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TRANSITION TO CHAOS IN HIGH CONTROL PARAMETER OF

SWIFT–HOHENBERG EQUATION

F. NUGROHO1∗, H. N. WIJAYA2, §

Abstract. The Swift-Hohenberg equation, which is a parabolic equation, is studied at
high values of the control parameter. The method used is exponential time differencing
combined with fourth-order Runge-Kutta (ETDRK4). The solution obtained was sub-
jected to spectral analysis. In the case of real equations, it can be shown that there is a
transition from regular to chaotic dynamics at the control parameter of 23.6. Meanwhile,
in the case of equations with complex terms, transition to chaotic dynamics occurs at
low control parameter and the imaginary constant range of −8 ≤ b ≤ −6. It can be
concluded that the Swift-Hohenberg equation can produce chaotic dynamics at certain
parameter values.
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1. Introduction

The Swift-Hohenberg equation is a fourth-order nonlinear partial differential equation
that describes the spatiotemporal evolution of a perturbation field [1]. This equation can
be used as a model for pattern formation in the Rayleigh-Bénard convection system caused
by convective instability. Its one-dimensional version is

∂tu = (ϵ− 1− 2∂2
x − ∂4

x)u− u3, (1)

where u(x, t) is a function of position x and time t, and ϵ is a control parameter that
corresponds to the driving parameter in the Rayleigh-Bénard system, represented by the
temperature difference ∆T that drives the system away from equilibrium [2]. The above
equation can be written as a sum of linear and nonlinear terms:

∂tu = Lu−N [u], (2)
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where L is a linear operator and N [u] is a nonlinear term which is a functional of u.
Apart from equation (1), the Swift-Hohenberg equation also has a complex form [3]:

∂tu = ϵu− (1 + ∂2
x)

2u− (1 + ib)u3, (3)

where b is the imaginary constant that plays a role in the dynamics that emerge.
For the real version of the equation, there are two possibilities for the solution u: it

either decays or grows over time. Linear stability analysis was carried out to determine
the behavior of the solution u. First, note that the ground state solution ub is a steady
state or has no spatial structure, namely ub = 0. We then apply a small perturbation
up = u− ub to check if u decays or grows. Let up evolve based on the equation [2]:

∂tup = N̂(ub + up)− N̂(ub), (4)

where N̂ is an operator that is a function of u(x, t) and is defined from the right-hand
term of equation (1):

N̂(u) = ϵu− u− 2∂2
x − ∂4

xu− u3. (5)

Equation (4) becomes:

∂tup = (ϵ− 1)(ub + up)− ∂4
x(ub + up)− 2∂2

x(ub + up)− (ub + up)
3

−(ϵ− 1)(ub)− ∂4
x(ub)− 2∂2

x(ub)− u3b . (6)

By linearizing equation (6) and using ub = 0, the above equation becomes:

∂tup = (ϵ− 1− 2∂2
x − ∂4

x)up, (7)

which can be rewritten as:
∂tup = ϵup − (1 + ∂2

x)
2up. (8)

The above equation is analogous to the linear form of the Swift-Hohenberg equation (1)
with the solution of an exponential form over time and space:

up = Ae(σt+αx), (9)

where A is a constant and σ is the growth rate. Equation (9) is substituted into equation
(8) to obtain the growth rate as a function of the control parameter ϵ and α:

σ = ϵ− (α2 + 1)2. (10)

The constant α is determined by assuming that up has periodic boundary conditions
with period L. Equation (9) will be periodic if:

eαx = eα(x+L). (11)

Equation (11) is fulfilled if eαL = 1, so α = i2πm
L where m is an integer. This can be

simplified by setting α = iq and q = 2πm
L , which is the wave number. The relationship

between growth rate σ and wave number q is:

σ = ϵ− (1− q2)2. (12)

The growth rate σ is maximum when the wave number q is equal to the critical wave
number qc = 1. When the control parameter is negative, the growth rate will also be
negative, indicating system stability. When the control parameter is zero, the growth
rate is zero at q = qc = 1, indicating marginal stability of the system. When the control
parameter is positive, the growth rate is positive for a certain range of wave numbers,
leading to system instability. The plot of equation (12) for negative, zero, and positive ϵ
is shown in Figure 1. For ϵ = 0.2, there exists a small range of wave numbers around the
critical wave number that contribute to the positive growth rate. An initial disturbance
will grow, leading to instability. The existence of several unstable wave numbers will result
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in a solution in the form of a spatial periodic pattern (rolls) at the onset of the instability
[4].

Figure 1. Dispersion relation of growth rate σ as a function of q obtained
by linear stability analysis of the Swift-Hohenberg equation which fulfills
equation (12). The unstable region σ > 0 occurs when the control param-
eter is positive [2].

In general, the transition from an ordered state to a chaotic state on various experi-
mental systems and mathematical models occur through a scenario of intermittency or
spatiotemporal intermittency [5, 6, 7]. The idea of the intermittency scenario was coined
by Pomeau and Manneville (1980) when studying the Lorenz model [6]. They varied a
control parameter r of the Lorenz model. When the control parameter is below the critical
value rc = 166.06 the dynamic shows periodic (regular) behavior. In the spatiotemporal
intermittency (STI) scenario, the previously orderly or laminar state will become a chaotic
state preceded by regular and chaotic states that appear simultaneously or coexist at cer-
tain control parameter values. On a time series graph, this is characterized by the presence
of regular dynamics, such as periodic dynamics, which are then punctuated by an explosion
(burst). This scenario towards chaos has been observed in the modified Swift-Hohenberg
equation [7]

∂tu = ϵu− (∂xx + 1)2 u− u∂xu, (13)

that is equivalent to the damped Kuramoto-Sivashinsky equation [12, 13, 14]

∂tu+ ηu+ ∂xxu+ ∂xxxxu+ 2u∂xu = 0. (14)

The dynamics in the above equation is determined by two parameters, namely the system
size D and the parameter η. For a fixed value of D, the control parameter is η. For the
equation (14) an ordered state occurs at large η. By decreasing the value of η until the
system becomes chaotic. Apart from modifications to the nonlinear term, there is research
that adds a noise term, with which emergence bifurcation can be obtained [9, 10]. Research
on original Swift-Hohenberg has mainly been carried out at low control parameter. This
research will focus on the influence of using high control parameter and focus on the
transition to chaotic dynamics.

2. Implementation of the Exponential Time Differencing (ETD) Scheme in
the Swift–Hohenberg equation

To obtain the solution u, first we multiply it by the integrating factor e−£t then we
integrate between the limits tn to tn+1. The distance between two points in the domain t
is h = tn+1 − tn.

dte
−£tu = e−£tu̇−£ue−£t (15)
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tn

d e−£tu =

∫ tn+1

tn

e−£tH(u, t) dt. (16)

By operating the integral of the left side of the equation we get[
ue−£t

]tn+1

tn
=

∫ tn+1

tn

e−£tH(u, t) dt. (17)

Where tn = 0, tn+1 = h, and by introducing the new time variable τ in the integration as
the time lag (substituting H(u(tn + τ), tn) to H(u, t)) we get

e−£tn+1utn+1 − e−£0utn =

∫ h

0
e−£τH(u(tn + τ), tn + τ)dτ. (18)

Considering e−£0 = 1 and equating the above equation we get

utn+1 =
utn +

∫ h
0 e−£τH(u(tn + τ), tn + τ)dτ

e−£tn+1
(19)

utn+1 = utne
£h + e£h

∫ h

0
e−£τH(u(tn + τ), tn + τ) dτ (20)

Equation (20) is a recurrence relation between utn+1 and utn . The order in the ETD scheme
depends on the integrand H(u(tn + τ), tn + τ) used in the calculation. ETD Scheme 1
is obtained by assuming the value of H(u(tn + τ), tn + τ) in equation (20) is constant,
denoted as Hn. Thus, we obtain the ETD 1 scheme

un+1 = e£hun + e£h

∫ h

0
e−£τHn dτ (21)

= e£hun + e£h

[
Hne

−£h

−£
−
(
Hn

−£

)
e−£0

]
= e£hun +

[
Hne

£h

£
− Hn

£

]
(22)

un+1 = e£hun +
Hn

£

(
e£h − 1

)
(23)

A higher order ETD scheme can be obtained by changing the integrand value which is
not a constant along the interval tn ≤ t ≤ tn+1. Second order exponential time differencing
(ETD2) scheme is obtained by assuming that the value H(u(tn + τ), tn + τ) is

H = Hn +
τ

h
(Hn −Hn−1) . (24)

So we get the ETD2 scheme

un+1 = une
£h +

Hn

h£2

[
(h£+ 1)e£h − 2h£− 1

]
+

Hn−1

h£2
(−e£h + h£+ 1). (25)

To get a smaller relative error we combine the ETD2 with the fourth-order Runge-Kutta
(RK4) method [8]. The ETDRK4 equation is as follows [15]:

un+1 = une
ch +H(un, tn)[−4− hc+ ech(4− 3hc+ h2c2)]

+ 2(H(an, tn + h/2) +H(bn, tn + h/2))[2 + hc+ ech(−2 + hc)]

+H(cn, tn + h)[−4− 3hc− h2c2 + ech(4− hc)]/h2c3

(26)

an = une
ch
2 + (e

ch
2
−1)H(un, tn)/c (27)

bn = une
ch
2 + (e

ch
2
−1)H(an, tn + h/2)/c (28)

cn = une
ch
2 + (e

ch
2
−1)(2H(bn, tn + h/2)−H(un, tn))/c (29)
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3. Solving the Swift-Hohenberg Equation Using the ETDRK4 Scheme and
Spectral Method

Equation (1) is a periodic equation whose solution will be calculated by approximating
the solution u using the Fourier series. The approximate solution of u using the Fourier
series is

u(x, t) =
N∑

m=1

ûmeikmx, km =
mπ

L
(30)

∂u(x, t)

∂t
=

N∑
m=1

∂ûm
∂t

eikmx (31)

∂2u(x, t)

∂x2
= −

N∑
m=1

k2mûmeikmx (32)

∂4u(x, t)

∂x4
=

N∑
m=1

k4mûmeikmx (33)

Substituting equations (30) to (33) into equation (1), we get

∂tûm =
[
(ϵ− 1) + 2k2m − k4m

]
ûm −

[
û3me(2kmxi)

]
(34)

∂tûm =
[
(ϵ− 1) + 2k2m − k4m

]
ûm − ω̂n (35)

So we obtain ordinary differential equations in Fourier space. The equation (35) has
the form of equation (2), so it can be solved using the ETDRK4 method with the value
£ = (ϵ − 1 + 2k2m − k4m) and N(u, t) = ω̂n = −FFT(IFFT(û)3), where FFT is the fast
Fourier transform and IFFT is the inverse fast Fourier transform.

Using ETDRK4, the nonlinear term in any functional form, including the cubic term,
is treated in the wavenumber space. Essentially, we combine ETDRK4 and the spectral
method to solve the Swift-Hohenberg equation by transforming the equation from physical
space x to the wavenumber space k using the spectral method, and then solving the time
t dependence of the resulting equation using ETDRK4. The details of the implementation
of ETDRK4 combined with the spectral method on the Swift-Hohenberg equation have
been previously described [16].

4. Results and discussions

4.1. Real Swift-Hohenberg Equation. In this paper, the size of the system D and the
number of truncations W in equations (1) remain constant across all simulations, with
(D,W ) = (20π, 512), ensuring that the dynamics of equation (1) are solely influenced
by the control parameter ϵ. To observe the dynamic behavior of the Swift-Hohenberg
equation, a maximum time of tmax = 200000 is utilized, with a time discretization h = 0.05.
The control parameter values used are in the range 0 ≤ ϵ ≤ 23.9.

The dynamics of the Swift-Hohenberg equation are illustrated by the spatiotemporal
plot in Figure 2. It demonstrates increasingly irregular and complex behavior as the control
parameter is increased. Figure 2 (A) shows regular and constant dynamics for ϵ = 1.0.
When the control parameter is increased to ϵ = 22.0, the dynamics remain regular and
exhibit a spatially periodic solution. This is predictable considering the contribution of
finite wavenumbers, as shown by the range of positive q in Figure 1.

As the control parameter is increased further, the dynamics transition into a periodic
state. The spatiotemporal plot in Figure 2 (C) for ϵ = 22.4 shows periodic changes
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(a) (b)

(c) (d)

Figure 2. Spatiotemporal plot of solution u of the Swift-Hohenberg equa-
tion with spatial discretization W = 512, ∆x = 20π/512, tmax = 200000
(A) for control parameter ϵ = 1, (B) ϵ = 22.0, (C) ϵ = 22.4, and (D)
ϵ = 22.6. The colored legends on the right of each plots are indicating the
value of u.

in solution values over time, forming a transverse strip pattern. The Swift-Hohenberg
equation continues to exhibit periodic dynamics until the control parameter reaches ϵ =
22.6.

More complex dynamics emerge with further increases in the control parameter. Figure
3 shows the spatiotemporal dynamics for the following control parameter values: (a)
ϵ = 22.7, (b) ϵ = 22.8, (c) ϵ = 23.0, and (d) ϵ = 23.6. It can be observed that the
dynamics become irregular for control parameter values ϵ ≥ 23.0.

The dynamics of the Swift-Hohenberg equation for a fixed control parameter value
can be described through a time series graph at one point in the variable space. Figure 4
illustrates the dynamics produced by the Swift-Hohenberg equation. The time series graph
shows that for a control parameter of 22, the dynamics are regular and constant. Figures
4 (b) and (c) show the time series graph for control parameters 22.4 and 22.7, respectively,
exhibiting regular dynamics that appear periodic and quasiperiodic, in harmony with the
spatiotemporal graph. This is because the control parameter has reached the critical
value, resulting in a Hopf bifurcation that produces periodic dynamics. As the control
parameter increases further, the time series graph becomes irregular and displays chaotic
dynamics, as shown in Figure 4 (d) with ϵ = 23.6. The transition from regular to chaotic
dynamics in the Swift-Hohenberg equation at high control parameters occurs through a
scenario of intermittency or spatiotemporal intermittency, similar to that in other systems,
as reported in previous research [5, 6, 7].

To further characterize the dynamics of the Swift-Hohenberg equation, a power spec-
trum analysis is performed. The temporal power spectrum function of a discrete-time
series u(tq) is defined as [11]

Sj ≡ Sωj = |ûx(ωj)|2 (36)

where ûx(ωj) is a temporal discrete Fourier transform, which is the amplitude of each
harmonic that forms the time series data. The temporal discrete Fourier transform is
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(a) (b)

(c) (d)

Figure 3. Spatiotemporal plot of the solution of the Swift-Hohenberg
equation with spatial discretization W = 512, ∆x = 20π/512, tmax =
200000 (A) for control parameter ϵ = 22.7, (B) ϵ = 22.8, (C) ϵ = 23.0, and
(D) ϵ = 23.6.

(a)

(b)

(c)

(d)

Figure 4. Fluctuation of u obtained by solving the Swift-Hohenberg equa-
tion with spatial discretization W = 512, ∆x = 20π/512, tmax = 200000
(A) for control parameter ϵ = 22.0, (B) ϵ = 22.4, (C) ϵ = 22.7, and (D)
ϵ = 23.6.
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(a) (b)

(c) (d)

Figure 5. Power spectrum graphs of Swift-Hohenberg equation solutions
for (A) ϵ = 22.4, (B) ϵ = 22.7, (C) ϵ = 22.8, and (D) ϵ = 23.6.

defined as

ûx(ωj) =
1

Q

Q−1∑
q=0

ux(tq)e
−iωjtq (37)

where ωj = 2πj
Q with j = 0, 1, .., Q− 1 and tq =

qT
Q with q = 0, 1, ..., Q− 1.

Figure 5(A) illustrates the results of the power spectrum analysis of the Swift-Hohenberg
equation with a control parameter of ϵ = 22.4. In the power spectrum graph, there are
some peaks, indicating that the dynamics generated by the Swift-Hohenberg equation
contain some frequencies. The spatiotemporal diagram with control parameter values
below 22.4 also exhibits similar behavior, as shown in Figure 2(A) and (B). Similarly, the
time series graph depicts consistent dynamics, as shown in Figure 4(A).

Within a certain range of the control parameter, the Swift-Hohenberg equation gen-
erates periodic and quasiperiodic dynamics. Periodic dynamics are characterized by the
presence of a fundamental frequency along with its harmonic frequencies in the power
spectrum analysis. The existence of fundamental frequencies can be seen in the peaks
(q < 0.05) of the power spectrum of the pre-chaotic state (see Figure 5(B)) which persist
in the chaotic state as suggested by Ruelle-Takens and Newhouse’s route to chaos theory
[17]. The transition to periodic dynamics occurs when the control parameter reaches a
critical value, leading to Hopf bifurcation and the emergence of periodic dynamics. Pe-
riodic dynamics occur within the control parameter range 22.4 ≤ ϵ < 22.7. When the
control parameter is increased to ϵ = 22.4, the power spectrum graph in Figure 5(A) dis-
plays the presence of one fundamental frequency and its harmonic frequencies. In Figure
5(B), with the control parameter set to ϵ = 22.7, two fundamental frequencies appear,
indicating quasiperiodic dynamics. This suggests that a control parameter value of 22.7
is a critical point where the second Hopf bifurcation occurs, resulting in quasiperiodic
dynamics. Quasiperiodic dynamics continue in the Swift-Hohenberg equation for control
parameter in the range of 22.8 to 23.0, revealing some frequencies in the power spectrum
graph.
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(a)

Figure 6. Power spectrum Sj of the solution of the Swift-Hohenberg equa-
tion for ϵ = 23.6 in the log-log plot. The red line follows S(ω) ∝ ω−0.81.

Quasiperiodic dynamics eventually evolve into chaotic dynamics, characterized by a
broadband spectrum in the power spectrum analysis. By varying the control parameter
from ϵ = 0 up to ϵ = 25, we observed that chaotic dynamics manifest within the control
parameter range of 23.1 ≤ ϵ ≤ 23.9. The power spectrum graph of chaotic dynamics
exhibits a broadband spectrum, as illustrated in Figure 5 (D). For instance, when the
control parameter is set to ϵ = 23.6, the presence of a broadband spectrum indicates chaotic
dynamics. To verify the dynamics at ϵ = 23.6, we calculated the Lyapunov exponent
[18] (the Python program is available in [19]). The chaotic dynamics at ϵ = 23.6 are
confirmed by the positive Lyapunov exponent (λ > 0). In the chaotic state, the power
spectrum shows a power-law behavior of S(ω) ∝ ω−0.81, as shown in Figure (6). Thus, we
demonstrate that the power spectrum behavior of chaotic dynamics in the Swift-Hohenberg
equation is similar to that observed in turbulent flow.

4.2. The Complex Swift-Hohenberg Equation. As mentioned earlier, the Swift-
Hohenberg equation with complex terms is expressed as follows [3]:

∂tu(x, t) = ϵu(x, t)− (1 + ∂2
x)

2u(x, t)− (1 + ib)u(x, t)3. (38)

In this study, the parameter b is varied while ϵ is kept constant at ϵ = 1. The system size
for the simulation is D = 300 with a spatial discretization of W = 1024. The integration
is carried out using the ETDRK4 method over a period of tmax = 200000 with a time
discretization of δt = 0.05. The resulting dynamics are observed as the control parameter
b is varied in the range −8 ≤ b ≤ 0. The most straightforward solution occurs when b = 0
because the Swift-Hohenberg equation returns to its real form, as depicted in Figure 7
(A).

For certain values of the parameter b, the complex Swift-Hohenberg equation exhibits
regular dynamics. When b = −1, the spatiotemporal plot remains regular. However,
as b is changed to −4, a small chaotic region emerges alongside predominantly ordered
dynamics. Further increasing the absolute value of b to −5 results in a larger chaotic
region with diminishing regular dynamics. Intermittent behavior becomes evident in the
spatial coordinate, particularly at b = −5.5, where chaotic areas dominate, and regular
areas dwindle. Ultimately, as b ≤ −7, the complex Swift-Hohenberg system transitions to
spatiotemporal chaos, as depicted in Figure 7, where regular dynamics become challenging
to discern, and chaos prevails.

The temporal dynamics of a point in space, specifically at x = 0, from the complex Swift-
Hohenberg equation with parameter values around b ≈ −5.5, are illustrated in Figure 8.
At a control parameter value of b = −5, the time series graph at x = 0 exhibits regular
dynamics. As the parameter b increases, an irregular time series region emerges, as seen
in Figures 8 (B), (C), and (D). Within the b parameter range, regular dynamics coexist
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Spatiotemporal plot of the solution of equation (38) with spatial
discretization W = 512, ∆x = 20π/512, tmax = 200000, control parameter
ϵ = 1, and for b = 0,−1,−4,−5,−5.5,−8 from (A) to (F), respectively.

with irregular or chaotic dynamics. With further increases in the parameter b, the time
series graph reveals irregular or chaotic dynamics, as evidenced at b = −8.

The spatiotemporal plot in Figure 7 demonstrates spatial intermittency when b = −4,
and as b decreases, intermittency becomes more pronounced. Power spectrum analysis
within the −8 ≤ b ≤ −6 parameter range unequivocally confirms the presence of chaotic
spatiotemporal dynamics. This is evident from the broadband noise exhibited on the
power spectrum graph, a hallmark of chaotic behavior. The Lyapunov exponent value
of the solution of the Swift-Hohenberg equation at complex parameter −8 ≤ b ≤ −6 is
positive.

5. Conclusions

Numerical solutions of the original Swift-Hohenberg equation have been obtained at high
control parameter values. Chaotic dynamics are observed when the control parameter is
sufficiently high, specifically at ϵ = 23.6, as evidenced by a spectrum with significant
background noise. Additionally, a quantitative analysis of the dynamics using Lyapunov
exponents consistently shows positive values, indicating the chaotic behavior of the field
u.

Furthermore, we have investigated the Swift-Hohenberg equation with complex terms,
primarily at a relatively low control parameter value of ϵ = 1.0, allowing us to focus on
variations in the complex constant. The results indicate that for specific ranges of the
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h

(a)

(b)

(c)

(d)

(e)

Figure 8. Fluctuation of u obtained by solving equation (38) with b =
−5.0,−5.3,−5.4,−5.5,−8 in (A)-(E), respectively.

h

(a) (b) (c)

Figure 9. Power spectrum of the solution of equation (38) with b = −6
(A), b = −7 (B), and b = −8 (C).

complex constant, chaotic dynamics also emerge. Consequently, our study elucidates the
transition to chaos in both the real and complex variants of the Swift-Hohenberg equation.
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