(t−1), λ1(t−1), . . . , λm(t−1), λ(t−1), data), using Metropolis-
Hastings method, with N(α(t−1), 1) as proposal distribution.
4. Generate θ(t) from π(θ|α(t−1), λ1(t−1), . . . , λm(t−1), λ(t−1), data), using Metropolis-
Hastings method, with N(θ(t−1), 1) as proposal distribution.
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5 - m+4. Generate λl(t) from π(λl|α(t−1), θ(t−1),data), using Metropolis-Hastings
method, with N(λl(t−1), 1) as proposal distribution.
m+5. Generate λ(t) from π(λ|α(t−1), θ(t−1), data), using Metropolis-Hastings method,
with N(λ(t−1), 1) as proposal distribution.

m+6. Evaluate R(t)s,k =
s∑
k

q∑
p

(−1)

m∑
l=1

ql
λ(t)

m∑
l=1

λl(t)(kl−pl+ql)+λ(t)
.

m+7. Set t = t+ 1.
m+8. Repeat T times, steps 3 - m+7.

Consequently, under the squared error loss functions, the Bayes estimate of Rs,k can be
obtained by

R̂MC
s,k =

1

T −M

T∑
t=M+1

R(t)s,k, (6)

whereM is the burn-in period. Also, using the method of [5], we construct the 100(1−η)%
HPD credible interval of Rs,k as follows. First, order R(1)s,k, . . . , R(T )s,k as R(

(1)s,k
) <

· · · < R(
(T )s,k

) and then construct all the 100(1− η)% confidence intervals of R, as:(
R(

(1)s,k
), R(

([T (1−η)])s,k
)), . . . ,(R(

([Tη])s,k
), R(

([T ])s,k
)),

where [T ] symbolizes the largest integer less than or equal to T . The HPD credible interval
of Rs,k is the shortest length interval.

3. Inference on Rs,k with known common α and θ

When the common parameters α and θ are known, the Rs,k can be derived as presented
in equation (4). In this section, under squared error loss functions, we study the Bayesian
inference of Rs,k where λ1, . . . , λm, as the random variables, follow the independent gamma
distributions. Similar to Section 2, the posterior pdfs of λ1, . . . , λm and λ can be derived
as follows:

π(λl|α, θ, data) ∝
n∏
i=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θ)λl)R(l)

j

× λnkl+el−1
l e−flλl , l = 1, . . . ,m,

π(λ|α, θ, data) ∝
n∏
i=1

(
1− e−αy

θ
i
)λ−1

n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si

λn+em+1−1e−fm+1λ.

Similar to previous section, we use the Gibbs sampling and obtain

R̂MC
s,k =

1

T

T∑
t=1

R(t)s,k. (7)

Also, using the method of [5], we construct the 100(1−η)% HPD credible interval of Rs,k.

3.1. Lindley’s approximation. One of the most important numerical methods to obtain
the approximation Bayes estimation is proposed by [17]. This method can be explained
as follows. Under the squared error loss, the Bayes estimation of U(ψ), is

E(u(ψ)|data) =
∫
u(ψ)eQ(ψ)dψ∫
eQ(ψ)dψ

, (8)
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where Q(ψ) = ρ(ψ) + ℓ(ψ), ρ(ψ) and ℓ(ψ) are logarithm of the prior density of ψ and
log-likelihood function, respectively. The E(u(ψ)|data) in equation (8), is approximated
by [17] as follows:

E(u(ψ)|data) = u+
1

2

∑
i

∑
j

(ui,j + 2uiρj)σi,j +
1

2

∑
i

∑
j

∑
k

∑
p

ℓi,j,kσi,jσk,pup

∣∣∣∣
ψ=ψ̂

, (9)

where ψ = (ψ1, . . . , ψm), i, j, k, p = 1, . . . ,m, ψ̂ is the MLE of ψ, u = u(ψ), ui = ∂u/∂ψi,
ui,j = ∂2u/(∂ψi∂ψj), ℓi,j,k = ∂3ℓ/(∂ψi∂ψj∂ψk), ρj = ∂ρ/∂ψj , and σi,j = (i, j)-th element
in the inverse of matrix [−ℓi,j ] all evaluated at the MLE of parameters. The equation (9),
for m+ 1 parameters, can be re-write as follows:

ûLin = u+ (

m+1∑
i=1

uidi + dm+2 + dm+3) +
1

2

m+1∑
i=1

Ai(

m+1∑
j=1

ujσi,j), (10)

where

di =
m+1∑
j=1

ρjσi,j , i = 1, · · · ,m+ 1, dm+2 =
m+1∑
i=1

m+1∑
j=1

i<j

ui,jσi,j , dm+3 =
1

2

m+1∑
i=1

ui,iσi,i,

Ai =
m+1∑
j=1

m+1∑
k=1

j≤k

ℓj,k,i ×
{
σj,k j = k,
2σj,k j < k,

i = 1, · · · ,m+ 1.

For (ψ1, · · · , ψm, ψm+1) ≡ (λ1, · · · , λm, λ) and u ≡ Rs,k, we have

ρl =
al − 1

λl
− bl, l = 1, · · · ,m, ρm+1 =

am+1 − 1

λ
− bm+1,

ℓl,l = −nkl
λ2l

−
n∑
i=1

kl∑
j=1

R
(l)
j

(
1− e−α(x

(l)
ij )θ)λl log2 (1− e−α(x

(l)
ij )θ)(

1−
(
1− e−α(x

(l)
ij )θ)λl)2 , l = 1, · · · ,m,

ℓm+1,m+1 =− n

λ2
−

n∑
i=1

Si

(
1− e−αy

θ
i
)λ

log2
(
1− e−αy

θ
i
)(

1−
(
1− e−αy

θ
i

)λ)2 , ℓl,k = 0, l = 1, · · · ,m+ 1, l ̸= k.

The values of σi,j , i, j = 1, · · · ,m+ 1 can be obtained from ℓi,j , i, j = 1, · · · ,m+ 1,. Also,

ℓl,l,l =
2nkl
λ3l

−
n∑
i=1

kl∑
j=1

R
(l)
j

(
1− e−α(x

(l)
ij )θ)λl log3 (1− e−α(x

(l)
ij )θ)(

1−
(
1− e−α(x

(l)
ij )θ)λl)2 , l = 1, · · · ,m,

ℓm+1,m+1,m+1 =
2n

λ3
−

n∑
i=1

Si

(
1− e−αy

θ
i
)λ

log3
(
1− e−αy

θ
i
)(

1−
(
1− e−αy

θ
i

)λ)2 ,
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and other ℓi,j,k = 0. Also, ul =
s∑
k

q∑
p
(−1)

m∑
l=1

ql
×A and ul,k =

s∑
k

q∑
p
(−1)

m∑
l=1

ql
×B, where

A =



λ(kl−pl+ql)( m∑
l=1

λl(kl−pl+ql)+λ
)2 l = 1, · · · ,m,

m∑
l=1

λl(kl−pl+ql)( m∑
l=1

λl(kl−pl+ql)+λ
)2 l = m+ 1,

and

B =



2λ(kl−pl+ql)(kk−pk+qk)( m∑
l=1

λl(kl−pl+ql)+λ
)3 l, k = 1, · · · ,m,

−
2

m∑
l=1

λl(kl−pl+ql)( m∑
l=1

λl(kl−pl+ql)+λ
)3 l = m+ 1,

−
(kl−pl+ql)

( m∑
l=1

λl(kl−pl+ql)−λ
)

( m∑
l=1

λl(kl−pl+ql)+λ
)3 l = 1, · · · ,m, k = m+ 1.

After obtaining the above values, Lindley’s estimation of Rs,k, R̂
Lin
s,k , can be obtained, from

equation (10). It is notable that all parameters should be computed at (λ̂1, · · · , λ̂m, λ̂),
MLEs of (λ1, · · · , λm, λ).

4. Inference on Rs,k in general case

Let X1 ∼ EW (α1, θ1, λ1), . . . , Xm ∼ EW (αm, θm, λm) and Y ∼ EW (α, θ, λ) be the
independent random variables. So, we obtain the multi-component stress-strength param-
eter, Rs,k, from (1) and (2), as follows:

Rs,k =

s∑
k

∫ ∞

0
λαθyθ−1e−αy

θ
(1− e−αy

θ
)λ−1

m∏
l=1

(
1− (1− e−αly

θl )λl
)pl

× (1− e−αly
θl )λl(kl−pl)dy.

In this section, under squared error loss functions, we study the Bayesian inference of Rs,k

where α1, . . . , αm, α, θ1, . . . , θm, θ, λ1, . . . , λm and λ, as the random variables, follow the
independent gamma distributions as

π(αl) ∝ αal−1e−blαl , αl, al, bl > 0, l = 1, . . . ,m, π(α) ∝ αam+1−1e−bm+1α, α, am+1, bm+1 > 0,

π(θl) ∝ θcl−1
l e−dlθl , θl, cl, dl > 0, l = 1, . . . ,m, π(θ) ∝ θcm+1−1e−dm+1θ, θ, cm+1, dm+1 > 0,

π(λl) ∝ λel−1
l e−flλl , λl, el, fl > 0, l = 1, . . . ,m, π(λ) ∝ λem+1−1e−fm+1λ, λ, em+1, fm+1 > 0.

Similar to Section 2, we cannot derived the Bayes estimate of Rs,k in the closed form.
So, in following, it is approximated via the MCMC method. The posterior pdfs of the
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parameters can be derived as follows:

π(αl|θl, λl, data) ∝
n∏
i=1

kl∏
j=1

(
1− e−αl(x

(l)
ij )θl)λl−1

n∏
i=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θl)λl)R(l)

j

× αnkl+al−1
l e

−αl

(
bl+

n∑
i=1

kl∑
j=1

(x
(l)
ij )θl

)
, l = 1, . . . ,m,

π(α|θλ,data) ∝
n∏
i=1

(
1− e−αy

θ
i
)λ−1

n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si

αn+am+1−1e
−α
(
bm+1+

n∑
i=1

yθi

)
,

π(θl|αl, λl, data) ∝
n∏
i=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θl)λ)R(l)

j

×
( n∏
i=1

kl∏
j=1

(x
(l)
ij )

θl−1
)
θnkl+cl−1
l e

−dlθl−αl

n∑
i=1

m∑
l=1

kl∑
j=1

(x
(l)
ij )θl

, l = 1, . . . ,m,

π(θ|α, λ, data) ∝
n∏
i=1

(
1− e−αy

θ
i
)λ−1

n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si( n∏

i=1

yθ−1
i

)
θn+cm+1−1

× e
−dm+1θ−α

n∑
i=1

yθi
,

π(λl|α, θ, data) ∝
n∏
i=1

kl∏
j=1

(
1− e−α(x

(l)
ij )θ)λl−1

n∏
i=1

kl∏
j=1

(
1−

(
1− e−α(x

(l)
ij )θ)λl)R(l)

j
,

× λnkl+el−1
l e−flλl , l = 1, . . . ,m,

π(λ|α, θ, data) ∝
n∏
i=1

(
1− e−αy

θ
i
)λ−1

n∏
i=1

(
1−

(
1− e−αy

θ
i
)λ)Si

λn+em+1−1e−fm+1λ.

It is notable that as the posterior pdfs of all parameters are not the well known distribu-
tions, so generating samples from them should be done by using the Metropolis-Hastings
method. So, the following algorithm of Gibbs sampling cab be proposed:

1. Begin with (α1(0), . . . , αm(0), α(0), θ1(0), . . . , θm(0), θ(0), λ1(0), . . . , λm(0), λ(0)).
2. Set t = 1.
3 - m+2. Generate αl(t) from π(αl|θl(t−1), λl(t−1),data), using Metropolis-Hastings
method, with N(αl(t−1), 1) as proposal distribution.
m+3. Generate α(t) from π(α|θ, λ,data), using Metropolis-Hastings method, with
N(α(t−1), 1) as proposal distribution.
m+4 - 2m+3. Generate θl(t) from π(θl|αl(t−1), λl(t−1), data), using Metropolis-
Hastings method, with N(θl(t−1), 1) as proposal distribution.
2m+4. Generate θ(t) from π(θ|α(t−1), λ(t−1),data), using Metropolis-Hastings method,
with N(θ(t−1), 1) as proposal distribution.
2m+5 - 3m+4. Generate λl(t) from π(λl|αl(t−1), θl(t−1), data), using Metropolis-
Hastings method, with N(λl(t−1), 1) as proposal distribution.
3m+5. Generate λ(t) from π(λ|α(t−1), θ(t−1), data), using Metropolis-Hastings method,
with N(λ(t−1), 1) as proposal distribution.
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3m+6. Evaluate

R(t)s,k =
s∑
k

∫ ∞

0
λ(t)α(t)θ(t)y

θ(t)−1e−α(t)y
θ(t)

(1− e−α(t)y
θ(t)

)λ(t)−1

×
m∏
l=1

(
1− (1− e−αl(t)y

θl(t)
)λl(t)

)pl(1− e−αl(t)y
θl(t)

)λl(t)(kl−pl)dy.

3m+7. Set t = t+ 1.
3m+8. Repeat T times, steps 3 - 3m+7.

Consequently, under the squared error loss functions, the Bayes estimate of Rs,k can be
obtained by

R̂MC
s,k =

1

T −M

T∑
t=M+1

R(t)s,k, (11)

whereM is the burn-in period. Also, using the method of [5], we construct the 100(1−η)%
HPD credible interval of Rs,k.

5. Simulation study and data analysis

5.1. Numerical experiment and discussion. In this section, we compare different es-
timations, using the Monte Carlo simulation. For this aim, mean square errors (MSEs)
is applied to compare the point estimates and average confidence lengths (AL) and cov-
erage percentages (CP) are employed to compare the interval estimates. Some different
censoring schemes, different parameter values and hyper-parameters are utilizing in im-
plementation the simulation studies. The number of repetitions is 2000 and the number
of repetitions in Gibbs sampling algorithm is T = 3000. Also, we note that the thresh-
old of burn-in is 1000. Moreover, we consider the value 0.95 for the significance level
and assume the simulated system has two strength components. To obtain the simula-
tion results we use some censoring scheme which are provided in Table 1. As expected,

Table 1. Different censoring schemes.

(kl, Kl) C.S. (n,N) C.S.
R1 (0,0,0,0,5) S1 (0,0,0,0,5)

(5,10) R2 (5,0,0,0,0) (5,10) S2 (5,0,0,0,0)
R3 (1,1,1,1,1) S3 (1,1,1,1,1)

R4 (0∗9,10) S4 (0∗9,10)
(10,20) R5 (10,0∗9) (10,20) S5 (10,0∗9)

R6 (1∗10) S6 (1∗10)

we study three cases. In the first case, when the common parameters α and θ are un-
known, we employ the equation (6) to obtain the Bayes estimates of Rs,k. Also, we use
(α, θ, λ1, λ2, λ3, λ) = (2, 1, 2, 1.5, 2.5, 3), Prior 1: a1, c1, el = 0, b1, d1, fl = 0, l = 1, . . . , 3,
Prior 2: a1 = c1 = el = 0.2, b1, d1, fl = 0.4, l = 1, . . . , 3, to derive the simulation results
which provided in Table 2. In the second case, when the common parameters α and θ are
known, we employ the equations (7) and (10) to obtain the Bayes estimates of Rs,k. Also,
we use (α, θ, λ1, λ2, λ3, λ) = (1, 1.5, 2.5, 3, 2, 3.5), Prior 3: a1, c1, el = 0, b1, d1, fl = 0, l =
1, . . . , 3, Prior 4: a1, c1, el = 0.3, b1, d1, fl = 0.5, l = 1, . . . , 3, to derive the simulation
results which provided in Table 3. In the general case, we employ the equation (11) to
obtain the Bayes estimates of Rs,k. Also, we use (α1, α2, α3, α, θ1, θ2, θ3, θ, λ1, λ2, λ3, λ) =
(1, 2, 3, 2.5, 1.5, 1, 2.5, 3.5, 3.5, 3, 2.5, 2), Prior 5: al, cl, el = 0, bl, dl, fl = 0, l = 1, . . . , 3,
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Prior 6: al, cl, el = 0.6, bl, dl, fl = 0.8, l = 1, . . . , 3, to derive the simulation results which
provided in Table 4.

Tables 2-4 show that the informative priors (Priors 2, 4 and 6) have the best perfor-
mance based on the MSE, AL and CP values, in point and interval estimations. Also, it
is observed that the MCMC method performs better than the Lindley’s approximation.
Now, MCMC diagnostics is considered, so that we provided the trace plot for different
parameters and different censoring schemes. In all cases the trace plots show the conver-
gence of the MCMC method. Some of trace plots are given in Figures 2. Moreover, as
expected, by increasing n, for fixed s and k, MSEs and ALs decrease and CPs increase.
Also, by increasing k, for fixed s and n, MSEs and ALs decrease and CPs increase, in all
cases. Two above results may occur due to the fact that, by increasing n, the number
of failures increases and therefore, more information is gathered. So, the performance of
estimates improved.

Table 2. Simulation results when common parameters are unknown.

MCMC
(k1, k2, k3, n, s1, s2, s3) C.S Prior 1 Prior 2

MSE AL CP MSE AL CP
(R1, R1, R1, S1) 0.0574 0.6532 0.941 0.0523 0.6222 0.945

(5,5,5,5,2,2,2) (R2, R2, R2, S2) 0.0584 0.6518 0.942 0.0520 0.6274 0.946
(R3, R3, R3, S3) 0.0577 0.6537 0.940 0.0529 0.6291 0.946
(R1, R1, R1, S4) 0.0501 0.5674 0.944 0.0446 0.5119 0.948

(5,5,5,10,2,2,2) (R2, R2, R2, S5) 0.0503 0.5691 0.945 0.0450 0.5170 0.949
(R3, R3, R3, S6) 0.0509 0.5624 0.944 0.0443 0.5134 0.949
(R4, R4, R4, S1) 0.0430 0.5034 0.948 0.0379 0.4733 0.950

(10,10,10,5,2,2,2) (R5, R5, R5, S2) 0.0432 0.5040 0.947 0.0380 0.4756 0.951
(R6, R6, R6, S3) 0.0435 0.5081 0.948 0.0381 0.4755 0.950
(R4, R4, R4, S4) 0.0381 0.4428 0.950 0.0349 0.4037 0.953

(10,10,10,10,2,2,2) (R5, R5, R5, S5) 0.0385 0.4475 0.951 0.0356 0.4093 0.952
(R6, R6, R6, S6) 0.0389 0.4430 0.950 0.0352 0.4011 0.953
(R1, R1, R1, S1) 0.0589 0.6329 0.942 0.0530 0.6013 0.946

(5,5,5,5,4,4,4) (R2, R2, R2, S2) 0.0570 0.6320 0.941 0.0537 0.6030 0.947
(R3, R3, R3, S3) 0.0576 0.6348 0.940 0.0539 0.6040 0.946
(R1, R1, R1, S4) 0.0512 0.5517 0.945 0.0463 0.5290 0.948

(5,5,5,10,4,4,4) (R2, R2, R2, S5) 0.0515 0.5591 0.946 0.0468 0.5296 0.948
(R3, R3, R3, S6) 0.0510 0.5544 0.944 0.0460 0.5281 0.948
(R4, R4, R4, S1) 0.0465 0.5231 0.949 0.0410 0.4879 0.950

(10,10,10,5,4,4,4) (R5, R5, R5, S2) 0.0460 0.5211 0.948 0.0407 0.4863 0.950
(R6, R6, R6, S3) 0.0475 0.5234 0.949 0.0413 0.4806 0.950
(R4, R4, R4, S4) 0.0400 0.4519 0.951 0.0367 0.4110 0.953

(10,10,10,10,4,4,4) (R5, R5, R5, S5) 0.0395 0.4537 0.951 0.0360 0.4179 0.953
(R6, R6, R6, S6) 0.0407 0.4529 0.950 0.0361 0.4138 0.954

5.2. Real data analysis. We analyze the monthly water capacity of the Shasta reservoir
in California, available in https://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA,
for the illustrative aims. Recently, [13] and [12] have considered this data. As we know
understanding the probability of drought occurrence is so important in agriculture, so one
scenario as follows can be considered. If the water capacity of a reservoir in a region on
August, July and September at least two years out of next five years is more than the
amount of water achieved on December of the previous year, there is not any drought. So,
the probability of non-occurrence drought can be considered by Rs,k.

By the above scenario, X
(1)
11 , ..., X

(1)
15 , X

(2)
11 , ..., X

(2)
15 and X

(3)
11 , ..., X

(3)
15 can be stud-

ied as the capacities of July, August and September from 1976 to 1980, X
(1)
21 , ..., X

(1)
25 ,

X
(2)
21 , ..., X

(2)
25 and X

(3)
21 , ..., X

(3)
25 as the capacities of July, August and September from 1982

to 1986, and so on X
(1)
81 , ..., X

(1)
85 , X

(2)
81 , ..., X

(2)
85 and X

(3)
81 , ..., X

(3)
85 as the capacities of July,

August and September from 2018 to 2022. Moreover, Y1, Y2, . . . , Y8 are the capacity of
December 1975, 1981 up to 2017. Only for simplifying the calculations, all data have been
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Table 3. Simulation results when common parameters are known.

MCMC Lindley
(k1, k2, k3, n, s1, s2, s3) C.S Prior 3 Prior 4 Prior 3 Prior 4

MSE AL CP MSE AL CP MSE MSE
(R1, R1, R1, S1) 0.0503 0.5432 0.941 0.0467 0.5019 0.945 0.0543 0.0510

(5,5,5,5,2,2,2) (R2, R2, R2, S2) 0.0507 0.5481 0.940 0.0463 0.5042 0.946 0.0549 0.0512
(R3, R3, R3, S3) 0.0500 0.5469 0.941 0.0468 0.5033 0.945 0.0540 0.0508
(R1, R1, R1, S4) 0.0432 0.4796 0.942 0.0382 0.4167 0.948 0.0516 0.0476

(5,5,5,10,2,2,2) (R2, R2, R2, S5) 0.0438 0.4785 0.943 0.380 0.4157 0.949 0.0510 0.0470
(R3, R3, R3, S6) 0.0436 0.4734 0.942 0.389 0.4137 0.948 0.0517 0.0477
(R4, R4, R4, S1) 0.0376 0.4122 0.947 0.0312 03661 0.950 0.0478 0.0431

(10,10,10,5,2,2,2) (R5, R5, R5, S2) 0.0370 0.4180 0.946 0.318 0.3699 0.951 0.0479 0.0439
(R6, R6, R6, S3) 0.0368 0.4136 0.947 0.316 0.3621 0.951 0.0473 0.0432
(R4, R4, R4, S4) 0.0318 0.3749 0.950 0.0263 0.3027 0.954 0.0428 0.0384

(10,10,10,10,2,2,2) (R5, R5, R5, S5) 0.0314 0.3769 0.951 0.0267 0.3051 0.953 0.0420 0.0381
(R6, R6, R6, S6) 0.0316 0.3755 0.950 0.0260 0.3074 0.953 0.0429 0.0387
(R1, R1, R1, S1) 0.0509 0.5567 0.940 0.0452 0.5090 0.946 0.0546 0.0509

(5,5,5,5,4,4,4) (R2, R2, R2, S2) 0.0508 0.5537 0.942 0.458 0.5060 0.947 0.0547 0.0507
(R3, R3, R3, S3) 0.0509 0.5591 0.941 0.0453 0.5017 0.946 0.0549 0.0502
(R1, R1, R1, S4) 0.0429 0.4662 0.944 0.0376 0.4215 0.949 0.0510 0.0482

(5,5,5,10,4,4,4) (R2, R2, R2, S5) 0.0436 0.4682 0.945 0.0370 0.4281 0.948 0.0517 0.0486
(R3, R3, R3, S6) 0.0423 0.4631 0.945 0.0376 0.4237 0.949 0.0518 0.0480
(R4, R4, R4, S1) 0.0370 0.4037 0.948 0.0308 0.3751 0.951 0.0486 0.0430

(10,10,10,5,4,4,4) (R5, R5, R5, S2) 0.0379 0.4085 0.948 0.0300 0.3744 0.950 0.0489 0.0438
(R6, R6, R6, S3) 0.0368 0.4069 0.949 0.0309 0.3792 0.950 0.0488 0.0439
(R4, R4, R4, S4) 0.0310 0.3794 0.951 0.0260 0.3146 0.952 0.0437 0.0380

(10,10,10,10,4,4,4) (R5, R5, R5, S5) 0.0312 0.3755 0.951 0.0267 0.3156 0.953 0.0439 0.382
(R6, R6, R6, S6) 0.0319 0.3791 0.950 0.0269 0.3174 0.952 0.0440 0.0389

Table 4. Simulation results in general case.

MCMC
(k1, k2, k3, n, s1, s2, s3) C.S Prior 5 Prior 6

MSE AL CP MSE AL CP
(R1, R1, R1, S1) 0.0661 0.6050 0.942 0.0615 0.5193 0.946

(5,5,5,5,2,2,2) (R2, R2, R2, S2) 0.0654 0.6027 0.942 0.0618 0.5160 0.947
(R3, R3, R3, S3) 0.0669 0.6033 0.943 0.0613 0.5177 0.946
(R1, R1, R1, S4) 0.0631 0.5299 0.945 0.0583 0.4377 0.949

(5,5,5,10,2,2,2) (R2, R2, R2, S5) 0.0637 0.5291 0.946 0.0579 0.4339 0.948
(R3, R3, R3, S6) 0.0641 0.5278 0.945 0.0573 0.4380 0.949
(R4, R4, R4, S1) 0.0542 0.4830 0.949 0.0502 0.3920 0.950

(10,10,10,5,2,2,2) (R5, R5, R5, S2) 0.0538 0.4891 0.948 0.0509 0.3966 0.950
(R6, R6, R6, S3) 0.0540 0.4866 0.948 0.0500 0.3940 0.951
(R4, R4, R4, S4) 0.0499 0.4311 0.950 0.0456 0.3246 0.953

(10,10,10,10,2,2,2) (R5, R5, R5, S5) 0.0498 0.4390 0.951 0.0450 0.3292 0.952
(R6, R6, R6, S6) 0.0503 0.4374 0.951 0.0451 0.3277 0.953
(R1, R1, R1, S1) 0.0675 0.6113 0.943 0.0638 0.5266 0.946

(5,5,5,5,4,4,4) (R2, R2, R2, S2) 0.0670 0.6190 0.942 0.0630 0.5299 0.947
(R3, R3, R3, S3) 0.0681 0.6187 0.942 0.0633 0.5266 0.945
(R1, R1, R1, S4) 0.0649 0.5388 0.945 0.0606 0.4449 0.948

(5,5,5,10,4,4,4) (R2, R2, R2, S5) 0.0650 0.5391 0.945 0.0609 0.4490 0.949
(R3, R3, R3, S6) 0.0643 0.5374 0.946 0.0600 0.4467 0.949
(R4, R4, R4, S1) 0.0540 0.4733 0.947 0.0497 0.3953 0.951

(10,10,10,5,4,4,4) (R5, R5, R5, S2) 0.0549 0.4719 0.948 0.0483 0.3991 0.950
(R6, R6, R6, S3) 0.0547 0.4766 0.948 0.0487 0.3978 0.951
(R4, R4, R4, S4) 0.0483 0.4394 0.950 0.0452 0.3277 0.953

(10,10,10,10,4,4,4) (R5, R5, R5, S5) 0.0487 0.4363 0.951 0.0450 0.3270 0.953
(R6, R6, R6, S6) 0.0480 0.4385 0.950 0.0459 0.3266 0.954

divided by 4552000 acre-foot, total capacity of reservoir. We note that by this work the
statistical inference has not been changed yet.

Now, we fit EW distribution on the these data sets, separately. The results are as

follows. For X1, (α̂, θ̂, λ̂) = (3.3011, 11.1081, 0.2110) and the p-value= 0.9774. For

X2, (α̂, θ̂, λ̂) = (4.8625, 9.1577, 0.2206) and the p-value= 0.6597. For X3, (α̂, θ̂, λ̂) =

(6.2784, 9.7498, 0.1915) and the p-value= 0.3190. For Y , (α̂, θ̂, λ̂) = (11.7338, 7.1837, 1.7953)
and the p-value= 0.3340. The p-values show that EW provides adequate fits on data sets.
Also, from the estimated parameters, we can consider the general case, only. The empir-
ical distribution functions and PP-plots, for these data sets, are given in Figure 3. For
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Figure 2. Trace plot for Rs,k in first line: (k, s) = (5, 2), left
((R1, R1, R1, S1), case 1), center ((R2, R2, R2, S2), case 2) and right
((R3, R3, R3, S3), case 3). Second line: (k, s) = (10, 4), left
((R4, R4, R4, S4), case 1), center ((R5, R5, R5, S5), case 2) and right
((R6, R6, R6, S6), case3).
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Figure 3. Empirical distribution function (left) and the PP-plot (right)
for X1 (left, top), X2 (right, top), X3 (left, bottom) and Y (right, bottom).

complete data set, by putting s = (2, 2) and k = (5, 5) with non-informative priors, R̂MC
s,k

and the corresponding 95% HPD interval are 0.2387 and (0.0811, 0.4377), respectively.
MCMC diagnostics in the case of real data is provided. For this aim, the trace plot, auto-
correlation plot of MCMC chains and the density plot of the posterior distribution of Rs,k,
for complete data in case s = (2, 2) and non-informative priors, is presented in Figure 4.
From this figure, the trace plot shows the convergence of the MCMC algorithm. Also,
the auto-correlation plot shows the chain achieves stationarity and the density plots are
symmetric and unimodal. Hence, we conclude that the MCMC chain is converged. More-
over, we monitor the overall convergence of MCMC chains in all cases of the real data,
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and these are omitted for the sake of brevity. Now, two different censoring progressive
schemes are generated as follows:

Scheme 1: R(1) = R(2) = R(3) = [0, 0, 1, 0], S = [0, 0, 1, 0, 0, 0, 0], (k = (4, 4), s = (2, 2)).

Scheme 2: R(1) = R(2) = R(3) = [1, 0, 1], S = [0, 1, 1, 0, 0, 0], (k = (3, 3), s = (2, 2)).

For Scheme 1, with non-informative priors, R̂MC
s,k and the corresponding 95% HPD inter-

val are obtained as 0.0940 and (0.0724, 0.1812), respectively. For Scheme 2, with non-

informative priors, R̂MC
s,k and the corresponding 95% HPD interval are obtained as 0.0332

and (0.0100, 0.0653), respectively. With comparing point and interval estimates, we can
see that Scheme 1 performs better than Scheme 2, as we expected.
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Figure 4. MCMC diagnostics for Rs,k in real data case.

6. Conclusion

We considered the Bayesian inference for multi-component stress-strength parameter
with the non-identical-component strengths under the progressive censoring scheme, in
exponentiated Weibull distribution. When the common parameters are unknown, known
and in the general case, point and interval Bayesian estimations are obtained.

The Monte Carlo simulation study is employed to compare the different estimations.
Using this method, we observed that the non-informative priors perform worse than in-
formative ones, in point and interval estimates. Moreover, by increasing n, for fixed s and
k, and by increasing k, for fixed s and n, the performance of point and interval estimates
improved. Two above results may occur due to the fact that, by increasing n, the number
of failures increases and therefore, more information is gathered.

This work has the potential to be applied in the context of reliability theory and cen-
sored data analysis. So, further scope of this work can be conducted by extending multi-
component stress-strength to a multi-component multi-stress-strength model. Also, the
Bayesian inference can also arise in the multi-component reliability model, based on record
values, in the presence of progressive censoring samples.

Acknowledgement. The author expresses her profound gratitude to the editor and
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