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SOLVING A NONLINEAR INVERSE PROBLEM OF THE

CAMASSA-HOLM EQUATION

H. ZEIDABADI1, R. POURGHOLI2∗, A. BASIRI2, A. ALIYARI BOROUJENI2, §

Abstract. In order to solve the nonlinear inverse Camassa-Holm equations, a numerical
method is developed by applying finite difference formula to time discrimination and
collocation of polynomial scaling functions for spatial variable. Using operational matrix
of derivative, the problem is reduced to a set of algebraic equation. An estimation of error
bound is investigated for presented method. Also, to show the accuracy of the proposed
method, it is applied on two test problems. One of the most important advantages of
this work, compared to previous works, is the implementation simplicity.

Keywords: Polynomial scaling functions, Operational matrix of derivative, Collocation
method, Inverse problems, Convergence analysis, Noisy data.

AMS Subject Classification: 65M32, 35K05

1. Introduction

Nonlinear phenomena are of great importance in applied mathematics, physics and
engineering [1]. As mentioned in [2], nonlinear evolution equations are used to model
many phenomena in engineering and applied sciences, such as: solid state physics [3],
fluid mechanics [4], chemical kinetics [5], plasma physics, population models [6], nonlinear
optics and etc. Analytical exact solutions to nonlinear partial differential equation play a
significant role in nonlinear science, particularly they may provide us with much physical
information and more insights into the physical aspects of the problem and even may
lead to further applications. Recently, a variety of powerful methods, such as inverse
scattering method [7], Exp-function method [8], Homotopy perturbation method [9], ( G

G′ )-
expansion method [10] were used to obtain explicit travelling and solitary wave solutions
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of nonlinear evolutions equation. Investigating the exact solution for nonlinear partial
differential equations is very challenging. Therefore, numerical methods are very useful
to solve these equations. Inverse problems are encountered in many branches of science
and engineering. For example, the inverse problem has been used to evaluate the thermal
properties of solids in the field of heat transfer. Moreover, using the inverse problem,
several functions and parameters such as static and moving heating sources, material
properties, initial conditions, boundary conditions, optimal shape etc., can be estimated
[11, 12, 13, 14, 15, 16, 17, 18].

Mathematically, the inverse problems belong to the class of problems called the ill-
posed problems [19, 20, 21, 22, 26], i.e. small errors in the measured data can lead to
large deviations in the estimated quantities. As a consequence, their solutions do not
satisfy the general requirement of existence, uniqueness and stability under small changes
in the initial parameters. In order to simplify the inverse problem, a variety of tech-
niques resulted from mathematical fields such as partial differential equations, numerical
analysis, harmonic analysis, functional analysis, Fourier analysis and etc. have been pro-
posed. Tikhonov regularization [23], iterative regularization [24], base function [25] and
the function specification methods [26] were used as solutions to the inverse problem.

Polynomial scaling function (PSF) as expansion functions has some advantages that one
of them is the good representation of smooth functions by finite Chebyshev expansion.
In this paper, by expanding the approximate solution in terms of PSF with unknown
coefficients, the nonlinear inverse problem is reduced to a set of algebraic equations. Then,
to evaluate the unknown coefficients of the solution at each time step, the operational
matrix of derivative is constructed and the collocation method is utilized.

The rest of this manuscript is as follows: In Section 2, inverse problem is formulated.
In Sections 3 and 4, description of the Polynomial scaling and wavelet functions and
procedure for implementation of the present method are illustrated, respectively. The
convergence analysis is discussed in Section 5. In Section 6, to illustrate the effectiveness
and compare the presented method with quintic B-spline (QBS) method, some examples
with analytical solution are given. Section 7 is the final section that ends the paper with
a brief conclusion.

2. Nonlinear inverse problem

In this work, our focus is on the nonlinear inverse problem and determining the boundary
conditions as follows:

ut − uxxt + αux + βuux = λuxuxx + uuxxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (1)

the initial condition is

u(x, 0) =f1(x), 0 ≤ x ≤ 1, (2)

the boundary conditions are

u(0, t) =p1(t), ux(0, t) = p2(t), 0 ≤ t ≤ T,

u(1, t) =q1(t), ux(1, t) = q2(t), 0 ≤ t ≤ T, (3)

and the overspecified data are

u(x∗, t) = g1(t), u(x∗∗, t) = g2(t), 0 < x∗, x∗∗ < 1, 0 ≤ t ≤ T, (4)

where α, β and λ are arbitrary constants. Also, T represents the final time, f1(x), p2(t), q2(t)
and g1(t), g2(t) are given continuous functions. The boundary conditions p1(t), q1(t) are
unknown and are determined from overspecified data. We want to find the functions
u(x, t) and p1(t), q1(t). For two unknown boundary conditions p1(t), q1(t) then we must
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provide additional information (4) to find a solution
(
u(x, t), p1(t), q1(t)

)
to the inverse

problem.

3. Description of the PSFs

Let’s start with a brief introduction of PSF. Suppose ψj is defined as [27]:

ψj(y) = (1− y2)U2j−1(y) =
1− y2

2j
T ′
2j (y), j = 0, 1, 2, . . . .

where T2j and U2j are chebyshev polynomials of the first and second kind, respectively,

T2j (y) = cos(2jθ), and U2j (y) =
sin((2j + 1)θ)

sin(2jθ)
, y = cos(θ).

The zeros of ψj(y) are yk = cos(kπ
2j
) for k = 0, 1, 2, . . . , 2j .

Definition 3.1. For all j ∈ N ∪ {0}, the space of polynomial scaling functions in [−1, 1]
is defined by Vj = span{ϕj,l : l = 0, 1, ..., 2j}, where

ϕj,l(y) =
ψj(y)

2j(−1)l+1(y − yl)
ϵj,l, (5)

where

ϵj,l =

{
1
2 , for l = 0 or l = 2j ,
1 for l = 1, 2, . . . , 2j − 1.

(6)

It can be easily seen that the spaces Vj = Π2j , where Π2j denotes the set of all poly-
nomials of degree at most 2j . The important property of this functions which accelerates
the computations is:

ϕj,l(yk) = δk,l, k, l = 0, 1, ..., 2j . (7)

Where δk,l is Kronecker delta function which has a value of 1 for k = l and a value of 0 for

k ̸= l. It is essential to change the variable y = (x+1)
2 to use polynomial scaling functions

on [0, 1]. For any j ∈ N0, the operator Lj is mapping any real-value function u(x) on [0, 1]
into the space Vj by the Lagrange formula

Lju(x) =
2j∑
l=0

u(xl)ϕj,l(x) = CTΦ(x), (8)

where xl = 2 cos( lπ
2j
)− 1; also, C and Φ are vectors with 2j + 1 components as:

C = [u(x0), u(x1), . . . , u(x2j )]
T , (9)

Φ(x) = [ϕj,0(x), ϕj,1(x), . . . , ϕj,2j (x)]
T . (10)

3.1. Operational matrices of PSFs.

Theorem 3.1. The derivative of the vector Φ(x) can be expressed by

d

dx
Φ(x) = DΦ(x), (11)

where D is the (2j + 1)× (2j + 1) operational matrix of derivative given by

dk,l =


∑2j

i=0
i ̸=k

1
xl−xi

, if l = k,

22
j−j−1(−1)kϵj,k

∏2j
r=0
r ̸=l,k

(xl − xr), if l ̸= k.

(12)
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Proof. See [27]. □

4. Mixed finite difference and collocation method

In this section, we solve nonlinear partial differential equation (1) on a bounded region.
For this purpose, we use finite difference method for one variable to reduce these equations
to a system of ordinary differential equations, [28] then we solve this system in order to
find the solution of the given equation at the points tn = n∆t for ∆t = T

N , n = 0, 1, ..., N .

4.1. Discretization. We discretize (1) according to following θ-weighted scheme

un+1 − un

∆t
− un+1

xx − unxx
∆t

+ θ (αun+1
x + βun+1un+1

x − λun+1
x un+1

xx − un+1un+1
xxx )

+ (1− θ)(αunx + βununx − λunxu
n
xx − ununxxx) = 0 (13)

where ∆t is the time step size and un+1 is used to show u(x, tn + ∆t). To linearize the
nonlinear term un+1un+1

x , we use the linearization form applied in [29, Page 10].

(uux)
n+1 = un+1unx + unun+1

x − uuunx. (14)

Using the linearization form (14) in (13), we obtain

un+1 − un

∆t
− un+1

xx − unxx
∆t

+ θ
(
αun+1

x + β
(
un+1unx + unun+1

x − ununx
)

− λ
(
un+1
x unxx + unxu

n+1
xx − unxu

n
xx

)
−
(
un+1unxxx + unun+1

xxx − ununxxx
))

+
(
1− θ

)(
αunx + βununx − λunxu

n
xx − ununxxx

)
= 0. (15)

By choosing θ = 1
2 we have

un+1 − un

∆t
− un+1

xx − unxx
∆t

+
1

2

(
αun+1

x + β
(
un+1unx + unun+1

x − ununx
)

− λ
(
un+1
x unxx + unxu

n+1
xx − unxu

n
xx

)
−
(
un+1unxxx + unun+1

xxx − ununxxx
))

+
1

2

(
αunx + βununx − λunxu

n
xx − ununxxx

)
= 0. (16)

After simplifying we have

un+1 − un+1
xx +

∆t

2

(
αun+1

x + β
(
un+1unx + unun+1

x

)
− λ

(
un+1
x unxx + unxu

n+1
xx

)
−
(
un+1unxxx + unun+1

xxx

))
= un − unxx −

∆t

2

(
αunx

)
. (17)

4.2. The PSF collocation method. Using equation (8), the approximate solution for
un(x) is represented as follows:

Lju
n(x) = UT

n Φ(x), (18)
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where vectors Un = [un(x0), u
n(x1), . . . , u

n(x2j )]
T and Φ(x) is defined as (10). Using (11),

one can write the following relations for various derivatives of un(x),

Lj
dr

dxr
un(x) = UT

n

dr

dxr
Φ(x) = UT

nD
(r)Φ(x), r = 1, 2, 3. (19)

Substituting equations (19) in (17), one can get

ΦT (x)Un+1 − ΦT (x)(D2)TUn+1 +
∆t

2

(
αΦT (x)(D)TUn+1

+ β
(
unxΦ

T (x)Un+1 + unΦT (x)(D)TUn+1

)
− λ

(
unxxΦ

T (x)(D)TUn+1 + unxΦ
T (x)(D2)TUn+1

)
−
(
unxxxΦ

T (x)Un+1 + unΦT (x)(D3)TUn+1

))
= ΦT (x)Un − ΦT (x)(D2)TUn − ∆t

2
αΦT (x)(D)TUn.

(20)

Also considering equation (8), one can approximate unxΦ
T (x), unxxΦ

T (x), unxxxΦ
T (x) and

unΦT (x) in the following forms

unxΦ
T (x) = ΦT (x)M1, (21)

unxxΦ
T (x) = ΦT (x)M2, (22)

unxxxΦ
T (x) = ΦT (x)M3, (23)

unΦT (x) = ΦT (x)N, (24)

where M1,M2,M3 and N are matrices with dimension (2j + 1)× (2j + 1) as follows,

M1 =


unx(x0) 0 0 . . . 0

0 unx(x1) 0 . . . 0
...

...
...

...
...

0 . . . 0 unx(x2j−1) 0
0 0 . . . 0 unx(x2j )

 ,

M2 =


unxx(x0) 0 0 . . . 0

0 unxx(x1) 0 . . . 0
...

...
...

...
...

0 . . . 0 unxx(x2j−1) 0
0 0 . . . 0 unxx(x2j )

 ,

M3 =


unxxx(x0) 0 0 . . . 0

0 unxxx(x1) 0 . . . 0
...

...
...

...
...

0 . . . 0 unxxx(x2j−1) 0
0 0 . . . 0 unxxx(x2j )

 ,
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N =


un(x0) 0 0 . . . 0

0 un(x1) 0 . . . 0
...

...
...

...
...

0 . . . 0 un(x2j−1) 0
0 0 . . . 0 un(x2j )

 .

Substituting equations (21)-(24) in (20), we have

ΦT (x)

(
Un+1−(D2)TUn+1 +

∆t

2

(
α(D)TUn+1 + β

(
M1Un+1 +N(D)TUn+1

)
− λ

(
M2(D)TUn+1 +M1(D

2)TUn+1

)
−
(
M3Un+1 +N(D3)TUn+1

)))

= ΦT (x)
(
Un − (D2)TUn − ∆t

2
α(D)TUn

)
.

(25)

So by collocating equation (25) in the points xk, k = 0, 1, . . . , 2j , and property (7) we get(
I − (D2)T +

∆t

2

(
α(D)T + β

(
M1 +N(D)T

)
− λ

(
M2(D)T +M1(D

2)T
)

−
(
M3 +N(D3)T

)))
Un+1

=
(
I − (D2)T − ∆t

2
α(D)T

)
Un,

(26)

representing a system of (2j + 1) × (2j + 1) linear equations. Using (18) and (21) in (3),
we have

ΦT (x∗)Un+1 = g1(tn+1), (27)

ΦT (x∗∗)Un+1 = g2(tn+1), (28)

ΦT (0)DTUn+1 = p2(tn+1), (29)

ΦT (1)DTUn+1 = q2(tn+1). (30)

Associating (27)-(30) with the linear system (26) we finally obtain a following matrix form
of the system,

AnUn+1 = Bn, n = 1, 2, . . . . (31)

where An is a matrix with dimension (2j + 1)× (2j + 1) as,

An =



ΦT (0)
ΦT (0)DT

Λ3
...

Λ2j−2

ΦT (1)
ΦT (1)DT


, Bn =



g1(tn+1)
p2(tn+1)
λ3
...

λ2j−2

g2(tn+1)
q2(tn+1)


,
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where

Λi =

(
I−(D2)T+

∆t

2

(
α(D)T+β

(
M1+N(D)T

)
−λ
(
M2(D)T+M1(D

2)T
)
−
(
M3+N(D3)T

)))
i

,

and

λi =

{(
I − (D2)T − ∆t

2
α(D)T

)
Un

}
i

.

Using (1) as the starting point, equation (31) gives a linear system of equations with 2j+1
unknowns and equations, which can be solved to find Un+1 in any step n = 0, 1, 2, . . . . So
the unknown functions u(x, tn) in any time t = tn, n = 0, 1, 2, . . . can be found.

5. Convergence analysis

The aim of this section is to present the error analysis of the method presented in the
previous section. Suppose that

BV = {P : R → R|P is bounded variation on [0, 1]}.

The value V (P(x)) is defined as total variation of P(x) on [0, 1]. For the given weight

function w(x) = (1− (2x− 1)2)
−1
2 and 2 ≤ p ≤ ∞, one can define

∥P∥p :=
(∫ 1

0
w(x)|P(x)|p

) 1
p
.

We recall two corollaries from [30, 31].

Corollary 5.1. Let p ̸= 2, Ps ∈ BV and 0 ≤ s ≤ 2j then,

∥P − LjP∥p < ξ2
−j(s+ 1

p
)
V (Ps). (32)

Corollary 5.2. Let p ̸= 2, 0 ≤ l ≤ s and P(s) ∈ BV , then for the interpolatory polynomial
based on the zeros of the Jacobi polynomial we have,

∥(P − LjP)(l)∥p < ξ2
−j(s+ 1

p
−max{l,2l− 1

p
})
V (Ps). (33)

In the above corollaries ξ is a constant that depends on s. Now, the Crank-Nikolson
scheme (17) can be represented in an operator equation in the following form

Hun+1 = (I +
∆t

2
D)un+1 = F, (34)

where I is an identity operator and

D = − 2

∆t

d2

dx2
+ βunx +

d

dx
+ βun

d

dx
− λunxx

d

dx
− λunx

d2

dx2
− unxxx − un

d3

dx3
,

F = un − unxx −
∆t

2

(
αunx

)
.

The operator Equation (34) can be approximated by the following solution

Lj(H)un+1
j = Lj(I +

∆t

2
D)un+1

j = Fj . (35)

System (35) can be solved numerically to give an approximate solution for equation (1)
at each level of time given by the expression un+1

j = UT
n+1Φ(x).
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Theorem 5.1. If (un+1)(s) ∈ BV , s ̸= 0 and by considering

η = max

{
|β|, |λ|, ∥un∥p, ∥unx∥p, ∥unxx∥p, ∥unxxx∥p

}
,

then

∥Dun+1 − LjDun+1∥p ≤ C1η2
−j(s+ 2

p
−6)

V
(
(un+1)(s)

)
. (36)

where C1 is a constant.

Proof. We have

∥Dun+1 − LjDun+1∥p ≤ ∥− 2

∆t
un+1
xx + βunxu

n+1 + un+1
x + βunun+1

x

− λunxxu
n+1
x − λunxu

n+1
xx − unxxxu

n+1 − unun+1
xxx

+
2

∆t
Lju

n+1
xx − βLju

n
xu

n+1 − Lju
n+1
x − βLju

nun+1
x

+ λLju
n
xxu

n+1
x + λLju

n
xu

n+1
xx + Lju

n
xxxu

n+1 + Lju
nun+1

xxx ∥p

≤ 2

∆t
∥un+1

xx − Lju
n+1
xx ∥p + |β| ∥unx∥p∥un+1 − Lju

n+1∥p

+ |β|∥un∥p∥un+1
x − Lju

n+1
x ∥p + ∥un+1

x − Lju
n+1
x ∥p

+ |λ|∥unxx∥p∥un+1
x − Lju

n+1
x ∥p + |λ|∥unx∥p∥un+1

xx − Lju
n+1
xx ∥p

+ ∥unxxx∥p∥un+1 − Lju
n+1∥p + ∥un∥p∥un+1

xxx − Lju
n+1
xxx ∥p.

Using (33)

∥Dun+1 − LjDun+1∥p ≤
2

∆t
ξ2

−j(s+ 2
p
−4)

V
(
(un+1)(s)

)
+ |β|ηξ2−j(s+ 1

p
)
V
(
(un+1)(s)

)
+ |β|ηξ2−j(s+ 2

p
−2)

V
(
(un+1)(s)

)
+ ξ2

−j(s+ 2
p
−2)

V
(
(un+1)(s)

)
+ |λ|ηξ2−j(s+ 2

p
−2)

V
(
(un+1)(s)

)
+ |k|ηξ2−j(s+ 2

p
−4)

V
(
(un+1)(s)

)
+ η2

−j(s+ 1
p
)
V
(
(un+1)(s)

)
+ η2

−j(s+ 2
p
−6)

V
(
(un+1)(s)

)
≤ C1η2

−j(s+ 2
p
−6)

V
(
(un+1)(s)

)
.

□

Theorem 5.2. If un+1 and un+1
j be the exact and approximate solutions of (1) at each

level of time n+ 1, respectively, also assume that the operator H = I + ∆t
2 D has bounded

inverse and

(
un+1

)(s)

, F (s) ∈ BV , s ̸= 0, then

∥En+1
j ∥p = ∥un+1 − un+1

j ∥p ≤ Cµ∥(LjH)−1∥p2−j(s+ 2
p
−6)

,

where

µ = max
{
V
(
(un+1)(s)

)
, V
(
F (s)

)}
.

So for s ≥ 6 we ensure the convergence when j → ∞.
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Proof. Subtracting equation (35) from (34) gives

−LjH(un+1 − un+1
j ) = (H − LjH)(un+1)− (F − Fj).

Provided that H−1 exists and bounded, we obtain the error bound as follows

∥En+1
j ∥p = ∥(LjH)−1∥p∥(H − LjH)(un+1)− (F − Fj)∥p, (37)

where

(LjH)−1 =

(
I+

∆t

2

(
−∆t

2
D2+αD+β

(
M1+ND

)
−λ
(
M2D+M1D

2
)
−
(
M3+ND

3
)))−1

.

Furthermore, by considering (37) and using Theorem 5.1 and Corollary (5.2) we have

∥(H − LjH)(un+1)∥p = ∥(I − LjI)(u
n+1) +

∆t

2
(D − LjD)(un+1)∥p

≤ ∥(I − LjI)(u
n+1)∥p +

∆t

2
∥(D − LjD)(un+1)∥p

≤ C12
−j(s+ 1

p
)
V
(
(un+1)(s)

)
+

∆t

2
C2η2

−j(s+ 2
p
−6)

V
(
(un+1)(s)

)
,

(38)

and

∥(F − Fj)∥p ≤ C32
−j(s+ 1

p
)
V
(
(F )(s)

)
. (39)

By substituting equations (38) and (39) in (37), we have

∥En+1
j ∥p ≤ ∥(LjH)−1∥p

(
C12

−j(s+ 1
p
)
V
(
(un+1)(s)

)
+

∆t

2
C1η2

−j(s+ 2
p
−6)

V
(
(un+1)(s)

)
+ C12

−j(s+ 1
p
)
V
(
(F )(s)

))
.

(40)

By choosing C = max{C1,
∆t
2 C2η, C3}, finally we can obtain

∥En+1
j ∥p ≤ Cµ2

−j(s+ 2
p
−6)∥(LjH)−1∥p. (41)

□

6. Numerical results

In this section, we study the inverse problem (1)-(4) with the unknown boundary con-
ditions. The main aim here is to show the applicability of the present method for solving
inverse problems. As we know, the inverse problems are ill-posed and therefore it is nec-
essary to investigate the stability of the present method by giving a test problem.

Remark 6.1. In an inverse problem, two sources of error in the estimation exist. The
first source is the unavoidable bias deviation or deterministic error, and the second one
is the variance due to the amplification of measurement errors or stochastic error. The
global effect of deterministic and stochastic errors is considered in the root mean square
or total error [32]. Therefore, we compute total error RMS by using following formula

RMS =

√√√√ 1

N − 1

N∑
i=1

(
p(ti)exact − p(ti)numerical

)2
,
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where N is the total number of estimated values.

The comparison between the exact solutions of p1(t), q1(t) and numerical solutions of
the PSF method and quintic B-spline (QBS) method by noisy are presented. Also, we
consider T = 1, 2j = 16, ∆t = 1

1000 , x
∗ = 0.375, and x∗∗ = 0.75 with noisy data (input

data+0.001×rand(1)).

Example 6.1. We consider the Equation (1) with α = −2, β = 4 and λ = 3. The exact
solution is given by

u(x, t) =
4

3 + 3 tanh
(
t− 1

2x
) ,

with initial condition

u(x, 0) =
4

3 + 3 tanh
(
− 1

2x
) , 0 ≤ x ≤ 1,

and boundary conditions as follows:

ux(0, t) = −
4
(
−3
2 + 3

2 tanh
2
(
t
))

(
3 + 3 tanh(t)

)2 , ux(1, t) = −
4
(
−3
2 + 3

2 tanh
2
(
t− 1

2

))
(
3 + 3 tanh(t− 1

2)
)2 , 0 ≤ t ≤ T.

time Exact PSF method QBS method

————————– ————————– ————————–

t p1(t) q1(t) p∗1(t) q∗1(t) p∗1(t) q∗1(t)

0.1 1.212487 2.150360 1.213579 2.153330 1.210208 2.150439

0.2 1.113546 1.881412 1.114441 1.883844 1.104048 1.881272

0.3 1.032541 1.661216 1.033272 1.663207 1.012710 1.661062

0.4 0.966219 1.480935 0.966818 1.482562 0.940206 1.480125

0.5 0.911919 1.333333 0.912410 1.334667 0.890089 1.330239

0.6 0.867462 1.212487 0.867863 1.213579 0.857181 1.204925

0.7 0.831064 1.113546 0.831395 1.114440 0.839722 1.103717

0.8 0.801264 1.032451 0.801531 1.033273 0.835555 1.019539

0.9 0.776865 0.966219 0.777086 0.966817 0.835600 0.956719

1 0.756890 0.911919 0.757082 0.912412 0.841953 0.908802

RMS 6.588× 10−4 1.790× 10−3 3.104× 10−2 6.563× 10−3

Table 1. The comparison between exact and numerical solutions of Ex-
ample 6.1 at x = 0 and x = 1 with noisy data.

Example 6.2. As the second test problem, consider the equation (1) with α = 0, β = 3
and λ = 2. The exact solution is given by

u(x, t) = 2 exp (−2t+ x),

with initial condition

u(x, 0) = 2 exp (x) 0 ≤ x ≤ 1,

and boundary conditions as follows:

ux(0, t) = 2 exp (−2t), ux(1, t) = 2 exp (−2t+ 1), 0 ≤ t ≤ T.

Also, the applied noise is randomly applied from the order of one thousandth
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Figure 1. The plots of approximate and exact solutions of p1(t) and error
of approximation |p1(t)− p∗1(t)| for Example 6.1 with the noisy data.

Figure 2. The plots of approximate and exact solutions of q1(t) and error
of approximation |q1(t)− q∗1(t)| for Example 6.1 with the noisy data.

7. Conclusion

In order to estimate unknown boundary conditions, a numerical method is proposed
and the following results are obtained:

• The present study successfully applies the numerical method to inverse problems.
• Simplicity of implementation and less computational cost are main advantages of
the proposed scheme compared to previous proposals.

• Unlike some previous techniques that use various transformations to simplify the
equation, the current method does not require extra effort to deal with the non-
linear terms. Therefore, the equations can be solved easily and elegantly using the
present method.
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Figure 3. The plots of approximate and exact solutions of p1(t) and error
of approximation |p1(t)− p∗1(t)| for Example 6.2 with the noisy data.

• Numerical examples also verified the efficiency and accuracy of method that can
be obtained within a couple of minutes of CPU time at Core(i5)–2.67 GHz PC.

• The present method has been found to be stable with respect to the small pertur-
bation in the input data.
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