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DISTINGUISHING NUMBER IN SOME ASPECTS OF DENDRIMERS

A. SALAT1∗, A. SHARMA1, §

Abstract. The main purpose of the present study is to determine the distinguishing
number of some dendrimers. The most known dendrimers such as Polyamidoamine (PA-
MAM), polylysine (PLL), Poly propyl ether imine (PETIM) and zinc porphyrin (DPZn)
have a great impact in drug delivery systems, biomedical, etc. Based on structure of
these dendrimers, some new graphs have been defined which resemble with the structure
of dendrimers.The n-generation of hexa-cyclic dendrimer HCn,d and hexa-star dendrimer
HSn,d have been introduced. Further, the distinguishing number of n−generations of
graphs; Cd

6 , hexa-cyclic dendrimer HCn,d and hexa-star dendrimer HSn,d have been
determined successfully.
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1. Introduction

The dendrimers have a great impact in various feild like chemistry, nanomedicine re-
search, etc. Molecules and molecular compounds are often represented by molecular
graphs.

In terms of graph theory, the chemical compounds can be represented as a molecular
graph, where the vertices and edges represent the atoms and chemical bonds of compound,
respectively. It is evident from the literature that dendrimers are primarily associated with
chemistry and materials science. In graph theory, dendrimers can be used to model and
analyze complex networks or graphs with intricate connectivity patterns.

Dendrimers are symmetric molecules with well-defined shapes and highly ordered branched
structures. The main three architectural parts of a dendrimer are (i) central core, (ii)
branches, and (iii) terminal groups which have been illustrated in Figure 1.

In view of the molecular structure of zinc porphyrin (DPZn), the n-generations of hexa-
cyclic dendrimer HCn,d has been introduced initially. The term “hexa-cyclic” refers to
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Figure 1. Structure of dendrimer with architectural parts.

the fact that the dendrimer consists of multiple cycles of length 6. The term “dendrimer”
is appropriate since dendrimers are typically branched, tree-like molecules with a highly
symmetric structure, which is similar to the hexa-cyclic dendrimer HCn,d.

Further, a hexa-star dendrimer HSn,d, d ≥ 2 has been defined taking into account the
structure of nanostar dendrimer. The hexa-star dendrimerHSn,d obtained from star graph

Sd, where d ≥ 2 which consists d(d−1)n−1 branches of a graph Cd−1
6 in the n

th
-generation.

Definition 1.1. A graph Cd
6 , d ≥ 2 is obtained from d-copies of cycle C6 by joining their

single vertex with an isolated vertex. For example, C4
6 is shown in Figure 2.

Figure 2. A graph C4
6 .

Definition 1.2. 1−generation of hexa-cyclic dendrimer HC1,d, d > 1 is obtained from

cycle C6 by replacing each vertex of C6 with Cd
6 . For example, HC1,2 is shown in Figure

3.
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Figure 3. A first generation of hexa-cyclic dendrimer HC1,2.

Definition 1.3. 2-generations of hexa-cyclic dendrimer HC2,d is obtained from 1-generation
of hexa-cyclic dendrimer HC1,d by replacing the top vertex of each cycle C6 in 1-generation

with Cd
6 . Similarly, the n-generations of hexa-cyclic dendrimer HCn,d is obtained from the

(n−1)-generations of hexa-cyclic dendrimer HCn−1,d by replacing the fourth vertex of each

cycle C6 of (n− 1)-generations with Cd
6 . For example, HC2,2 is shown in Figure 4.

Figure 4. A second generation of hexa-cyclic dendrimer HC2,2.

Definition 1.4. 1-generation of a hexa-star dendrimer HS1,d, d ≥ 2 is obtained from star

graph Sd replacing each pendant vertex of Sd with Cd−1
6 . For example, HS1,3 is shown in

Figure 5.
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Figure 5. A first generation of a hexa-star dendrimer HS1,3.

Definition 1.5. 2-generations of a hexa-star dendrimer HS2,d, d ≥ 2 is a graph obtained
from 1-generation of a hexa-star dendrimer HS1,d in which every vertex whose distance

from the centre vertex of a star graph Sd is 5 joined by Cd−1
6 with an edge. Similarly,

the n-generations of a hexa-star dendrimer HSn,d, where d ≥ 2 is a graph obtained from
the (n − 1)-generations of a hexa-star dendrimer HSn−1,d in which every vertex whose

distance from the centre vertex of a star graph Sd is 5n joined by Cd−1
6 with an edge. For

example, HS2,3 is shown in Figure 6.

Figure 6. A second generation of a hexa-star dendrimer HS2,3.

1.1. Motivation. Some research work related to chromatic polynomial, Zagreb indices,
domination number, Nirmala index, power domination number, multiplicative sum con-
nectivity, multiplicative randic and multiplicative harmonic index have been reported in
literature [12, 4, 6, 5, 9, 11, 8, 10]. So, it is full of zest to determine the distinguishing
number of dendrimers.

Distinguishing numbers of dendrimers are important because it affect their physical and
chemical properties, including their size, shape, solubility, and reactivity. For example,
higher-generation dendrimers are generally larger and more complex with more surface
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functional groups that can be tailored for specific applications.
The study of the distinguishing number of dendrimers is the keen interest where re-

searchers can explore their structural properties. The uniqueness in the structures of
dendrimers provides the better insight to unravel their complexity and it helps to under-
stand their behavior in various applications.

1.2. Review of literature. The distinguishing number of graph G is the minimum num-
ber of labels to the vertices of G those are only preserved by the trivial automorphism of
G [1].

The illustration for distinguishing number of some graph G is demonstrated in follow-
ing Figure 7. The Figure 7(a) shows the vertex labeling for the graph G while the Figure
7(b) shows the distinguishing labeling for the graph G. Since the following labels are not
preserved by any non-trivial automorphism of the graph G, so the distinguishing number
for the graph G is 2.

v4v1

v2

v3

v5

v6

(a) The graph G.

21

1

2

1

2

(b) The distinguishing labeling for G.

Figure 7. The graph G and it’s corresponding distinguishing labeling.

Some important results on the distinguishing numbers of graphs have been carried out
as follows [7]:

(1) If G is a graph with trivial automorphism, then the distinguishing number of G is
1.

(2) For a path Pn, the distinguishing number of Pn is 2.
(3) For a cycle Cn, the distinguishing number of Cn is 3 if n = 3, 4, 5, and is 2 if n ≥ 6.
(4) For a line graph L(Kn) of complete graph Kn, the distinguishing number of L(Kn)

is 2 if n ≥ 6.
(5) For a complete bipartite graph Kn,n, the distinguishing number of L(Kn) is n+ 1

if n ≥ 4.

Alikhani and Soltani [2] determined the distinguishing numbers of friendship graph Fn

and book graph Bn as follows:

(1) For a friendship graph Fn, the distinguishing number of Fn is ⌈1 +
√
8n+ 1

2
⌉ if

n ≥ 2.
(2) For a book graph Bn, the distinguishing number of Bn is ⌈

√
n⌉ if n ≥ 2.

Alikhani and Soltani [3] proposed important results on the distinguishing numbers of
some significant families of graphs that are helpful in chemistry as follows:

(1) For a graphQ(p, q), the distinguishing numberD (Q(p, q)) = min
{
k : k

(
k

q−1

)
≥ p

}
.

(2) For a dutch windmill graph Dm
n , D (Dm

n ) = min

{
k :

mk−1 −m⌈ k−1
2

⌉⌉
2

≥ n

}
when

n ≥ 2,m ≥ 3.
(3) IfG is the link of the graphsG1, G2, . . . , Gn, thenD (G) ≤ max {D (Gi) : 1 ≤ i ≤ n}.
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(4) If G is the bouquet of the graphs G1, G2, . . . , Gn, then D (G) ≤
n∑

k=1

D (Gk).

(5) For a spiro-chain Sp,q,r,D (Sp,q,r) = 2 except p = 3, q = 2, r = 1, andD (S3,2,1) = 3.
(6) For a polyphenylenes Lp,q,r, D (Lp,q,r) = 2.
(7) For a nanostar dendrimer NDn, D (NDn) = 2.

2. Main Results

Theorem 2.1. The distinguishing number of a graph Cd
6 is, D

(
Cd
6

)
=


2 if 2 ≤ d ≤ 24

3 if 24 < d ≤ 324

k if dk−1 < d ≤ dk,

,

where k ≥ 4 and

dk = k2
[(

k(k − 1)

2
× 6

)
+

(
k(k − 1)(k − 2)

2
× 6

)
+(
k(k − 1)(k − 2)(k − 3)

4!
× 12

)]
.

Proof. As D (C6) = 2, so D
(
Cd
6

)
≥ 2. For 1 ≤ i ≤ d, let ui1, u

i
2, u

i
3, u

i
4, u

i
5, u

i
6 be the

consecutive vertices of C6 in i
th

cycle of Cd
6 . The vertices of Cd

6 can be mapped by the
automorphism ϕ of Cd

6 as follows:

(1) ϕ
(
ui1

)
= uj1, ϕ

(
ui4

)
= uj4, ϕ

(
ui2

)
= uj2 or uj6 and ϕ

(
ui3

)
= uj3 or uj5, for all

1 ≤ i, j ≤ d.
(2) ϕ

(
ui1

)
= ui1, ϕ

(
ui4

)
= ui4, ϕ

(
ui2

)
= ui6, ϕ

(
ui6

)
= ui2, ϕ

(
ui3

)
= ui5 and ϕ

(
ui5

)
= ui3,

for all 1 ≤ i ≤ d.

Let u1, u2, u3, u4, u5, u6 be the consecutive vertices of cycle C6 as shown in Figure 8,
where u1 and u6 are the top and bottom vertices of C6, respectively.

u1

u2 u6

u3 u5

u4

Figure 8. A cycle C6 with vertex labeling.

Case 1: If D
(
Cd
6

)
= 2, then our motive to know how many copies of cycle C6 in Cd

6 can

be found so that the distinguishing number for Cd
6 is 2. Fix the top and bottom vertices

of C6 and assign u2, u3, u5, u6 with labels. We have the following different assignments for
u2, u3, u5, u6 which are not fixed by any non-trivial automorphism of Cd

6 .



A. SALAT, A. SHARMA: DISTINGUISHING NUMBER IN SOME ASPECTS ... 1015

1 1

1 2

1 2

1 1

2 2

2 1

2 1

2 2

1 2

2 1

1 2

1 2

Figure 9. Assignments for the vertices u2, u3, u5, u6 having two different
labels

Further, top and bottom vertices can be assigned by 1 and 2. So, there are 22.6 = 24
copies of cycle C6 in Cd

6 which are not fixed by any non-trivial automorphism of Cd
6 if

they are assigned with two labels. If d > 24, then we have to assign at-least one vertex of

25
th
-copy of C6 with label 3. Hence, D

(
Cd
6

)
= 2 when 1 ≤ d ≤ 24.

Case 2: If D
(
Cd
6

)
= 3, then our motive to know how many copies of cycle C6 in Cd

6

can be found so that the distinguishing number for Cd
6 is 3. Fix the top and bottom ver-

tices of C6 and assign the vertices u2, u3, u5, u6 with labels. The cycles C6 can be assigned
as follows:

(1) Assign the vertices u2, u3, u5, u6 with two different labels. There are
3× 2

2
=

3 pairs of u2, u3, u5, u6 having two different labels. For each pair, there are 6
assignments of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism
of Cd

6 as discussed in case 1. Also, top and bottom vertices can be assigned by
three labels. So, there are 32× 6 = 24 copies of cycle C6 in Cd

6 which are not fixed
by any non-trivial automorphism of Cd

6 . Hence, there are 32 × 3 × 6 copies of C6

in which u2, u3, u5, u6 are assigned by two different labels.

(2) Assign the vertices u2, u3, u5, u6 with three different labels. There are
3× 2× 1

2
=

3 pairs of u2, u3, u5, u6 having three different labels. We have the following as-
signments for u2, u3, u5, u6 having three different labels which are not fixed by any
non-trivial automorphism of Cd

6 .

1 2

1 3

1 3

1 2

1 3

2 1

1 1

2 3

2 3

1 1

1 2

3 1

Figure 10. Assignments for the vertices u2, u3, u5, u6 having three differ-
ent labels.

For each pair, there are 6 assignments of u2, u3, u5, u6 which are not fixed by any non-
trivial automorphism of Cd

6 shown in Figure 9. As top and bottom vertices can be assigned
by three labels, so there are 32 × 3× 6 copies of C6 in which u2, u3, u5, u6 are assigned by
three different labels. Therefore, the total 32 × 3 × 6 + 32 × 3 × 6 = 324 copies of C6 in
Cd
6 which are not fixed by any non-trivial automorphism of Cd

6 if they are assigned with
three labels. Hence, D

(
Cd
6

)
= 3 when 24 < d ≤ 324.

Case 3: If D
(
Cd
6

)
= 4, then our motive to know how many copies of cycle C6 in Cd

6
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can be found so that the distinguishing number for Cd
6 is 4. Fix the top and bottom ver-

tices of C6 and assign the vertices u2, u3, u5, u6 with labels. The cycles C6 can be assigned
as follows:

(1) Assign the vertices u2, u3, u5, u6 with two different labels. There are
4× 3

2
pairs

of u2, u3, u5, u6 having two different labels. For each pair, there are 6 assignments
of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism of Cd

6 as
discussed in case 1. Also, top and bottom vertices can be assigned by four labels.
So, there are 42× 6 copies of cycle C6 in Cd

6 which are not fixed by any non-trivial

automorphism of Cd
6 . Hence, there are 42 ×

(
4× 3

2

)
× 6 copies of C6 in which

u2, u3, u5, u6 are assigned by two different labels.

(2) Assign the vertices u2, u3, u5, u6 with three different labels. There are
4× 3× 2

2
pairs of u2, u3, u5, u6 having three different labels. For each pair, there are 6
assignments of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism
of Cd

6 as discussed in case 2. Also, top and bottom vertices can be assigned by four

labels. So, there are 42 ×
(
4× 3× 2

2

)
× 6 copies of cycle C6 in Cd

6 which are not

fixed by any non-trivial automorphism of Cd
6 . Hence, there are 4

2×
(
4× 3× 2

2

)
×6

copies of C6 in which u2, u3, u5, u6 are assigned by three different labels.
(3) Assign the vertices u2, u3, u5, u6 with four different labels. We have the following

assignments for u2, u3, u5, u6 having four different labels which are not fixed by
any non-trivial automorphism of Cd

6 .

1 3

2 4

1 4

2 3

2 3

1 4

2 4

1 3

1 2

3 4

1 4

3 2

3 2

1 4

3 4

1 2

1 2

4 3

1 3

4 2

4 2

1 3

4 3

1 2

Figure 11. Assignments for the vertices u2, u3, u5, u6 having four different
labels.

Also, top and bottom vertices can be assigned by four labels. So, there are 42 ×
12 copies of cycle C6 in Cd

6 which are not fixed by any non-trivial automorphism of
Cd
6 in which u2, u3, u5, u6 are assigned by four different labels. Therefore, the total[
42 ×

(
4× 3

2

)
× 6

]
+

[
42 ×

(
4× 3× 2

2

)
× 6

]
+
(
42 × 12

)
copies of C6 in Cd

6 which are not

fixed by any non-trivial automorphism of Cd
6 if they are assigned with four labels. Hence,

D
(
Cd
6

)
= 4 when 324 < d ≤

[
42 ×

(
4× 3

2

)
× 6

]
+

[
42 ×

(
4× 3× 2

2

)
× 6

]
+
(
42 × 12

)
.
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Case 4: If D
(
Cd
6

)
= 5, then our motive to know how many copies of cycle C6 in Cd

6

can be found so that the distinguishing number for Cd
6 is 4. Fix the top and bottom ver-

tices of C6 and assign the vertices u2, u3, u5, u6 with labels. The cycles C6 can be assigned
as follows:

(1) Assign the vertices u2, u3, u5, u6 with two different labels. There are
5× 4

2
pairs

of u2, u3, u5, u6 having two different labels. For each pair, there are 6 assignments
of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism of Cd

6 as
discussed in case 1. Also, top and bottom vertices can be assigned by four labels.
So, there are 52× 6 copies of cycle C6 in Cd

6 which are not fixed by any non-trivial

automorphism of Cd
6 . Hence, there are 52 ×

(
5× 4

2

)
× 6 copies of C6 in which

u2, u3, u5, u6 are assigned by two different labels.

(2) Assign the vertices u2, u3, u5, u6 with three different labels. There are
5× 4× 3

2
pairs of u2, u3, u5, u6 having three different labels. For each pair, there are 6
assignments of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism
of Cd

6 as discussed in case 2. Also, top and bottom vertices can be assigned by four

labels. So, there are 42 ×
(
5× 4× 3

2

)
× 6 copies of cycle C6 in Cd

6 which are not

fixed by any non-trivial automorphism of Cd
6 . Hence, there are 5

2×
(
5× 4× 3

2

)
×6

copies of C6 in which u2, u3, u5, u6 are assigned by three different labels.
(3) Assign the vertices u2, u3, u5, u6 with four different labels. There are

5× 4× 3× 2

4!
pairs of u2, u3, u5, u6 having four different labels. We have the fol-

lowing assignments for u2, u3, u5, u6 having four different labels which are not fixed
by any non-trivial automorphism of Cd

6 . For each pair, there are 12 assignments
of u2, u3, u5, u6 which are not fixed by any non-trivial automorphism of Cd

6 as
discussed in case 3.

Also, top and bottom vertices of Cd
6 can be assigned by four labels. So, there are 52 ×(

5× 4× 3× 2

4!

)
×12 copies of cycle C6 in Cd

6 which are not fixed by any non-trivial auto-

morphism of Cd
6 in which u2, u3, u5, u6 are assigned by four different labels. Therefore, the

total

[
52 ×

(
5× 4

2

)
× 6

]
+

[
52 ×

(
5× 4× 3

2

)
× 6

]
+

[
52 ×

(
5× 4× 3× 2

4!

)
× 12

]
copies

of C6 in Cd
6 which are not fixed by any non-trivial automorphism of Cd

6 if they are assigned

with four labels. Hence, D
(
Cd
6

)
= 5 when 42

[(
4× 3

2
× 6

)
+

(
4× 3× 2

2
× 6

)
+ 12

]
<

d ≤ 52
[(

5× 4

2
× 6

)
+

(
5× 4× 3

2
× 6

)
+

(
5× 4× 3× 2

4!
× 12

)]
. Based on above men-

tioned steps, it can be observed that D
(
Cd
6

)
= k when dk−1 < d ≤ dk, where dk =

k2
[(

k(k − 1)

2
× 6

)
+

(
k(k − 1)(k − 2)

2
× 6

)
+

(
k(k − 1)(k − 2)(k − 3)

4!
× 12

)]
.

□

Theorem 2.2. The distinguishing number of n-generations of Cd
6 is same as the distin-

guishing number of a graph Cd
6 . That means, D

(
Cd
6

)n
= D

(
Cd
6

)
.
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Proof. Let
(
Cd
6

)n
be the n-generations of Cd

6 obtained from the (n−1)
th
-generation of Cd

6

by replacing the fourth vertex of each cycle C6 of (n − 1)-generations with Cd
6 . First we

determine D
(
Cd
6

)2
= D

(
Cd
6

)
.

The vertices of d−cycles C6 in each branch of Cd
6 in the 2

nd
-generation can be mapped to

each other, so we have to assign each branch of Cd
6 in a distinguishing way. As D

(
Cd
6

)
= k,

so d-copies of cycle C6 can be assigned in distinguishing way with labels 1, 2, . . . , k when

dk−1 < d ≤ dk, where dk = k2
[(

k(k − 1)

2
× 6

)
+

(
k(k − 1)(k − 2)

2
× 6

)
+(

k(k − 1)(k − 2)(k − 3)

4!
× 12

)]
. Therefore, D

(
Cd
6

)2 ≥ k. First, we assign the vertices of

Cd
6 in the 1

st
-generation as mentioned in Theorem 2.1. Since fourth vertex of each cycle

the 1
st
-generation is joined by Cd

6 in 2
nd
-generation of

(
Cd
6

)n
.

For 1 ≤ i ≤ d, let ui1, u
i
2, u

i
3, u

i
4, u

i
5, u

i
6 be the consecutive vertices of C6 in i

th
-cycle of Cd

6

in first generation. For 1 ≤ l ≤ d, let u
(i,l)
1 , u

(i,l)
2 , u

(i,l)
3 , u

(i,l)
4 , u

(i,l)
5 , u

(i,l)
6 be the consecutive

vertices of l
st
-copy of cycle C6 in the i

th
-branch of Cd

6 in the second generation of Cd
6

corresponding to i
th
-cycle of Cd

6 of the first generation. The vertices of Cd
6 can be mapped

by the automorphism ϕ of Cd
6 as follows:

(1) ϕ
(
u
(i,l)
1

)
= u

(i,l)
1 , ϕ

(
u
(i,l)
4

)
= u

(i,l)
4 , ϕ

(
u
(i,l)
2

)
= u

(i,l)
6 , ϕ

(
u
(i,l)
6

)
= u

(i,l)
2 , ϕ

(
u
(i,l)
3

)
=

u
(i,l)
5 and ϕ

(
u
(i,l)
5

)
= u

(i,l)
3 , for all 1 ≤ i, l ≤ d.

(2) ϕ
(
u
(i,l)
1

)
= u

(j,k)
1 , ϕ

(
u
(i,l)
4

)
= u

(j,k)
4 , ϕ

(
u
(i,l)
2

)
= u

(j,k)
2 or u

(j,k)
6 , ϕ

(
u
(i,l)
3

)
= u

(j,k)
3

or u
(j,k)
5 , ϕ

(
ui1

)
= uj1, ϕ

(
ui4

)
= uj4, ϕ

(
ui2

)
= uj2 or uj6, and ϕ

(
ui3

)
= uj3 or uj5, for

all 1 ≤ i, j, k, l ≤ d.

If we assign the vertices of each branch of Cd
6 in the 2

nd
-generation as mentioned in

Theorem 2.1, this assignment is not fixed by automorphism of above forms because the

vertices of 1
st
-generation of

(
Cd
6

)2
are already assigned in a distinguishing way. Therefore,

as many labels are needed for distinguishing labeling of Cd
6 as many labels are needed for

distinguishing labeling of
(
Cd
6

)2
. Hence, D

[(
Cd
6

)2]
= D

(
Cd
6

)
.

Similarly, If we assign the vertices of each branch of Cd
6 in

(
Cd
6

)n
as mentioned in

Theorem 2.1, this assignment is not fixed by automorphism of
(
Cd
6

)n
because the vertices

of (n − 1)
th
-generation of

(
Cd
6

)2
are already assigned in a distinguishing way. Hence,

D
[(
Cd
6

)n]
= D

(
Cd
6

)
.

□

Theorem 2.3. The distinguishing number of a hexa-cyclic dendrimer HCn,d is same as

the distinguishing number of a graph Cd
6 . That means, D (HCn,d) = D

(
Cd
6

)
.

Proof. Let HCn,d be the n-generations of hexa cyclic dendrimer. Let v1, v2, v3, v4, v5, v6
be the consecutive vertices of central cycle C6 of HCn,d. Since D (C6) = 2, so assign the
vertices of central cycle C6 of HCn,d as shown in Figure 5.

For 1 ≤ l ≤ d, 1 ≤ i ≤ n, let u
(mi,l)
1 , u

(mi,l)
2 , u

(mi,l)
3 , u

(mi,l)
4 , u

(mi,l)
5 , u

(mi,l)
6 be the consecu-

tive vertices m
th
i -branch of Cd

6 in the last generation of HCn,d corresponding to v1. The

vertices of the n
th
-generation of HCn,d can be mapped by the automorphism ϕ of HCn,d

as follows:
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1 2

2 2

1 2

Figure 12. Distingushing labeling for cycle C6.

(1) ϕ
(
u
(mi,k)
1

)
= u

(mi,l)
1 , ϕ

(
u
(mi,k)
4

)
= u

(mi,l)
4 , ϕ

(
u
(mi,k)
2

)
= u

(mi,l)
2 or u

(mi,l)
6 , and

ϕ
(
u
(mi,k)
3

)
= u

(mi,l)
3 or u

(mi,l)
5 , for all 1 ≤ i ≤ n & 1 ≤ k, l ≤ d.

Further, the n
th
-generation of HCn,d has n-branches of C

d
6 , so the vertices of n-branches

of Cd
6 can be also mapped by the automorphism ϕ of HCn,d as follows:

(2) ϕ
(
u
(mi,k)
1

)
= u

(mj ,l)
1 , ϕ

(
u
(mi,k)
4

)
= u

(mj ,l)
4 , ϕ

(
u
(mi,k)
2

)
= u

(mj ,l)
2 or u

(mj ,l)
6 , and

ϕ
(
u
(mi,k)
3

)
= u

(mj ,l)
3 or u

(mj ,l)
5 , for all 1 ≤ i, j ≤ n & 1 ≤ k, l ≤ d.

The automorphisms of each branch of the n
th
-generation of Cd

6 are the automorphisms
Cd
6 , so assign the vertices of each branch of Cd

6 as the vertices of Cd
6 given in Theorem 2.1.

Further, assign the vertices of each branch of Cd
6 in each generation ofHCn,d as the vertices

of Cd
6 given in Theorem 2.1, this assignment is not fixed by automorphism of above forms

because the vertices of 1
st
-generation of HCn,d are not fixed by automorphism of above

forms. As the vertices of central cycle C6 are assigned in distinguishing way as shown in
Figure 5, so this assignment of labeling is also not fixed by any rotation or reflection of
HCn,d. Therefore, as many labels are needed for distinguishing labeling of Cd

6 as many

labels are needed for distinguishing labeling of HCn,d. Hence, D (HCn,d) = D
(
Cd
6

)
. □

Theorem 2.4. The distinguishing number of a hexa-star graph HS1,d is same as the

distinguishing number of a graph Cd
6 . That means, D (HS1,d) = D

(
Cd
6

)
.

Proof. Let HS1,d, d ≥ 2 be the 1−generation of a hexa-star dendrimer tree obtained from

star graph Sd by replacing each pendant vertex with Cd−1
6 . Since D

(
Cd
6

)
= k when

dk−1 < d ≤ dk, where dk = k2
[(

k(k − 1)

2
× 6

)
+

(
k(k − 1)(k − 2)

2
× 6

)
+(

k(k − 1)(k − 2)(k − 3)

4!
× 12

)]
, so first we want to know how many copies of Cd−1

6 in

HS1,d can be found so that the distinguishing number for C1,d is k. It means that we want

to find d such that D (HS1,d) = k. It can be seen that the vertices of one copy of Cd−1
6

can be mapped to the vertices of another copy of Cd−1
6 by a non-trivial automorphism of

HS1,d. As we want to assign each copy of Cd−1
6 in a distinguishing way with the labels

1, 2, . . . , k, we need to assign at least one copy of cycle C6 in each branch of Cd−1
6 which

differ from labels of each cycle C6 in the other branches of Cd−1
6 . According to Theorem

1, there are d-copies of cycle C6 in Cd−1
6 which are already assigned in distinguishing way

with the labels 1, 2, . . . , k, where dk−1 < d ≤ dk. There are d-branches of Cd−1
6 in HS1,d

and we need to assign d− 1 copies cycles C6 in each branch of Cd−1
6 such that at least one

copy of cycle C6 in each branch of Cd−1
6 which differ from labels of each cycle C6 in the
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other branches of Cd−1
6 . There are

(
d

d−1

)
= d such possible pairs of Cd−1

6 . The vertices
which are not part of any cycle can be assigned by any one of 1, 2, . . . k. It means that
there are d-copies of Cd−1

6 in C1,d such that D (HS1,d) = k when dk−1 < d ≤ dk, where

dk = k2
[(

k(k − 1)

2
× 6

)
+

(
k(k − 1)(k − 2)

2
× 6

)
+

(
k(k − 1)(k − 2)(k − 3)

4!
× 12

)]
.

Hence, D (HS1,d) = D
(
Cd
6

)
. □

3. Conclusion

In this paper, the distinguishing numbers of some dendrimer have been determined.
Some graphs have been defined considering most well-known dendrimers useful in chem-
istry that resemble dendrimers. The distingushing number of graph Cd

6 has been carried
out successefully. It has been shown that the distingushing number of n-generations of
Cd
6 is same as the distingushing number of Cd

6 . Further, the distingushing number of
n-generation of hexa-cyclic dendrimer and 1-generation of hexa-star dendrimer have been
determined which are same as the distingushing number of Cd

6 . As the number of gener-
ations in the dendrimers mentioned above increases, they generally become larger, more
complex, and more branched, but their distinguishing number does not increase or de-
crease shown in Theorem 2.2, 2.3 and 2.4. The distinguishing number of these dendrimers
can be applied to analyze the structure and properties of dendrimers.
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