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THE EXTENDED LEGENDRE WAVELETS OPERATIONAL MATRIX

OF INTEGRATION AND ITS APPLICATIONS

V. K. SHARMA1∗, S. SINGH1, H. M. SRIVASTAVA2,3,4,5,6,7, §

Abstract. In this paper, the general operational matrix of integration P based on
the extended Legendre wavelets has been developed which generalizes the idea of the
operational matrix of integration for µ = 2 given in [30]. A brief procedure for forming
this matrix has been discussed. Also, we have solved Bessel differential equation of order
zero by using extended Legendre wavelets method for different values of µ, M and k.
The results show the better accuracy of the proposed method, which is justified through
the illustrative examples.
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In recent years, orthogonal polynomials like the Legendre, Chebyshev, Laguerre, Gegen-
bauer, Jacobi, Hermite etc. played a very vital role in solving differential and integral equa-
tions. Using these polynomials, researchers have developed different types of wavelets like
the Legendre wavelet, Chebyshev wavelet, Laguerre wavelet, Gegenbauer wavelet, Jacobi
wavelet, Hermite wavelet etc. The application of these wavelets play a very crucial role in
solving many differential and integral equations. Wavelets are an excellent alternative to
the present traditional methods. In recent years, both mathematics and physicists have
devoted considerable effort to find robust and stable numerical and analytical methods for
solving differential equations of physical interest. Wavelets also have a great role in dealing
with different types of problems arising in mathematical statistics, medical sciences, heat
conduction, electromagnetic theory etc.

System of differential equations with different type of initial and boundary conditions
play a very important role in the discussion of various types of mathematical problems
in different fields of science and technology such as physics, chemistry, control system,
statistics, robotics, medical science, biological science, economics etc. Hence, for getting
the solutions of these types of problems such as above, there is the necessity of numerical
solutions of differential equations. As we know that, in most of the cases analytical solution
of the differential equation is not possible. So, in such situation we try to develop numerical
solution of differential equations. There are various types of numerical method have been
discussed by the researchers as given in [11, 18, 31, 28, 35, 36, 37, 38]. Various authors
have developed different methods for solving differential equations. Chen and Hsiao [7]
developed the Haar wavelet method for solving the lumped and distribution parameter
system. Lepik [26, 27, 25] discussed the solution of different kinds of nonlinear partial
differential equations. Hariharan [15] used the Haar wavelet approach to solve a well known
Fisher’s equation. Non-linear Schrödinger equation solved by Behzad Ghanbari et al. [10]
using conformal derivative technique. Chauhan et al. [5] discussed nonlinear fractional
differential equations by Benoulli wavelet method, Srivastava et al. [32] developed dual
phase-lag heat transfer model by using Fibonacci wavelet method, Srivastava et al. [33]
solved fractional Bagley-Torvik equation by Gegenbauer wavelet method.

Researchers like Agarwal [1], Dieudonné [12] have used and explained the applications
of orthogonal polynomials in various fields of mathematical sciences. Gülsu et al. [14]
has introduced a new collocation method for finding the solution of mixed linear integro
- differential - differences equations. Chang et al. [4] proposed a method based on shifted
Legendre polynomials for solving variational problems. Chen et al. [6] have also inves-
tigated a Walsh series method for finding the solution of some special kinds of problems
arises in the calculus of variations. Gu & Jiang [13] has discussed the Haar wavelet op-
erational matrix of integration, which is very useful in solving different kinds of problems
in mathematical analysis. Horng et al. [17] applied a method based on shifted Chebyshev
wavelet for solving variational problems. Hwang et al. [19] proposed the Laguerre poly-
nomials method to solve integral equations. Razzaghi et al. [30] introduced the Legendre
wavelet operational matrix of integration to solve differential and integral equations.

H. Jafari et al. [21] used the Legendre wavelet technique to solve fractional differential
equations. Fractional order differential equations are used in the modeling of several
engineering problems such as viscoelastic damping [2, 9, 3]. In control theory researcher’s
like [8] applied fractional order derivatives to solve some important class of problems.
Authors [29, 16] provide the present applications of this techniques in different fields. Lal
and Yadav [23] have used extended Haar wavelet to solve Bessel’s differential equation.
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Working in this direction, in this paper, we have generalized the idea of Razzaghi et
al. [30] using the extended Legendre wavelet and obtained the extended Legendre wavelet
operational matrix of integration which works for any positive integer µ ≥ 2.

2. Definitions and Preliminaries

The Extended Legendre Wavelets and Its Properties. The extended Legendre
wavelets on the interval [0, 1) are defined by

ψ(µ)
n,m(t) =

{ √
2m+ 1µ

k
2Lm(2µkt− 2n+ 1), n−1

µk ≤ t < n
µk ;

0, otherwise,

where n = 1, 2, ..., µk and m is order of the Legendre polynomial, k = 1, 2, 3, ... and
t is normalized time. In the above definition, the polynomials Lm(t) are the Legendre
polynomials of degree m over the interval [−1, 1] which are defined as (i) L0(t) = 1 (ii)
L1(t) = t (iii) (m+ 1)Lm+1(t) = (2m+ 1)tLm(t)−mLm−1(t), m = 1, 2, 3, ....
The set of extended Legendre wavelets is an orthonormal set.

Extended Legendre Wavelet Expansion. A function f ∈ L2(R) defined over [0, 1) is
expanded in terms of extended Legendre wavelets series as

f(t) =

∞∑
n=1

∞∑
m=0

c(µ)n,mψ
(µ)
n,m(t), (1)

where c
(µ)
n,m = ⟨ f, ψ(µ)

n,m⟩ on L2[0, 1) (Razzaghi[30]).
If the above infinite series is truncated then Eq. (1) is written as

Sµk,M (t) =

µk∑
n=1

M−1∑
m=0

c(µ)n,mψ
(µ)
n,m(t) = CTψ(µ)(t), (2)

where

C =
[
c
(µ)
1,0 , c

(µ)
1,1 , ..., c

(µ)
1,M−1, c

(µ)
2,0 , ..., c

(µ)
2,M−1, ..., c

(µ)

µk,0
, ..., c

(µ)

µk,M−1

]T
(3)

and

ψ(µ)(t) =
[
ψ
(µ)
1,0 , ψ

(µ)
1,1 , ..., ψ

(µ)
1,M−1, ψ

(µ)
2,0 , ..., ψ

(µ)
2,M−1, ..., ψ

(µ)

µk,0
, ..., ψ

(µ)

µk,M−1

]T
. (4)

Theorems on Extended Legendre Wavelet.

Theorem 2.1. If f ∈ L2[0, 1) such that 0 < |f ′
(t)| < ∞ and its extended Legendre

wavelets expansion is given by

f(t) =
∞∑
n=1

∞∑
m=0

c(µ)n,mψ
(µ)
n,m(t).

Then the extended Legendre wavelets approximation of f by (µk,M)th partial sums

Sµk,M (t) =

µk∑
n=1

M−1∑
m=0

c(µ)n,mψ
(µ)
n,m(t)

under the norm ∥.∥2 satisfies

Eµk,M (f) =

 O
(

1
µk

)
, M = 0;

O
(

1
µk

√
2M+1

)
, M ≥ 1.
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Proof of theorem (2.1)

See the proof of theorems (5.1) and (5.2) of [24].

Theorem 2.2. If 0 < |f ′′
(t)| < ∞ ∀ t ∈ [0, 1) and its extended Legendre wavelets

expansion is given by

f(t) =

∞∑
n=1

∞∑
m=0

c(µ)n,mψ
(µ)
n,m(t).

Then the extended Legendre wavelets approximation of f by (µk,M)th partial sums

Sµk,M (t) =

µk∑
n=1

M−1∑
m=0

c(µ)n,mψ
(µ)
n,m(t)

under the norm ∥.∥2 is calculated as

Eµk,M (f) =


O
(

1
µk

(
1 + 1

µk

))
, M = 0;

O
(

1
µ2k

)
, M = 1;

O

(
1

µ2k(2M−1)
3
2

)
, M ≥ 2.

Proof of theorem (2.2)

See proof of theorems (5.3), (5.4) and (5.5) of [24].

3. Extended Legendre Wavelets operational matrix of integration

In this section, the operational matrix of integration P for extended Legendre wavelets
has been derived. First, we find the matrix P for µ = 4, M = 3 and k = 1. Then the
twelve basis functions are given by

ψ
(4)
1,0(t) = 2,

ψ
(4)
1,1(t) = 2

√
3(8t− 1),

ψ
(4)
1,2(t) = 2

√
5
(
3(8t−1)2−1

2

)
,

 0 ≤ t <
1

4
, (5)

,

ψ
(4)
2,0(t) = 2,

ψ
(4)
2,1(t) = 2

√
3(8t− 3),

ψ
(4)
2,2(t) = 2

√
5
(
3(8t−3)2−1

2

)
,


1

4
≤ t <

2

4
, (6)

ψ
(4)
3,0(t) = 2,

ψ
(4)
3,1(t) = 2

√
3(8t− 5),

ψ
(4)
3,2(t) = 2

√
5
(
3(8t−5)2−1

2

)
,


2

4
≤ t <

3

4
, (7)

ψ
(4)
4,0(t) = 2,

ψ
(4)
4,1(t) = 2

√
3(8t− 7),

ψ
(4)
4,2(t) = 2

√
5
(
3(8t−7)2−1

2

)
,


3

4
≤ t < 1. (8)
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Integrating Eqs. (5) - (8) from 0 to t and expanding in terms of ψ
(4)
n,m(t), we get

∫ t

0
ψ
(4)
1,0(x) dx =

{
2t, 0 ≤ t < 1

4 ;
1
2 , otherwise,

=
1

8
ψ
(4)
1,0(t) +

1

8
√
3
ψ
(4)
1,1(t) +

1

4
ψ
(4)
2,0(t) +

1

4
ψ
(4)
3,0(t) +

1

4
ψ
(4)
4,0(t),

=

[
1

8
,

1

8
√
3
, 0,

1

4
, 0, 0,

1

4
, 0, 0,

1

4
, 0, 0

]
ψ(4)(t).∫ t

0
ψ
(4)
1,1(x) dx =

{ √
3
8 [(8t− 1)2 − 1], 0 ≤ t < 1

4 ;
0, otherwise,

= −
√
3

24
ψ
(4)
1,0(t) +

√
3

24
√
5
ψ
(4)
1,2(t),

=

[
−
√
3

24
, 0,

√
3

24
√
5
, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
ψ(4)(t).∫ t

0
ψ
(4)
1,2(x) dx =

{ √
5
8 [(8t− 1)3 − (8t− 1)], 0 ≤ t < 1

4 ;
0, otherwise,

= −
√
5

40
√
3
ψ
(4)
1,1(t),

=

[
0,−

√
5

40
√
3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
ψ(4)(t).

Similarly, we have

∫ t

0
ψ
(4)
2,0(x) dx =

1

8
ψ
(4)
2,0(t) +

1

8
√
3
ψ
(4)
2,1(t) +

1

4
ψ
(4)
3,0(t) +

1

4
ψ
(4)
4,0(t),∫ t

0
ψ
(4)
2,1(x) dx = −

√
3

24
ψ
(4)
2,0(t) +

√
3

24
√
5
ψ
(4)
2,2(t),∫ t

0
ψ
(4)
2,2(x) dx = −

√
5

40
√
3
ψ
(4)
2,1(t),∫ t

0
ψ
(4)
3,0(x) dx =

1

8
ψ
(4)
3,0(t) +

1

8
√
3
ψ
(4)
3,1(t) +

1

4
ψ
(4)
4,0(t),∫ t

0
ψ
(4)
3,1(x) dx = −

√
3

24
ψ
(4)
3,0(t) +

√
3

24
√
5
ψ
(4)
3,2(t),∫ t

0
ψ
(4)
3,2(x) dx = −

√
5

40
√
3
ψ
(4)
3,1(t),∫ t

0
ψ
(4)
4,0(x) dx =

1

8
ψ
(4)
4,0(t) +

1

8
√
3
ψ
(4)
4,1(t),∫ t

0
ψ
(4)
4,1(x) dx = −

√
3

24
ψ
(4)
4,0(t) +

√
3

24
√
5
ψ
(4)
4,2(t),∫ t

0
ψ
(4)
4,2(x) dx = −

√
5

40
√
3
ψ
(4)
4,1(t).
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Thus ∫ t

0
ψ(4)(x) dx = Pψ(4)(t), (9)

where

ψ(4)(t) =
[
ψ
(4)
1,0, ψ

(4)
1,1, ψ

(4)
1,2, ψ

(4)
2,0, ψ

(4)
2,1, ψ

(4)
2,2, ψ

(4)
3,0, ψ

(µ)
3,1 , ψ

(4)
3,2, ψ

(4)
4,0, ψ

(4)
4,1, ψ

(4)
4,2

]T
,

and the extended Legendre wavelets operational matrix of integration is given by

P =
1

8



1 1√
3

0 2 0 0 2 0 0 2 0 0

−
√

3
3 0

√
3

3
√

5
0 0 0 0 0 0 0 0 0

0 −
√

5

5
√

3
0 0 0 0 0 0 0 0 0 0

0 0 0 1 1√
3

0 2 0 0 2 0 0

0 0 0 −
√

3
3 0

√
3

3
√

5
0 0 0 0 0 0

0 0 0 0 −
√

5

5
√

3
0 0 0 0 0 0 0

0 0 0 0 0 0 1 1√
3

0 2 0 0

0 0 0 0 0 0 −
√

3
3 0

√
3

3
√

5
0 0 0

0 0 0 0 0 0 0 −
√

5

5
√

3
0 0 0 0

0 0 0 0 0 0 0 0 0 1 1√
3

0

0 0 0 0 0 0 0 0 0 −
√

3
3 0

√
3

3
√

5

0 0 0 0 0 0 0 0 0 0 −
√

5

5
√

3
0



.

The operational matrix P can be written as

P =
1

8



L3×3 F3×3 F3×3 F3×3

03×3 L3×3 F3×3 F3×3

03×3 03×3 L3×3 F3×3

03×3 03×3 03×3 L3×3


,

where L and F are 3× 3 matrices given by

L3×3 =


1 1√

3
0

−
√
3
3 0

√
3

3
√
5

0 −
√
5

5
√
3

0

 , and F3×3 =


2 0 0

0 0 0

0 0 0

 .

In general, we have ∫ t

0
ψ(µ)(x) dx = Pψ(µ)(t), (10)
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where ψ(µ)(t) is given in (4) and P is a (µkM)× (µkM) matrix given by

P =
1

2µk



L F F . . . F

0 L F . . . F

0 0 L . . . F

...
...

. . .
. . .

...

0 0 0 . . . F

0 0 . . . 0 L


,

and L & F are (M ×M) matrices given as

L =



1 1√
3

0 0 . . . 0 0 0

−
√

3
3 0

√
3

3
√

5
0 . . . 0 0 0

0 −
√

5

5
√

3
0

√
5

5
√

7

. . . 0 0 0

0 0 −
√

7

7
√

5
0

. . . 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 0 0 . . . −
√

(2M−3)

(2M−3)
√

(2M−5)
0

√
(2M−3)

(2M−3)
√

(2M−1)

0 0 0 0 . . . 0 −
√

(2M−1)

(2M−1)
√

(2M−3)
0



,

and

F =



2 0 . . . 0

0 0 . . . 0

...
...

...
...

0 0 . . . 0


.

4. Extended Legendre Wavelets product operational matrix

The following property of the product of two extended Legendre wavelets function
vectors will also be used :

ψ(µ)(t)(ψ(µ)(t))TC ≈ C̃ψ(µ)(t) (11)

Here C is given in Eq. (3), ψ(µ)(t) can be obtained similar to equation (4) and C̃ is a
(µkM)× (µkM) matrix. To illustate the calculation procedure, we choose µ = 4, M = 3

and k = 1. Using ψ(4)(t) we get

ψ(4)(ψ(4))T =
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ψ
(4)
1,0ψ

(4)
1,0 ψ

(4)
1,0ψ

(4)
1,1 ψ

(4)
1,0ψ

(4)
1,2 ψ

(4)
1,0ψ

(4)
2,0 ψ

(4)
1,0ψ

(4)
2,1 ψ

(4)
1,0ψ

(4)
2,2 ψ

(4)
1,0ψ

(4)
3,0 ψ

(4)
1,0ψ

(4)
3,1 ψ

(4)
1,0ψ

(4)
3,2 ψ

(4)
1,0ψ

(4)
4,0 ψ

(4)
1,0ψ

(4)
4,1 ψ

(4)
1,0ψ

(4)
4,2

ψ
(4)
1,1ψ

(4)
1,0 ψ

(4)
1,1ψ

(4)
1,1 ψ

(4)
1,1ψ

(4)
1,2 ψ

(4)
1,1ψ

(4)
2,0 ψ

(4)
1,1ψ

(4)
2,1 ψ

(4)
1,1ψ

(4)
2,2 ψ

(4)
1,1ψ

(4)
3,0 ψ

(4)
1,1ψ

(4)
3,1 ψ

(4)
1,1ψ

(4)
3,2 ψ

(4)
1,1ψ

(4)
4,0 ψ

(4)
1,1ψ

(4)
4,1 ψ

(4)
1,1ψ

(4)
4,2

ψ
(4)
1,2ψ

(4)
1,0 ψ

(4)
1,2ψ

(4)
1,1 ψ

(4)
1,2ψ

(4)
1,2 ψ

(4)
1,2ψ

(4)
2,0 ψ

(4)
1,2ψ

(4)
2,1 ψ

(4)
1,2ψ

(4)
2,2 ψ

(4)
1,2ψ

(4)
3,0 ψ

(4)
1,2ψ

(4)
3,1 ψ

(4)
1,2ψ

(4)
3,2 ψ

(4)
1,2ψ

(4)
4,0 ψ

(4)
1,2ψ

(4)
4,1 ψ

(4)
1,2ψ

(4)
4,2

ψ
(4)
2,0ψ

(4)
1,0 ψ

(4)
2,0ψ

(4)
1,1 ψ

(4)
2,0ψ

(4)
1,2 ψ

(4)
2,0ψ

(4)
2,0 ψ

(4)
2,0ψ

(4)
2,1 ψ

(4)
2,0ψ

(4)
2,2 ψ

(4)
2,0ψ

(4)
3,0 ψ

(4)
2,0ψ

(4)
3,1 ψ

(4)
2,0ψ

(4)
3,2 ψ

(4)
2,0ψ

(4)
4,0 ψ

(4)
2,0ψ

(4)
4,1 ψ

(4)
2,0ψ

(4)
4,2

ψ
(4)
2,1ψ

(4)
1,0 ψ

(4)
2,1ψ

(4)
1,1 ψ

(4)
2,1ψ

(4)
1,2 ψ

(4)
2,1ψ

(4)
2,0 ψ

(4)
2,1ψ

(4)
2,1 ψ

(4)
2,1ψ

(4)
2,2 ψ

(4)
2,1ψ

(4)
3,0 ψ

(4)
2,1ψ

(4)
3,1 ψ

(4)
2,1ψ

(4)
3,2 ψ

(4)
2,1ψ

(4)
4,0 ψ

(4)
2,1ψ

(4)
4,1 ψ

(4)
2,1ψ

(4)
4,2

ψ
(4)
2,2ψ

(4)
1,0 ψ

(4)
2,2ψ

(4)
1,1 ψ

(4)
2,2ψ

(4)
1,2 ψ

(4)
2,2ψ

(4)
2,0 ψ

(4)
2,2ψ

(4)
2,1 ψ

(4)
2,2ψ

(4)
2,2 ψ

(4)
2,2ψ

(4)
3,0 ψ

(4)
2,2ψ

(4)
3,1 ψ

(4)
2,2ψ

(4)
3,2 ψ

(4)
2,2ψ

(4)
4,0 ψ

(4)
2,2ψ

(4)
4,1 ψ

(4)
2,2ψ

(4)
4,2

ψ
(4)
3,0ψ

(4)
1,0 ψ

(4)
3,0ψ

(4)
1,1 ψ

(4)
3,0ψ

(4)
1,2 ψ

(4)
3,0ψ

(4)
2,0 ψ

(4)
3,0ψ

(4)
2,1 ψ

(4)
3,0ψ

(4)
2,2 ψ

(4)
3,0ψ

(4)
3,0 ψ

(4)
3,0ψ

(4)
3,1 ψ

(4)
3,0ψ

(4)
3,2 ψ

(4)
3,0ψ

(4)
4,0 ψ

(4)
3,0ψ

(4)
4,1 ψ

(4)
3,0ψ

(4)
4,2

ψ
(4)
3,1ψ

(4)
1,0 ψ

(4)
3,1ψ

(4)
1,1 ψ

(4)
3,1ψ

(4)
1,2 ψ

(4)
3,1ψ

(4)
2,0 ψ

(4)
3,1ψ

(4)
2,1 ψ

(4)
3,1ψ

(4)
2,2 ψ

(4)
3,1ψ

(4)
3,0 ψ

(4)
3,1ψ

(4)
3,1 ψ

(4)
3,1ψ

(4)
3,2 ψ

(4)
3,1ψ

(4)
4,0 ψ

(4)
4,1ψ

(4)
4,1 ψ

(4)
3,1ψ

(4)
4,2

ψ
(4)
3,2ψ

(4)
1,0 ψ

(4)
3,2ψ

(4)
1,1 ψ

(4)
3,2ψ

(4)
1,2 ψ

(4)
3,2ψ

(4)
2,0 ψ

(4)
3,2ψ

(4)
2,1 ψ

(4)
3,2ψ

(4)
2,2 ψ

(4)
3,2ψ

(4)
3,0 ψ

(4)
3,2ψ

(4)
3,1 ψ

(4)
3,2ψ

(4)
3,2 ψ

(4)
3,2ψ

(4)
4,0 ψ

(4)
3,2ψ

(4)
4,1 ψ

(4)
3,2ψ

(4)
4,2

ψ
(4)
4,0ψ

(4)
1,0 ψ

(4)
4,0ψ

(4)
1,1 ψ

(4)
4,0ψ

(4)
1,2 ψ

(4)
4,0ψ

(4)
2,0 ψ

(4)
4,0ψ

(4)
2,1 ψ

(4)
4,0ψ

(4)
2,2 ψ

(4)
4,0ψ

(4)
3,0 ψ

(4)
4,0ψ

(4)
3,1 ψ

(4)
4,0ψ

(4)
3,2 ψ

(4)
4,0ψ

(4)
4,0 ψ

(4)
4,0ψ

(4)
4,1 ψ

(4)
4,0ψ

(4)
4,2

ψ
(4)
4,1ψ

(4)
1,0 ψ

(4)
4,1ψ

(4)
1,1 ψ

(4)
4,1ψ

(4)
1,2 ψ

(4)
4,1ψ

(4)
2,0 ψ

(4)
4,1ψ

(4)
2,1 ψ

(4)
4,1ψ

(4)
2,2 ψ

(4)
4,1ψ

(4)
3,0 ψ

(4)
4,1ψ

(4)
3,1 ψ

(4)
4,1ψ

(4)
3,2 ψ

(4)
4,1ψ

(4)
4,0 ψ

(4)
4,1ψ

(4)
4,1 ψ

(4)
4,1ψ

(4)
4,2

ψ
(4)
4,2ψ

(4)
1,0 ψ

(4)
4,2ψ

(4)
1,1 ψ

(4)
4,2ψ

(4)
1,2 ψ

(4)
4,2ψ

(4)
2,0 ψ

(4)
4,2ψ

(4)
2,1 ψ

(4)
4,2ψ

(4)
2,2 ψ

(4)
4,2ψ

(4)
3,0 ψ

(4)
4,2ψ

(4)
3,1 ψ

(4)
4,2ψ

(4)
3,2 ψ

(4)
4,2ψ

(4)
4,0 ψ

(4)
4,2ψ

(4)
4,1 ψ

(4)
4,2ψ

(4)
4,2



.

(12)

In Eq. (12) we have

ψ
(4)
i,j ψ

(4)
k,l = 0 if i ̸= k.

Also,

ψ
(4)
i,0 ψ

(4)
i,j = 2ψ

(4)
i,j ,

ψ
(4)
i,1 ψ

(4)
i,1 = 2ψ

(4)
i,0 +

4√
5
ψ
(4)
i,2 ,

ψ
(4)
i,1 ψ

(4)
i,2 =

4√
5
ψ
(4)
i,1 ,

ψ
(4)
i,2 ψ

(4)
i,2 = 2ψ

(4)
i,0 +

4
√
5

7
ψ
(4)
i,2 .

If we retain only the elements of ψ(4)(t), then we have

ψ(4)(ψ(4))T =



B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4


,

where

Bi =


2ψ

(4)
i,0 2ψ

(4)
i,1 2ψ

(4)
i,2

2ψ
(4)
i,1 (ψ

(4)
i,0 + 4√

5
ψ
(4)
i,2 )

4√
5
ψ
(4)
i,1

2ψ
(4)
i,2

4√
5
ψ
(4)
i,1 (2ψ

(4)
i,0 + 4

√
5

7 ψ
(4)
i,2 )

 .
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By using the vector C in (3), the 12 × 12 matrix C̃ in (11) can be written as

C̃ =



A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4


,

where,

Ai =


2Ci,0 2Ci,1 2Ci,2

2Ci,1 (2Ci,0 +
4√
5
Ci,2)

4√
5
Ci,1

2Ci,2
4√
5
Ci,1 (2Ci,0 +

4
√
5

7 Ci,2)

 ,
and 0 is 3 × 3 zero matrix.

5. Applications

Example 1. Consider the following differential equation,

0.25y′(t) + y(t) = 1, (13)

with initial condition,

y(0) = 0. (14)

The exact solution of (13) - (14) is y(t) = 1− exp(−4t).
Let

y(t) = CTψ(µ)(t). (15)

Suppose

1 = dTψ(µ)(t), (16)

integrating Eq. (13) from 0 to t, using Eqs. (10) & (14) - (16), and after simplification,
we get

CT (0.25I + P ) = dT p. (17)

Eq. (17) represents the set of algebraic equations which is solvable for C. In the case of
µ = 2, 4, 5 the approximate solution by the presented method is shown in Figures (1), (2),
and (3) to make it easier to compare with the exact solution. In Table (1), the approximate
solutions for µ = 2, 4, 5; k = 1, and M = 3 have been compared with Legendre wavelets
method (LWM) and exact solution, which is shown in Figures (4).

Example 2.
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Figure 1. Graphical repre-
sentation of exact sol. (dark
line) and approx. sol.
(dashed line) of example (1)
for µ = 2.

Figure 2. Graphical repre-
sentation of exact sol. (dark
line) and approx. sol.
(dashed line) of example (1)
for µ = 4.

Figure 3. Graphical repre-
sentation of exact sol. (dark
line) and approx. sol.
(dashed line) of example (1)
for µ = 5.

Figure 4. Numerical results
obtained from LWM, ELWM
for µ = 2, 4, 5; k = 1,M = 3
of example (1).
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t Solution for
µ = 2, k = 1,
M = 3

Solution for
µ = 4, k = 1,
M = 3

Solution for
µ = 5, k = 1,
M = 3

LWM for k =
1, M = 3

Exact solu-
tion

0.0 0.0270 0.0051 0.0029 0.0002 0.0000
0.1 0.3189 0.3284 0.3298 0.3284 0.3286
0.2 0.5459 0.5523 0.5519 0.5523 0.5521
0.3 0.7081 0.6980 0.6988 0.6980 0.6984
0.4 0.8054 0.7987 0.7986 0.7987 0.7986
0.5 0.8685 0.8653 0.8646 0.8653 0.8650
0.6 0.9079 0.9091 0.9095 0.9091 0.9091
0.7 0.9386 0.9394 0.9392 0.9394 0.9393
0.8 0.9605 0.9591 0.9593 0.9591 0.9591
0.9 0.9737 0.9727 0.9726 0.9727 0.9726

Table 1. Comparison between exact, LWM and ELWM solution for µ =
2, 4, 5; k = 1, M = 3 of example (1).

Bessel differential equation of order zero : Consider the following Bessel differential
equation of order zero

ty
′′
+ y

′
+ ty = 0, (18)

with initial conditions,

y(0) = 1, y
′
(0) = 0. (19)

The solution of Eqs. (18) - (19) known as the Bessel function of first kind of order zero
denoted by J0(t) is given by

J0(t) =
∞∑
i=1

(−1)i

(i!)2

(
t

2

)2i

. (20)

Here we solve same problem using extended Legendre wavelets method,
let us consider

y
′′
(t) = CTψ(µ)(t). (21)

Integrating Eq. (21) and using Eqs. (10), (16), (18) & (19), we have

y
′
(t) = CTPψ(µ)(t), y(t) = CTP 2ψ(µ)(t) + dTψ(µ)(t), (22)

we can write

t = eTψ(µ)(t). (23)

Now substituting Eqs. (21) - (23) in (18), we obtain

eTψ(µ)(t)(ψ(µ)(t))TC+(ψ(µ)(t))TP TC+eTψ(µ)(t)(ψ(µ)(t))T (P 2)TC+eTψ(µ)(t)(ψ(µ)(t))Td = 0.
(24)

Let

ψ(µ)(t)(ψ(µ)(t))T e = Ẽψ(µ)(t), (25)

using Eq. (25) in (24) and simplifying, we have

ẼC + P TC + Ẽ(P 2)TC + Ẽd = 0. (26)

Equation (26) again represents the system of algebraic equations which is solvable for C.
Table (2) shows the comparison between the exact solution, Legendre wavelet method
(LWM) and approximate solutions for µ = 2, 4, 5, k = 1, M = 3, which is presented in
Figure (5).
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t Solution for
µ = 2, k = 1,
M = 3

Solution for
µ = 4, k = 1,
M = 3

Solution for
µ = 5, k = 1,
M = 3

LWM for k =
1, M = 3

Exact solu-
tion

0.0 1.000096 1.000006 1.000002 1.000000 1.000000
0.1 0.997472 0.997499 0.997501 0.997502 0.997501
0.2 0.989988 0.990027 0.990032 0.990024 0.990024
0.3 0.977644 0.977620 0.977626 0.977625 0.977626
0.4 0.960439 0.960402 0.960410 0.960396 0.960398
0.5 0.938739 0.938498 0.938469 0.938468 0.938469
0.6 0.911913 0.911996 0.912021 0.912004 0.912004
0.7 0.881118 0.881211 0.881201 0.881200 0.881200
0.8 0.846356 0.846274 0.846307 0.846285 0.846287
0.9 0.807626 0.807534 0.807524 0.807524 0.807523

Table 2. Comparison between exact, LWM and ELWM solution for µ =
2, 4, 5; k = 1, M = 3 of example (2).

Figure 5. Numerical results obtained from LWM, ELWM for µ =
2, 4, 5; k = 1,M = 3 of example (2).

6. Conclusions

In this paper, we have obtained the operational matrix of integration for extended Le-
gendre wavelets (ELW) which generalizes the Legendre wavelets (LW) operational matrix
of integration given in [30]. From our discussion, it is clear that the obtained extended
Legendre wavelets operational matrix of integration is valid for any positive integer µ ≥ 2.
We have also solved two differential equations using this extended Legendre wavelets op-
erational matrix of integration and observe that if we use larger values of µ, then the
numerical accuracy of the solution increases. In the figures (1, 2, 3, 4 & 5) the exact solu-
tions and the approximate solutions for µ = 2, 4, 5; k = 1,M = 3 have been ploted and we
observe that the solutions become very close to the exact solution which is also justified
in Table (1) & (2).
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