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ON CAPUTO-FABRIZIO FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS
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Abstract. In this paper, we established some new results concerning the existence,
uniqueness and stability results for a nonlinear Caputo-Fabrizio fractional periodic Volterra-
Fredholm integro-differential equation with the initial condition and boundary conditions
via successive approximations method and Banach fixed point theorem. Examples are
included for the illustration of the obtained results.
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1. Introduction

The subject of fractional order boundary value problems has been addressed by
many researchers in recent years. The interest in the subject owes to its extensive applica-
tions in natural and social sciences. A few examples include chaos and fractional dynamics
[1], financial economics [2], ecology [3], bioengineering [4], etc. In [5, 6], boundary value
problems involving fractional derivatives of the Caputo, Riemann-Liouville, and Hadamard
types, supplied with a range of boundary conditions, provide a number of intriguing find-
ings. Riemann-Liouville, Erdelyi-Kober, Grunwald-Letnikov, Weyl, Hadamard, Riesz, and
Caputo are a few of the definitions that we discuss here. A noteworthy characteristic of
a fractional order differential operator emerged in its hereditary quality as compared to
an integer order. Put differently, we forecast the future state of a process by its pre-
vious and present states when we describe it using a fractional operator [7]. However,
the new definition suggested by Caputo and Fabrizio [8], which has all the characteristics
of the old definitions, assumes two different representations for the temporal and spatial
variables. They claimed that the classical definition given by Caputo appears to be par-
ticularly convenient for mechanical phenomena, related to plasticity, fatigue, damage, and
with electromagnetic hysteresis. The main advantage of the Caputo-Fabrizio derivative
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(C-FD) is that the boundary conditions of the fractional differential equations with C-FD
admit the same form as for the integer-order differential equations. On the other hand, the
fractional C-FD has many significant properties, such as its ability in describing matter
heterogeneities and configurations with different scales [9, 10].

The last ten years have seen the recognition of fractional differential equations as crucial
instruments for describing mathematical modelling of processes in a variety of disciplines,
including aerodynamics, physics, chemistry, engineering, statistics, control theory, signal
and image processing, etc. [11, 12]. However, we see periodic movements everywhere in
reality and in every branch of research [13]. Readers are referred to [14, 15, 16] for the
latest work on the theory and applications of fractional differential equations for a range
of issues by these scholars.

Due to their prevalence in several applied domains, including fractional power law [17]
and heat transfer phenomena [18], integral-differential equations represent a significant
research topic. Numerous scholars have also examined fractional integro-differential equa-
tions in conjunction with various boundary conditions, as demonstrated by [19, 20, 21, 22,
23, 24, 25, 26].

The analytic solutions of a viscous fluid with the fractional derivatives of Caputo and
Caputo-Fabrizio are found in [27]. The authors of [28] modelled a Maxwell fluid using
the fractional derivative with a nonsingular kernel and discovered semi-analytical solu-
tions. Atangana-Baleanu and Caputo-Fabrizio, two of the most recent fractional deriva-
tives models for a generalised Casson fluid, were compared in [29], and precise solutions
were discovered. The existence of solutions for nonlinear differential equations has been
investigated using various nonlinear analytic techniques because of the aforementioned
applications [26, 30, 31].

In this paper, we investigate the existence, uniqueness and stability results of peri-
odic solution of the following nonlinear fractional Volterra-Fredholm integro-differential
equation

CF
0 Dα

γ (x(γ)) = h

(
γ, x(γ),

∫ a(γ)

0
ϑ1(ν, x(ν))dν,

∫ T

0
ϑ2(ν, x(ν))dν

)
, (1)

x(0) = x0, γ ∈ J := [0, T ], (2)

x(0) = x(T ) +

∫ T

0
H(x(ν))dν, (3)

where CF
0 Dα

γ is the Caputo-Fabrizio fractional derivative (α ∈ (0, 1]), ϑ1, ϑ2 ∈ C (J ×D1,R)
, D1 be compact subset of R, a(γ) is continuous functions on [0, T ], the function H(x(ν) ) is
compact subset of R and periodic on γ of periodic T . We extend Picard’s theorem to this
problem, and by the successive approximation method, an iterative process is provided to
obtain the periodic solution.

For considering the main Eq. (1), as

CF
0 Dα

0 (x(0)) = 0.

Here, extra conditions have to be imposed to guarantee the existence of a solution, so we
refer to Lemmas 3.1, 3.2 and 4.1 in [32], also, see Lemma 3.4 in [33]. This paper will
discuss the existence, uniqueness, and stability results of non-trivial solution.

Studying this type of problems has attracted a special interest of many mathematicians
due to the various applications of fractional differential equations in several bioengineering
[4] fields. One of the main advantages of the Caputo-Fabrizio fractional derivative is the
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ability to combine all traditional fractional derivatives, and it satisfies the semigroup prop-
erty, hence, generalized Caputo fractional derivative derivative is considered a generalized
form of fractional derivatives.

2. Preliminaries

In this section, we recall some notations and definitions which are needed throughout
this paper. Further, some lemmas and theorems are stated as preparations for the main
results [8, 33, 34, 35, 36, 37, 38].

First, in the following, we provide some basic concepts and definitions in connection
with the new Caputo-Fabrizio derivative.

Let H1(a, b) =
{
ϑ | ϑ ∈ L2(a, b), ϑ′ ∈ L2(a, b)

}
, where L2(a, b) is the space of square

integrable functions on the interval (a, b).

Definition 2.1. [11] For a function ϑ : (0,∞) → R, the Caputo derivative of order α > 0
of g is defined by

γ
0D

αϑ(γ) =
1

Γ(n− α)

∫ γ

0
(γ − ν)n−α−1ϑ(n)(ν)dν (4)

where n = [α] + 1 and [α] denotes the integer part of α, and Γ(.) denotes the Gamma
function, i.e., Γ(z) =

∫∞
0 e−γγz−1dγ.

Definition 2.2. [11] Let ϑ be a function which is defined almost everywhere a.e on [a, b],
for α > 0, we define

b
aD

−αϑ =
1

Γ(α)

∫ b

a
(b− γ)a−1ϑ(γ)dγ (5)

provided that the integral (Lebesgue) exists.

Definition 2.3. [8] Let ϑ be a given function in H1(a, b). The Caputo-Fabrizio derivative
of fractional order α ∈ (0, 1) is defined as

CF
a Dα

γ (ϑ(γ)) =

(
N(α)

1− α

)∫ γ

a
ϑ′(x) exp

[
−α

γ − x

1− α

]
dx, (6)

where N(α) is a normalization function. Also, if a certain function ϑ does not satisfy in
the restriction ϑ ∈ H1(a, b), then its fractional derivative is redefined as

CF
a Dα

γ (ϑ(γ)) =
αN(α)

1− α

∫ γ

a
(ϑ(γ)− ϑ(x)) exp

[
−α

γ − x

1− α

]
dx. (7)

Clearly, if one sets σ = (1 − α)/α ∈ (0,∞) and α = 1/(1 + σ) ∈ (0, 1), then the
CaputoFabrizio definition becomes

CF
a De

γ(ϑ(γ)) =
N(σ)

σ

∫ γ

a
ϑ′(x) exp

[
−γ − x

σ

]
dx, (8)

where N(0) = N(∞) = 1, and

lim
σ→0

exp

[
−γ − x

σ

]
= δ(x− γ). (9)

Also, the fractional derivative of order (n+ α) when n ≥ 1 and α ∈ [0, 1] is defined by
the following

CF
a D(a+n)

γ (ϑ(γ)) = αCFD(a)
γ

(
D(n)

γ ϑ(γ)
)

(10)
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Definition 2.4. [8] Let ϑ ∈ H1(a, b), then its fractional integral of an arbitrary order is
defined as follows:

αC
x
γ (ϑ(γ)) =

2(1− α)

(2− α)N(α)
ϑ(γ) +

2α

(2− α)N(α)

∫ γ

a
ϑ(ν)dν, γ ≥ 0. (11)

It is clear, in view of the above definition, that the α th Caputo-Fabrizio derivative of
function g is average between g and its first-order integral. Therefore,

2(1− α)

(2− α)N(α)
+

2α

(2− α)N(α)
= 1. (12)

So, we arrive at the following

N(α) =
2

2− α
, 0 ≤ α ≤ 1. (13)

Lemma 2.1. The periodic solution of the fractional integro-differential equation (1), with
initial condition x(0) = x0 and periodic boundary condition x(0) = x(T ) are defining the
following integral equation

x (γ, x0)

= x0 +
2(1− α)

(2− α)N(α)
h

(
γ, x(γ),

∫ a(γ)

0
ϑ1(ν, x(ν))dν,

∫ T

0
ϑ2(ν, x(ν))dν

)

−

(
2(1− α)

(2− α)N(α)

1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν

)

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)

− 1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν
)
dν, ∀ γ ∈ J.

(14)

Proof. The proof is simple and can be derived as it is obtained from the original
equation by applying the integral operator. .

Lemma 2.2. [38] Let ϑ(γ) be a vector function which is defined in the interval 0 ≤ γ ≤ T ,
then: ∣∣∣∣∫ γ

0

(
ϑ(ν)− 1

T

∫ T

0
ϑ(ν)dν

)
dν

∣∣∣∣ ≤ β(γ)M

where M = maxγ∈[0,T ] |ϑ(γ)| and β(γ) = 2γ
(
1− γ

T

)
,maxγ∈[0,T ] |β(γ)| ≤ T

2 .
Proof. The proof follows directly from the estimate:∣∣∣∣∫ γ

0

(
ϑ(ν)− 1

T

∫ T

0
ϑ(ν)dν

)
dν

∣∣∣∣ ≤ (1− γ

T

)∫ γ

0
|ϑ(ν)|dν +

γ

T

∫ T

γ
|ϑ(ν)|dν

≤ β(γ)M.

Theorem 2.1. [11] (Banach fixed point theorem). Let (B, ∥.∥) be a Banach space and
P : B → B be a contraction mapping i.e. Lipschitz continuous with Lipschitz constant
L ∈ [0, 1). Then φ ∈ B has a unique fixed point.
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3. Main Results

Some conditions are needed for investigate of the successive approximation for periodic
solution of the system (1)-(2), suppose that the functions h ∈ C ([0, T ]×D1 ×D2 ×D2,R) ,
ϑ1, ϑ2 ∈ C ([0, T ]×D1,R) , D1 and D2 are compact subset of R, a(γ) is continuous func-
tions on [0, T ], moreover define | · | = maxγ∈[0,T ] | · |, and satisfies the following hypothesis.

H1: There exist positive constants M,L1, L2, k1, k2, k3, and Lϑ1 , Lϑ2 , such that

|h(γ, x, y, z)| ≤ M, (15)

|ϑ1(γ, x)| ≤ L1, (16)

|ϑ2(γ, x)| ≤ L2, (17)

|h (γ, x1, y1, z1)− h (γ, x2, y2, z2)| ≤ k1 |x1 − x2|+ k2 |y1 − y2|+ k3 |z1 − z2| , (18)
|ϑ1 (γ, x1)− ϑ1 (γ, x2)| ≤ Lϑ1 |x1 − x2| , (19)

|ϑ2 (γ, x1)− ϑ2 (γ, x2)| ≤ Lϑ2 |x1 − x2| , (20)

where z1i =
∫ a(γ)
0 ϑ1 (ν, xi(ν)) dν, z

2
i =

∫ T
0 ϑ2 (ν, xi(ν)) dν, for all γ ∈ [0, T ], x, x1, x2,∈

D1 and yi, zi ∈ D2, i = 1, 2.

H2 : There exist positive constants aT , such that for γ ∈ [0, T ],

|a(γ)| ≤ aT . (21)

Define the non-empty set

Dh = D1 −M1 (22)

where

M1 =

(
2(1− α) +

αT

2

)
M.

Furthermore, we suppose that the following condition is valid:

Λ =

(
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3) < 1. (23)

Our main results separate to the following parts:

3.1. Approximation of Periodic Solution. In this section, we study the periodic ap-
proximation solutions of the system (1)-(2). In the beginning, we define the following
sequence of functions {xm+1}∞m=0 given by the iterative formulas

xm+1 (γ, x0)

= x0 +
2(1− α)

(2− α)N(α)
h

(
γ, xm(γ),

∫ a(γ)

0
ϑ1 (ν, xm(ν)) dν,

∫ T

0
ϑ2 (ν, xm(ν)) dν

)

− 2(1− α)

(2− α)N(α)

1

T

∫ T

0
h

(
ν, xm(ν),

∫ a(ν)

0
ϑ1 (τ, xm(τ)) dτ,

∫ T

0
ϑ2 (τ, xm(τ)) dτ

)
dν

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, xm(ν),

∫ a(ν)

0
ϑ1 (τ, xm(τ)) dτ,

∫ T

0
ϑ2 (τ, xm(τ)) dτ

)

− 1

T

∫ T

0
h

(
ν, xm(ν),

∫ a(ν)

0
ϑ1 (τ, xm(τ)) dτ,

∫ T

0
ϑ2 (τ, xm(τ)) dτ

)
dν
)
dν
)
dν

(24)
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For all γ ∈ J, x0(γ) = x0,m = 0, 1, 2, . . ., then will be introduced by the following
theorems.

Theorem 3.1. If the nonlinear fractional integro-differential equations (1)-(2) satisfy the
conditions H1, and H2, then the sequence of functions (24), which are periodic in γ of
period T , converges uniformly as m → ∞ on the domain:-

(γ, x0) ∈ [0, T ]×D1 (25)

to the limit functions xθ defined on the domain (25) which is periodic in γ of period T and
satisfies the following integral equations:

x (γ, x0)

= x0 +
2(1− α)

(2− α)N(α)
h

(
γ, x(γ),

∫ a(γ)

0
ϑ1(ν, x(ν))dν,

∫ T

0
ϑ2(ν, x(ν))dν

)

− 2(1− α)

(2− α)N(α)

1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)

− 1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν
)
dν,

(26)

on the domain (25), provided that

|x (γ, x0)− xm+1 (γ, x0)| ≤ Λm(E− Λ)−1M1, (27)

for all m ≥ 0, x0 ∈ D, and γ ∈ J.

Proof. Setting m = 0 in the sequence of functions (24) and by using Lemma 2.2, we
have

|x1 (γ, x0)− x0| ≤
(

4(1− α)

(2− α)N(α)
+

2α

(2− α)N(α)
β(γ)

)
M

≤
(
2(1− α) +

αT

2

)
M = M1,

for all γ ∈ [0, T ], x0 ∈ Dh we get x1 (γ, x0) ∈ D1. Thus by mathematical induction, we
find that

|xm (γ, x0)− x0| ≤ M1 (28)

mean that for all γ ∈ [0, T ], x0 ∈ Dh we get xm (γ, x0) ∈ D1,m = 0, 1, 2, . . .
Now, we claim that the sequences of functions (24) are uniformly convergent on the

domain (25). By the inequalities (18)-(21), we obtain

|xm+1 (γ, x0)− xm (γ, x0)| ≤
(
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3)

|xm (γ, , x0)− xm−1 (γ, , x0)|
= Λ |xm (γ, , x0)− xm−1 (γr, x0)| .

(29)

By mathematical induction, we obtain that

|xm+1 (γ, x0)− xm (γ, x0)| ≤ Λm |x1 (γ, x0)− x0| . (30)
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Now from m = 1, 2, . . . and p ≥ 1, we find that

|xm+p (γ, x0)− xm (γ, x0)| ≤ Λm(1− Λ)−1

((
2(1− α) +

αT

2

)
M

)
≤ Λm(1− Λ)−1M1,

(31)

for all γ ∈ [0, T], x0 ∈ Dh.
Since Λ =

(
2(1− α) + αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3) < 1 and limm→∞ Λm = 0, so that

the right side of (31) tends to zero. Therefore the sequence of functions xm (γ, x0) ,m =
1, 2, 3, . . . is converges uniformly on the domain (25) to the limit function x (γ, x0) which
is defined on the same domain. Let

lim
m→∞

xm (γ, x0) = xθ (γ, x0) . (32)

Since the sequence of functions (24) are periodic in γ of period T , then the limiting
function xθ (γ, x0) is also periodic in γ of period T. By using the relation (32) and pro-
ceeding in (24) to limit, when m → ∞, it is converging that the limiting function x (γ, x0)
is the periodic solution of the integral equation (26).

Theorem 3.2. If all assumptions of the Theorem 3.1 are satisfy, then x (γ, x0) is a unique
solution of the system (1)-(2).

Proof. Assume that x̂ (γ, x0) is another solution of the system (1)-(2), as follows

x̂ (γ, x0)

= x0 +
2(1− α)

(2− α)N(α)
h

(
γ, x̂(γ),

∫ a(γ)

0
ϑ1(ν, x̂(ν))dν,

∫ T

0
ϑ2(ν, x̂(ν))dν

)

− 2(1− α)

(2− α)N(α)

1

T

∫ T

0
h

(
ν, x̂(ν),

∫ a(ν)

0
ϑ1(τ, x̂(τ))dτ,

∫ T

0
ϑ2(τ, x̂(τ))dτ

)
dν

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, x̂(ν),

∫ a(ν)

0
ϑ1(τ, x̂(τ))dτ,

∫ T

0
ϑ2(τ, x̂(τ))dτ

)

− 1

T

∫ T

0
h

(
ν, x̂(ν),

∫ a(ν)

0
ϑ1(τ, x̂(τ))dτ,

∫ T

0
ϑ2(τ, x̂(τ))dτ

)
dν
)
dν.

(33)

Now, the difference between the two solutions x (γ, x0) and x̂ (γ, x0), for all γ ∈ [0, T]
and x0 ∈ Dh, hence, by the inequalities (18)-(21), we get

|x (γ, x0)− x̂ (γ, x0)|

≤
(
2(1− α) +

αT

2

)
(k1 + aY Lϑ1k2 + TLϑ2k3) |x (γ, x0)− x̂ (γ, x0)|

≤ Λ |x (γrx0)− x̂ (γ, x0)| (4.11)

(34)

By mathematical induction, we find that

|x (γ, x0)− x̂ (γ, x0)| ≤ Λm |x (γ, x0)− x̂ (γ, x0)| (35)

From the condition (23), shows that the solution x (γ, x0) = x̂ (γ, x0), thus x (γ, x0) is a
unique periodic solution on the domain (25).
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3.2. Existence of Periodic Solutions of the system (1)-(2). The problem of the
existence of the periodic solution for the system (1)-(2) is uniquely connected with the
existence of the zeros of the functions:-

µ (0, x0) =
1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν. (36)

Also, we define the sequences of functions µm (0, x0) are approximately determined by
the following:

µm (0, x0) =
1

T

∫ T

0
h

(
ν, xm(ν),

∫ a(ν)

0
ϑ1 (τ, xm(τ)) dτ,

∫ T

0
ϑ2 (τ, xm(τ)) dτ

)
dν. (37)

Theorem 3.3. If the hypotheses and all the conditions of the theorem 3.1 are given, the
following inequalities are satisfied:-

|µ (0, x0)− µm (0, x0)| ≤ (k1 + aTLϑ1k2 + TLϑ2k3) Λ
m(1− Λ)−1M1 (38)

holds for all m ≥ 0.

Proof. From equations (36) to (37), we obtain that

|µ (0, x0)− µm (0, x0)| ≤ (k1 + aTLϑ1k2 + TLϑ2k3) |x (γ, x0)− xm (γ, x0)|
≤ (k1 + arLϑ1k2 + TLϑ2k3) Λ

m(1− Λ)−1M1.
(39)

The inequality (38) is hold for all m ≥ 0.

Theorem 3.4. Let the function h(ν, x(ν), z(γ)) be defined on the intervals [c, d] on R and
periodic in γ of period T , suppose that for all m ≥ 0, then the sequences of the functions
µm (0, x0) which are defined in (37) satisfy the inequalities:-

minx0∈[c,d] µm (0, x0) ≤ − (k1 + aτLϑ1k2 + TLϑ2k3) Λ
m(1− Λ)−1M1

maxx0∈[c,d] µm (0, x0) ≥ (k1 + arLϑ1k2 + TLϑ2k3) Λ
m(1− Λ)−1M1.

}
(40)

Then the system (1) has a periodic solution x (γ, x0) such that x0 ∈ [c,d] = [c +M1, d−M1].

Proof. Let x1 and x2 be any points belonging to the intervals [c, d], such that

µm (0, x1) = min
x0∈[c,d]

µm (0, x0)

µm (0, x2) = max
x0∈[c,d]

µm (0, x0) . (41)

By using inequalities (38) to (41), the following are obtained:-

µ (0, x1) = µm (0, x1) + (µ (0, x1)− µm (0, x1)) < 0
µ (0, x2) = µm (0, x2) + (µ (0, x2)− µm (0, x2)) > 0

}
(42)

and from the continuity of the functions µ (0, x1) , µ (0, x2) and the inequalities (42), then
the isolated singular points x0 ∈ [c, d] exist such that µ

(
0, x0

)
= 0. This means that the

system (1) has a periodic solution x (γ, x0).

3.3. Stability of Periodic Solution of (1). In this section, we investigate the stability
or periodic solution of (1).

Theorem 3.5. Let the function µ (0, x0) be defined by the equation (36) where x (γ, x0) is
a limit of the sequence of the function (24), then the following inequalities yield:

|µ (0, x0)| ≤ M (43)
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and ∣∣µ (0, x10)− µ
(
0, x20

)∣∣ ≤ F2F3

∣∣x10 − x20
∣∣ , (44)

where

F1 = 2(1− α) +
αT

2
, F2 = k1 + aTLϑ1k2 + TLϑ2k3, F3 = (1− F1F2)

−1 .

Proof. From the properties of the function x (γ, x0) as in the Theorem 3.1, the function
µ (0, x0) , x0 ∈ D is continuous and bounded by 1−α

αT ϑT + M in the domain (25). From
(36), we obtained that

|µ (0, x0)| ≤
1

T

∫ T

0

∣∣∣∣∣h
(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)∣∣∣∣∣ dν ≤ M. (45)

Next, from inequality (36), we get

| µ
(
0, x10

)
− µ

(
0, x20

)
|≤ (k1 + aTLϑ1k2 + TLϑ2k3)|x

(
γ, x10

)
− x

(
γ, x20

)
|

≤ F2

∣∣x (γ, x10)− x
(
γ, x20

)∣∣ , (46)

where the functions x
(
γ, x10

)
and x

(
γ, x20

)
are solutions of the integral equation:-

x
(
γ, xk0

)
= xk0 +

2(1− α)

(2− α)N(α)
h

(
γ, u

(
γ, xk0

)
,

∫ a(γ)

0

ϑ1

(
ν, x

(
ν, xk0

))
dν,

∫ T

0

ϑ2

(
ν, x

(
ν, xk0

))
dν

)

− 2(1− α)

(2− α)N(α)

1

T

∫ T

0

h

(
ν, x

(
ν, xk0

)
,

∫ a(ν)

0

ϑ1

(
τ, x

(
τ, xk0

))
dτ,

∫ T

0

ϑ2

(
τ, x

(
τ, xk0

))
dτ

)
dν

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, x

(
ν, xk0

)
,

∫ a(ν)

0

ϑ1

(
τ, x

(
τ, xk0

))
dτ,

∫ T

0

ϑ2

(
τ, x

(
τ, xk0

))
dτ

)

− 1

T

∫ T

0

h

(
ν, x

(
ν, xk0

)
,

∫ a(ν)

0

ϑ1

(
τ, x

(
τ, xk0

))
dτ,

∫ T

0

ϑ2

(
τ, x

(
τ, xk0

))
dτ

)
dν

)
dν,

(47)

where k = 1, 2, from (47), we get∣∣x (γ, x10)− x
(
γ, x20

)∣∣
≤| x10 − x20

]
+

4(1− α)

(2− α)N(a)
(k1 + aTLϑ1k2 + TLϑ2k3)

∣∣x (γ, x10)− x
(
γ, x20

)∣∣
+

αT

(2− α)N(α)
(k1 + aTLϑ1k2 + TLϑ2k3)

∣∣x (γ, x10)− x
(
γ, x20

)∣∣ .
(48)

Therefore, we obtain that∣∣x (γ, x10)− x
(
γ, x20

)∣∣ ≤ ∣∣x10 − x20
∣∣+ F1F2

∣∣u (γ, x10)− u
(
γ, x20

)∣∣
≤
∣∣x10 − x20

∣∣+ F1F2

∣∣x (γ, x10)− x
(
γ, x20

)∣∣ . (49)

From equations (49), we have∣∣x (γ, x10)− x
(
γ, x20

)∣∣ ≤ F3

∣∣x10 − x20
∣∣ . (50)

Substitutes (50) in (46), we get that (44).

Remark 3.1. [29]. Theorem 6 confirms the stability of the solution of the system (1),
when a slight change happens in the points x0, then a slight change will happen in the
function µ (0, x0).
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3.4. Existence and uniqueness of periodic Solution of the system (1)-(3). In this
section, we investigate the periodic solution of the system (1)-(3).

Theorem 3.6. All assumptions of the Theorem 3.1 are satisfy, and the function H(x(ν))
satisfies

|H (x1)−H (x2)| ≤ L2 |x1 − x2| (51)

then the system (1)-(3) has unique solution if

Q =

(
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3) +

(1− α+ αT )

α
L2 < 1. (52)

Proof. We define an operator P : C[0, T ] → C[0, T ]

P (x(γ))

= x0 −
(1− α+ αγ)

αT

∫ T

0
H(x(ν))dγ +

2(1− α)

(2− α)N(a)

×
[
h

(
γ, x(γ),

∫ a(γ)

0
ϑ1(ν, x(ν))dν,

∫ T

0
ϑ2(ν, x(ν))dν

)

− 1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν
]
+

+
2α

(2− α)N(α)

∫ γ

0

(
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)

− 1

T

∫ T

0
h

(
ν, x(ν),

∫ a(ν)

0
ϑ1(τ, x(τ))dτ,

∫ T

0
ϑ2(τ, x(τ))dτ

)
dν
)
dν.

Therefore, we get

|P (x(γ))− P (w(γ))|

=

((
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3) +

(1− α+ αT )

α
L2

)
|x(γ)− w(γ)|

From (52), the operator P satisfies contraction mapping, hence the system (1)-(3) has
unique solution.

Theorem 3.7. If the hypotheses and all the conditions of the theorem 3.1 and the inequal-
ity (51) are given, the following inequalities are satisfied:-

|σ (0, x0)− σm (0, x0)| ≤
(
k1 + aΥLϑ1k2 + TLϑ2k3 +

L1

α

)
Qm(1−Q)−1M3, (53)

where

σm (0, x0) =
1

T

∫ T

0
h

(
ν, xm(ν),

∫ a(ν)

0
ϑ1 (τ, xm(τ)) dτ,

∫ T

0
ϑ2 (τ, xm(τ)) dτ

)
dν

+
(2− α)N(α)

2αT

∫ T

0
H (xm(ν)) dν,

(54)

holds for all m ≥ 0, here

M3 = M1 +
(1− α+ αT )

a
M2 (55)
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and

M2 ≥ |H(x(γ))|. (56)

Proof. The proof of this theorem is direct.

Theorem 3.8. Let the functions h(ν, x(ν), y(γ), z(γ)) and H(x(γ)) be defined on the in-
tervals [c1, d1] on R and periodic in γ of period T, suppose that for all m ≥ 0, then the
sequences of the functions σm (0, x0) which are defined in (54) satisfy the inequalities:-

minx0∈[c1,d1] σm (0, x0) ≤ −
(
k1 + aTLϑ1k2 + TLϑ2k3 +

L2
α

)
Qm(1−Q)−1M3

maxx0∈[c1,d11 σm (0, x0) ≥
(
k1 + aTLϑ1k2 + TLϑ2k3 +

L2
α

)
Qm(1−Q)−1M3.

}
(57)

Then the system (1)-(3) has a periodic solution such that x0 ∈ [c1 +M3, d1 −M3] where
M3 defined in (55).

Proof. This theorem’s proof was similar to that of theorem 3.4.

Theorem 3.9. Let the function σ (0, x0) be defined by the equations (54), then the follow-
ing inequalities yield:-

|σ (0, x0)| ≤ M +
M2

α
, (58)

and ∣∣σ (0, x10)− σ
(
0, x20

)∣∣ ≤ E2E3

∣∣x10 − x20
∣∣ , (59)

where

E1 = 2(1− α) +
αT

2
, E2 = k1 + aTLϑ1k2 + TLϑ2k3 +

L1

α
, E3 = (1− E1E2)

−1 .

Proof. The proof of this theorem was similar to the proof of theorem 3.5.

4. Examples

In this section contains two example to illustrate the previous theorems.

Example 1. Consider the following fractional integro-differential equation
CF
0 D0.7

γ (x(γ))

=
1

eγ + 5
x(γ) +

∫ γ2

0

1

2(ν + 2)3
sin(x(ν))dν +

∫ 2

0

1

2(ν + 2)4
cos(x(ν))dν, (60)

x(0) = 1, (61)

where CF
0 Dα

γ denotes the fractional Caputo-Fabrizio derivative (α = 0.7).

Here T = 2, a(γ) = γ2,

h(γ, x(γ), y(γ), z(γ)) =
1

eγ + 5
x(γ) +

∫ γ2

0

1

2(ν + 2)3
sin(x(ν))dν +

∫ 2

0

1

2(ν + 2)4
cos(x(ν))dν,

ϑ1(γ, x(γ)) =
1

2(ν + 2)3
sin(x(ν))

ϑ2(γ, x(γ)) =
1

2(ν + 2)4
cos(x(ν)).

We obtain that k1 = 0.2, k2 = 1, k3 = 1, aT = 4, Lϑ1 = 0.0625, Lϑ2 = 0.0312, so that

Λ =

(
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ2k3) = 0.666 < 1
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.
Therefore, by Theorem 3.1 and Theorem 3.2, the system (60)-(61) has exactly one pe-

riodic solution.

Example 2. Consider the following fractional integro-differential equation with inte-
gral boundary conditions

CF
0 D0.7

γ (x(γ))

=
1

eγ + 5
x(γ) +

∫ γ2

0

1

2(ν + 2)3
sin(x(ν))dν +

∫ 1

0

1

2(ν + 2)4
cos(x(ν))dν, (62)

x(0)− x(1) =

∫ 1

0

1

5
cos(x(γ))dγ, (63)

such that γ ∈ (0, 1], where CF
0 Dα

γ denotes the fractional Caputo-Fabrizio derivative (α =
0.7). We obtain that T = 1, k1 = 0.2, k2 = 1, k3 = 1, aT = 4, Lϑ1 = 0.0625, Lϑ2 = 0.0312,

h(γ, x(γ), y(γ), z(γ)) =
1

eγ + 5
x(γ) +

∫ γ2

0

1

2(s+ 2)3
sin(x(ν))dν +

∫ 1

0

1

2(ν + 2)4
cos(x(ν))dν,

ϑ1(γ, x(γ)) =
1

2(ν + 2)3
sin(x(ν))

ϑ2(γ, x(γ)) =
1

2(ν + 2)4
cos(x(ν)),

and

H(x(γ)) =
1

2
cos(x(γ)),

we obtain that aT = 1, and L2 = 0.2, so that

Q =

(
2(1− α) +

αT

2

)
(k1 + aTLϑ1k2 + TLϑ1k3) +

(1− α+ αT )

α
L2 = 0.667 < 1.

Therefore, by Theorem 3.6, the boundary value system (62)-(63) has exactly one peri-
odic solution.

5. Conclusions

Caputo-Fabrizio FD, a general fractional operator, is of great use because of its wide
freedom to cover many classical fractional operators. We have studied a fractional integro-
differential equation involving Caputo-Fabrizio fractional derivative type nonlinearities
together with the initial condition, periodic boundary conditions, and integral boundary
conditions. In fact, we considered a more general situation by considering the fractional
order nonlinear integral terms in the integro-differential equation at hand. Under appro-
priate assumptions, the existence, uniqueness, and stability results for the given system
are proved by applying the standard tools of the fixed point theory and successive approx-
imations technique. The results obtained in this paper are not only new, but they also
lead to some new results associated with the particular choices of the parameters involved
in the system. Thus, the work presented in this paper significantly contributes to the
existing literature on the topic.

Acknowledgement. The authors acknowledge the valuable comments and suggestions
from the editors and referees for their valuable suggestions and comments that improved
this paper.
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