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SOMBOR INDEX OF FUZZY GRAPH

B. SOME™, A. PAL?, §

ABSTRACT. Topological indices (TI) play a crucial role across various research domains,
including network theory, spectral graph theory, and molecular chemistry. These indices
are created primarily in the context of crisp graphs, but they can also be applied to fuzzy
graphs, which are a more generalized version of crisp graphs. This article presents the
Sombor index for fuzzy graphs (SOF(G)) and explores how it can be applied to diverse
categories of fuzzy graphs, such as cycles, stars, complete graphs, and fuzzy subgraphs.
Results are obtained by this index after vertices and edges are eliminated and we also
proved that it holds for isomorphic fuzzy graphs and established interesting bounds for
SOF(G). Along with several theorems and examples, the Sombor index is introduced
and explored for fuzzy directed graphs (FDG), regular fuzzy graphs (RFGs), and fuzzy
cycles. Furthermore, a connection between the Sombor index and other fuzzy graph
indices is established. Finally, an application is provided demonstrating the use of the
Sombor index of a fuzzy graph to identify the country with the optimal case of human
trafficking.
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1. INTRODUCTION

Graph theory is crucial for linking specific values to define parameters across various
fields such as computer science, operation researches, network routing, wireless sensor
networks, engineering, and medical science. However, uncertainty plays a significant role
in many situations that impact our daily lives. In 1965 Zadeh’s [51] fuzzy set theory
was crucial in solving these kinds of issues. This turned out to be the motivation for
Rosenfeld’s [43] development of the fuzzy graph (FG) idea in 1975. This concept also
encompassed fuzzy relations, fuzzy bridges, fuzzy blocks, and fuzzy distances for a fuzzy
graph. Fuzzy graphs including strong arcs and different kinds of arcs have been explained
by Mordeson and Peng [37] and by Bhutani et al. [6]. Samanta and Pal [47, 48] have
discovered a fuzzy graph-based social network system and a fuzzy graph-based telephony
system. In 2018, Ghorai and Pal [13] presented a novel idea concerning Regular fuzzy
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graphs within a bipolar fuzzy framework. Akram and his research team explored vari-
ous concepts in fuzzy hyper-graph theory, including bipolar fuzzy soft hyper-graphs [46],
soft fuzzy hyper-graphs [2], generalized m-polar fuzzy hyper-graphs [49], and connections
within rough fuzzy hyper-graphs [4]. Pal et al. [42] analyzed the vertex degree, strong
degree, and strong neighbor characteristics of a graph. Further developments and related
findings of a FG were discussed in [35].

Chemical graph theory, an essential aspect of mathematical chemistry, employs topo-
logical indices (TIs). Topological indices in fuzzy graphs are numerical parameters that
characterize the structure and properties of the graph in a way that incorporates the fuzzi-
ness or uncertainty inherent in the data. These indices have various uses in different fields,
particularly in areas where data may be imprecise or uncertain. In a chemical structure,
atoms are the vertices and bonds are the edges. In 1947, Harold Wiener [50] originally
created the Wiener index (WI), a topological measure used to determine the boiling point
of paraffin. A distinct degree-based topological index, the forgotten topological index (F-
index), was introduced by Fortula and Gutman [11] in 2015. The subdivision graph and
line graphs of the F-index and F-coindex were studied in 2018 by Amin and Nayeem [1]. In
2017, Abdo et al. [5] explored the F-index concerning extremal trees within crisp graphs.
Their investigation involved the hyper-Wiener index (HWI), an extension of the Wiener in-
dex, from both theoretical and practical viewpoints. The HWI has applications in chemical
graph theory, spectral graph theory, and biochemistry. The hyper-Wiener index was first
introduced by Randic [45]. Mondal et al. [33, 34] introduced Neighborhood-ZI addition-
ally explored Neighborhood-ZI in QSPR studies. A recently created molecular structure
descriptor by Gutman [14] is the Sombor index, which is based on vertex degrees. This
article states that the problem of determining which graph has the highest /lowest Sombor
index among all trees, graphs, and connected graphs with a given order has been resolved.
Gutman and his research team [15, 16, 17, 18] have investigated various aspects of the
Sombor indices, including their basic properties, the KG - Sombor index of Kragujevac
trees, the relationship of Sombor indices with geometry, and the product of Sombor and
modified Sombor indices.

Motivated by this, Milovanovic et al. [36] demonstrate some notable characteristics
of Sombor indices. A brief discussion of molecular trees with exceptionally high Sombor
index values is provided by Deng et al. [9], while Cruz et al. [7] address the Sombor
index of trees with three or fewer branch vertices. Extreme values on the Sombor index
of trees are discussed by Chen and colleagues [8] in 2022. Jamila and their research team
have made advancements in the field of topological numbers of fuzzy soft graphs and
their applications [3, 19, 28] and they have also explored innovative single-value neutro-
sophic fuzzy topological graph parameters and introduced a novel approach for improving
the performance of vaccination centers using intuitionistic fuzzy Sombor indices. Several
other Sombor index forms are described [10, 29, 38]

1.1. Motivation and significance of the article. Topological indices for crisp graphs
have practical applications, but understanding their characteristics often requires labo-
ratory research on chemicals. To address this, theoretical chemistry has devised many
topological indices. The Wiener index and the Connectivity index (CI) for graphs were
recently introduced by Binu and colleagues [30, 31]. Recent advancements in this field, as
introduced by Islam and Pal [20, 21, 22, 23] include the concepts of hyper-WI, hyper-CI,
first ZI, and the F-index in fuzzy graphs. They have further developed the F-index for
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fuzzy graphs [24] and explored its application in analyzing Indian railway crime. Addition-
ally, they have worked on the multiplicative version of the first Zagreb index [25] in fuzzy
graphs and its application in crime analysis, as well as investigating the edge F-index [26]
on fuzzy graphs with applications in molecular chemistry. Poulik and his research group
[39, 40, 41] were the first to invent the Wiener absolute index in bipolar fuzzy graphs.
They also introduced specific graph indices within bipolar fuzzy settings and discussed
their applications. Additionally, they provided a brief explanation of how the Randi¢ in-
dex can be applied to bipolar fuzzy graphs in network systems. Recent work by Mathew
and collaborators [27] introduced the neighborhood connectivity index for fuzzy graphs
and explored its application to human trafficking. Applications for topological indices in
fuzzy graphs include bio informatics and drug design, chemical reactivity, material sci-
ence, network analysis, pharmacology, image processing, data mining, machine learning,
and environmental studies,cryptography, and pattern recognition. Inspired by the afore-
mentioned publications and application this study examines the Sombor index for fuzzy
graphs. We addressed the following research questions : What is the Sombor index in
fuzzy graphs 7 What are the bounds for the Sombor index of fuzzy graphs in terms of
the order and size of G 7 What are the bounds of different types of graphs ? What is
the value of the Sombor index of fuzzy digraphs, regular fuzzy graphs, and fuzzy cycles ?
And how does the Sombor index relate to other indices of fuzzy graphs 7 What are the
applications of this index 7

1.2. Frame work of the article. The article is organized as follows : section-2 offers
some basic concepts that are required to construct our main results. In section-3, the def-
inition of the Sombor index is provided and some theoretical developments of the Sombor
index are also studied, and the boundaries of this index are determined for various types of
fuzzy graphs, including the cycle, star, and complete fuzzy graph, etc. Section-4, defines
and examines the Sombor index of fuzzy directed graphs (FDG), regular FGs, and fuzzy
cycles. In section-5, relationship between Sombor index and other indices are established.
In section-6, Utilizing the Sombor index for fuzzy graphs to pinpoint the country with the
highest rates of human trafficking compared to others. Section-7, the concluding section
provides insights and recommendations for future considerations.

2. PRELIMINARIES

In this segment, we provide fundamental definitions crucial for enhancing our under-
standing. A mapping function £ : X — [0,1] characterizes a fuzzy set, represented as
S = (U,€) on X, where U is a Universal set. As the membership function, the fuzzy set
S is connected to the function &.

Definition 2.1. The subdivision graph S(G) is the graph attained from G by replacing
each of its edges by a path of length 2. The line graph L(G) of a graph is the graph derived
from G in such a w ay that the edges in G are replaced by vertices in L(G) and two vertices
in L(G) are connected whenever the corresponding edges in G are adjacent.

Definition 2.2. On a universe U, the fuzzy graph is an object of the form G= (V,£,Q).
The vertex set of the fuzzy network V is represented by the vertex membership function
& : X — [0,1] and the edge membership function Q : V x V. — [0,1], which satisfy
V(wi,wj) € U and Q(w;,w;) < min{Q(w;), Qw;)}, where the edge set is defined by E =
{(wi,wj) : Qwj,wj) > 0}.
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Definition 2.3. For a vertez v € V(G), degree is defined as T'g(vy) < 2x no of edges.
In a fuzzy graph, each edge has a weight (or membership value) between 0 and 1, inclu-
sive, and the degree of a vertex is defined as the sum of the weights of all edges incident
to it. If we consider a vertex v in a fuzzy graph and each edge incident to v has a cer-
tain weight.lets denote the weights of edges incident to v as wi,ws,ws, -+ ,wi. Then
Fa(y) = wy +wy + ws + - - - + wg, where, k is the no of edges incident to v. In the entire
fuzzy graph, consider the sum of weights of all edges, each edge has two end points, thus
contributing to the degree of two vertices.If E is the set of edges and w(e) is the weight of

edge e, the total sum of weights of all edges is Y w(e). Since each edge e is counted in the
eceE
degree of both its end points, the total degree in the graph is T'g(vy) =2 Y w(e). The de-
eclk
gree of any single vertex v cannot exceed the total weight of edges incident to it; since each

edge is counted twice in the total degree calculation, the degree of a vertexr v must be less

than or equal to twice the sum of weights of edges incident to v.Hence T'c(y) <2 Y w(e).
ecE

Here A(G) and 6(G) represents the mazimum degree and minimum degree of G. Where
A(G) = VyevI(y) and 6(G) = A gv(fy). The total degree of G denoted by T(G) or
v

simply T = > T'(y) = > Qwy). Throughout this article, we consider the fuzzy graph,
yeV wyeEE

G1 = (V1,&1,9) has ny - vertices, my - edges, edge set By and Go = (Va, &2, Q) has na -

vertices, ma - edges, edge set By and N1 = A(Gh), Do = A(G2), 61 = 0(G1), d2 = (Ga).

Definition 2.4. A fuzzy graph G = (17 E) s considered, and it is associated with the
graph G* = (V,,E ). A bijective mapping 1 : V = V' s said to be zsomorphzc if it has

the following properties : &(w;) = & (p(wi)), V wi € V and E(wiwy) = & {(ws), Y(w;)}, ¥
wiw; € E respectively.

Definition 2.5. Suppose we have a fuzzy graph G = (‘N/, E) related to the graph G* =
(V' E'. If €lwiw;) = € {¢(wi), ¥(w))}, ¥ wiw; € E, then v is described as a co-weak
isomorphism.

Definition 2.6. Take G = (V, E) represent a fuzzy graph associated with G* = (V' E).
If G* is a cycle and there is no single edge w;w; € G for which &(w;wj) is the minimum,
V wiw; € E then a fuzzy cycle is defined as the fuzzy graph G.

Definition 2.7. G’ = (V E ) is a iuzzy graph. Given another fuzzy graph, is considered
its fuzzy sub- gmph (FSG) G = (V E), &(w) =€ (wi), Vwi €V, and £(wiw;) = € (wiwy),
V wiw; € E , if V CVand E CE satisfy these conditions.

Definition 2.8. In a fuzzy graph G = (‘7, E), the open neighborhood degree, or simply
the degree of a vertex w; is denoted deg(w;) = I'(w;), where deg(w;) = Y. &(wiw;). If
Wi Fwj
wzw]GEJ(é)

deg(w;) = 1, Vowi € V, then it is called r-reqular in G. If §(wiwj) = min {&(w;), &(wj) },
YV wi,w; € V then G is said to be complete fuzzy graph.

Definition 2.9. In the fuzzy graph G = (V, E), the closed neighborhood degree (CND) of a
node w; is defined as deglw;] = deg(w;), which can also be expressed as deg® [wi] = deg(w;)+
&(wi). Ty is considered totally regular under G if, for every w; € v, if T'1 = deglw;].
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Theorem 2.1. Consider an odd cycle G* = (XN/ E) A fuzzy gmph G= (V/, E”) 1s termed
a reqular fuzzy graph if and only if £(w;) is constant, ¥V w; € V.

Definition 2.10. Let G = (V,E) be a fuzzy graph. In the fuzzy graph G the modified

first Zagreb index (ZF') is represented as ZF*(G) and described as follows : ZF'(G) =
> W) T (W)

weV(G)

Definition 2.11. Given a fuzzy graph G = (V, E‘), The second Zagreb index (ZF2) of the

fuzzy graph G is represented as ZFQ(G) and is defined by the following expression

ZFX(G) = gj {§(w) T'(w) HEMm) L) }-

wneE(G)

Definition 2.12. Let G = (V,E‘) be a fuzzg graph. For the fuzzy graph é, the iiyper
Zagreb index (HZI) is represented as HZI(G). 1t is defined as follows : HZI(G) =
; {€(w)T(w) +&mT ()},
i#j

wneE(G)

Definition 2.13. Let G = (XN/, E) be a fuzzy graph. The Edge F-index (EFI) of the fuzzy
graph g’ is symbolized by EFI(G) and is defined by the following expression :
EFI(G) = ; {E(w) T(w)}? + {£n) T(n)}?).
i#]
wneE(G)
Definition 2.14. The Randic index (RI) of a fuzzy graph G= (TN/, E) is denoted by RI(@)
and is defined by the expression RI(G) = 3 [{ﬁ(w)F(w)}{f(n)F(n)}]_%
i#]
wn€E(G)

3. SOMBOR INDEX ON FUZZY GRAPHS

In several domains such as network theory, spectral graph theory, chemical graph theory,
molecular chemistry, and fuzzy graph theory, topological indices play a crucial role.

The “Sombor index” for crisp graphs is a novel molecular descriptor based on vertex
degree that was recently introduced by Gutman [14].

Definition 3.1. [14] Assume that a crisp graph G = (V, E). The concept of the Sombor
index for G is defined as follows :

SOG) = > V{daw) P +{da(v) .
viv; €E(QG)
In this contexat, d(v;) and d(vj) denote the degrees of vertices v; and vj respectively.

Definition 3.2. Let G = (‘7,5,9) be a fuzzy graph. The definition of the Sombor index
i fuzzy graph theory is:

SOF(G) =Y {€w) T2+ {&(w;) T(w)}?.

wiw; €E(G)

Here, £:V — [0, 1] represents the vertex membership degree, and € : VXV [0, 1] is the
membership degree of edges. Additionally, I'(w;) and I'(w;) denote the degrees of vertices
w; and w; respectively.

The following theorem provides an upper bound for the Sombor index in fuzzy graphs.
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Theorem 3.1. If n vertices and m edges constitute a fuzzy graph G = (XN/, E), then
SOF(G) < V2m(n —1).

Proof. From the definition of Sombor index we get,

SOF(G) = > i) Dwi)}? + {£(w)) Twy) )2

wiw; €E(G)
< Y T+ (T2 since €(w) < 1,Ew) < 1
wiw; €B(G)
< D> VA2HA2<Vam(n - 1)
wiwj €E(G)
Therefore, SOF(G) < v2m(n — 1). O

Example 3.1. As an example, let us use the fuzzy graph G displayed in Figure -1. We
choose a vertex set, V = {wi,ws,ws,ws,ws} such that {(wr) = 0.5, {(wa) = 0.7, &(w3) =
0.6, {(wa) = 0.9, and &(ws) = 0.8. Within this fuzzy graph, Q(wi,w2) = 0.4, Q(w2,ws) =
0.3, Q(ws,wq) = 0.5, Q(wg,ws) = 0.7, Qws,w1) = 0.2, Qwz,wq) = 0.6, Q(w;1,wy) = 0.3.
Following that, I'(w1) = 0.9, I'(wg) = 1.3, I'(w3) = 0.8, I'(wa) = 2.1, and I'(ws) = 0.9.
Therefore

SOF(G) = ¥ {€w)T(w) 2+ {€(w;) T(w))}? = 39.5980.
wleGE'(G)

. NG
0.8 0.9 0.6

FIGURE 1. A fuzzy graph with Sombor index SOF(G) = 35.5980.

Example 3.2. Suppose Gisa fuzzy graph. Its fuzzy subgraph, é/, 1s obtained by deleting
the vertices ws from it, and it is shown in Figure -2. Then I'(w1) = 0.9, I'(w2) = 1.0,
INwy) = 1.6 and I'(ws) = 0.9.

Now,

SOF(G)= Y &) T(w)}*+ {€w;) T(w))}? = 6.4008.

Wiwj EE(G)

Therefore, SOF(G') < SOF(G).

Proposition 3.1. Let G' = (V/, &, ) be a fuzzy subgraph of the fuzzy graph G =
(V,£,9Q). Consequently, SOF(G') < SOF(G).



B. SOME, A. PAL : SOMBOR INDEX OF FUZZY GRAPH 1331

0.5 0.7

0.8 ' 0.9

FIGURE 2. A FSG G of the FG G in Fig-1 with Sombor index SOF(G') =
6.4008.

Proof. If wj,w; € V', then ¢ (w;) < &(w;) and Y (wiwj) < Qwiwj).
SO, Fé(wl) < Z _ Q(wiwj) < Fé(wl)

wieV(G")
Therefore,

SOF@) = Y €@ + € (@)l (w))?

wiw; EE' (G"
< Y JHE@ITaw)) + {Ew)Ta(w))? = SOF(G).
wszEE(G)
Therefore, SOF(G') < SOF(G). Hence the results follows. O
Let 0 < r < 1, the fuzzy graph (GT) = (V¢ ') is a fuzzy subgraph of the fuzzy

graph G = (V ,Q) and is defined as V' = {w; € V : &(w;) < 7} and €(w;) = &(wj),
Q' (wiwj) = Uwiw;), ¥V wi,w; € V.

Theorem 3.2. Let us assume that G = (17, &, Q) is a fuzzy graph and let 0 < r; < 1o < 1.
Then SOF(G™) < SOF(G™).

Corollary 3.1. G= (17, §,~ Q) be an fuzzy~gmph and 0 < rIST2ST3S Ty STy
Then, §OF(GT") < SOF(G™1) < SOF(G™~2) < SOF(G™3) < SOF(G™4) < - <
SOF(G™).

Theorem 3.3. Given a cycle fuzzy graph with n vertices denoted by C,,. Then SOF(C,,) <

V8(n —1).
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Proof. As C = {w1, w2, ws, - ,wy} is a n-vertex fuzzy cycle, then I'(wy) = Q1 + Qy,
and I'(w;) = Q-1 + Q;, for i =1,2,3,4,--- ,n. Therefore,

SOF(C) = 3 \H6wi) T(wi)}2 + {&(w)) T(wy)}?

wiijE(é)
= \/E%(Ql + Q)% + 65 + Qn)?
T \/§%(QI + Qn)2 + erL(Qn—l + Qn)Q +oe

O+ 902+ 4 (9 + Qup)?

=2
n—2
SV2Rr2eVr2e b Y V22
=2
=V8+V8+V8+ -+ V8(n-—3)
=V8(2+n—3)
=V8(n—1).

Therefore, SOF(C,,) < v/8(n — 1). Hence the result follows.
Equality occurs in this bound when all the edges of the fuzzy cycle graph have the same
weight 1 leading to each vertex having a uniform degree of 2.

O

€0
70

0.6 (@) 0.5 @3) 05

FIGURE 3. A cycle fuzzy graph with SOF(G) = 3.7774

Example 3.3. Figure 3 illustrates the cycle fuzzy graph G= (17, E) V= {w1, wa, w3, wq, w5}
Fuzzy values are allocated in the following way, with serving as its vertex set: The values
that were obtained are {(w1) = 0.6, {(w2) = 0.7, {(ws) = 0.5, £(wy) = 0.6, and &(ws) = 0.8.
Consequently, the degrees of the vertices are I'(w1) = 0.9, T'(we) = 0.9, T'(w3) = 0.9, and
[(w1) = 0.8, T(ws) = 0.7. Thus, SOF(C5) = 3 /{€(wi) T(wi)}? + {€(wj) T(w;)}? =

wiwj €E(G)
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3.7774. Alternatively, v/8(5 — 1) = 4/8 = 4 x 2.8284 = 11.3136. Consequently, we can
observe that SOF (C5) = 3.7774 < 11.3136. As a result, theorem 3.3 is confirmed.
Now, the boundaries of the star graph for the sombor index is being explored.

Theorem 3.4. Assume that S is a star fuzzy network with (n + 1) vertices. SOF(S,) <

nvn? + 1.

Proof. As S {wo,w1,wa,ws, -+ ,wy} is a star fuzzy graph having (n + 1) vertices, then
[Nwo) = ZQ and I'w;) = Q;, for i =0,1,2,3,--- ,n
Thus we get

SOF(S)) = 3 &) ()} + {(w)) Dlewy) P2
(@)

winEE G

- ¥ faCerge
winEE(é)
<nvn? +1.
Hence, SOF(S,) < nvn? + 1. O

Equality occurs when all the edges in the fuzzy star graph have the same weight 1,
leading to a uniform degree for the peripheral vertices and a degree of (n + 1) for the
central vertex.

FIGURE 4. A star fuzzy graph with SOF(S5) = 2.9506

Example 3.4. Assume that Sy is the star fuzzy graph shown in Figure-4, with the vertex
set {wo, w1, wa, w3, wa} with the following values : {(wp) = 0.5, {(w1) = 0.7, {(w2) = 0.6,
&(ws) = 0.8, and {(ws) = 0.4. Then, I'(wp) = 1.4, I'(w1) = 0.3, I'(w2) = 04, and
INws) = 04, I'(ws) = 0.3 are the degrees of the vertices. As a result, for graph Ss,

SOF(S5)= Y /{€wi)T(w)}? + {&(w;) T(w;)}? = 2.9506.
wleGE(G)

On the other hand SOF(S5) = 5v/5%2 + 1 = 25.495. Therefore, SOF(S5) = 2.9506 <
25.495. Hence the theorem 3.4 is verified. The following theorem deals with the Sombor
index for isomorphic fuzzy graph

Theorem 3.5. Assuming G1 and Gy are isomorphic fuzzy graphs, it follows that SOF(G~—'1) =
SOF(G2).
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(0.5)

70

FiGURE 5. Two isomorphic FGs G and E}vl

Proof. Since G1 and Gy are isomorphic, there exists a bijective mapping 1) : Vi — Vs and

Vwi,w; € V1. In addition, Q;(wj) = Qa(1h(wi), ¥ (w;)). Also g (w) = > Q(wi,wy)
wi€Vi(G1)
= > D) dw) = X Q@) dw)) =Tg #w)).
wi€Vi(Gr) §(wi)eVa(Ga)
Therefore,
SOF(G) = Y. JHaw)ls, @)y +{& )l ()P
wiwjeEl(Gl)
- \/{ﬁz(w(wz’))T@ (Y(wi)}? + {&(¥(w)))Ta, (Y(w;))}?
winEEl(él)
= > \/{éz (wi))La, (W(wi)}* + {&((w)) g, ((w)))}?
(W) (w;)EEa(Ga)
= SOF(G»).
This completes the proof. ]

Example 3.5. Consider the FG's él and 52 in Figure -5, here {(¢(w;)) = &(wi), E(¥(w;)) =
§(wi) and f(wle) = £((wi), w(w])) = f(wlvj) g(wlw]) = (Y (wi), ¢(WJ)) = g(wlw])
V1l <i<B5. SOF(Gl) = 0.5021 4 0.4561 4 0.7540 + 1.0630 + 0.8732 = 3.6484 = SOF(GQ)
Thus we see that SOF(G1) = SOF(Gs). Hence the Theorem 3.5 is verified.

Corollary 3.2. If two fuzzy gmphs G = (17 E) and G = (‘7/, El) exhibit co-weak
isomorphism, and f(wz) < &(w;) holds for all w; € V and w; € V', then it follows that
SOF(G) > SOF(G).

The upper and lower bounds of the Sombor index can be determined using various
methods, especially when the maximum and minimum values of vertex degrees in a fuzzy
network are known. These different strategies are further elaborated upon in the following
theorems.
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Theorem 3.6. Let G = (XN/LE) be a FG such that § = min{I'(w;)} and A = max{[(w;)}
Vw; € V. Then A < SOF(G) < AN, where A= > /[{&(w;)}% + {&(w))}?].
i#]

w;wsj GE(@)

Proof. Since w; € V and G is a FG, we may obtain the following from definition 2.8 we

have T'(w;) = 30 &(wiw;), 6 = min{[(w;)} and A = maz{T(w;)}, Yew; € V. So we
wiijE(é)

have § < T'(w;) < A.

Therefore,

= 0{&(wi)} < {&(wi)T(wi} < A{é(wi)}
= 6%{&(wi)}? < {€(wi)T(wi}? < AXE(wi)}?

and
0H{& (W)} < {E(w)T (Wi} < AHE(w)))?
Therefore,
FHE(wi)}? + 02 {€(w))}? < {€(vi) d(wi)}? + {€(w;)T(w;}? < A%{E(wi)} + A%{E(w))}?
= 82 [{&(wi)}? + {€(w))}?] < {€(v) d(wi)} + {€(wy) T(w;)}? < A[{E(wi)}® + {€(w))}?).
= 0A < SOF(G) < A\, where A = Z \/[{f(wz)}2 + {&(w;) }?].

E
wiwj €EE(G)

O

Moreover, the equality herein holds if and only if ¢ (v;) = A, for any v; € V(G), i.e.,
G is regular. Similarly, we get the lower bound on Sombor index and equality holds if and
only if G becomes regular.

Example 3.6. For this instance, we consider in Figure 5, E= {wiwe, waws, wiws, wsws }
and V = {wy,wa, ws,wi,ws} also D(wy) = 0.7, T(wa) = 0.6, D(ws) = 0.7, T(wy) = 1.0
[(ws) = 1.0. As a result, SOF(G) = 3.6484, 6 = 0.6, and A = 1.0. The expression
becomes A = > /[{€(w;)}? + {&(w;)}?] = 4.3146. Then, A x A = 1.0 x 4.3146 =
4.3146 and § x A = 0.6 x 4.3146 = 2.5888. Therefore, in this case, 6A < SOF(G) < A\ =
2.5887 < 3.6484 < 4.3146. The validity of Theorem 3.6 is thus established.

4. SOMBOR INDEX OF FUZZY DIGRAPH, REGULAR FUZZY GRAPH AND FUZZY CYCLE

Definition 4.1. The degree of a vertex w; in an FDG G= (‘7, E) is given by I'(w;) and
D) = 57 6@ + €@
i#j

Example 4.1. Considering the fuzzy di-graph (FDG) G illustrated in Figure-6, where a
vertex set V = {wi,wa,w3,ws} and ['wy) = 1.4, I'(w2) = 1.8, T'(w3) = 2.2 and I'(ws) = 1.8.

Definition 4.2. The fuzzy di-graph G = (V, E) and its Sombor index is denoted by

SOFD(G) and defined as
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SOFD(G) = 3 @) D)} + {(w)) Dlewy)}?

wiWsj EE(é)

0.6

FIGURE 6. A FDG (G).

Consider the FDG G of Figure - 6, I'(w;) = 1.4, similarly D(ws) = 1.8, D(ws) = 2.2,

I'(wy) = 1.8. Therefore SOFD(G) = 13.753.

Theorem 4.1. Let G = (17, E) be an FDG of order n with |E| = m. Assume that each
vertez of G is constant. If w = £(w;) and D(w;) =T, then SOF(G) = V2 x m x w x .

Proof. Suppose we have the FDG G = (‘ZE), where all vertices are constant. Given

that |V| = n, and m undirected edges exist. Again, I(w;) = I and w = &(w;) Yw; € V.
Therefore

SOFD(G) = >~ (60w (@i} + {€(w) T(wj)
i#

wiwj €EE(G)

=my/{wl}2 +{wl'})2 =vV2xmxwxT.

Hence, SOFD(G) = v/2 x m x w x I". Thus the results follows.
([l

Example 4.2. Consider the FDG G of Figure-7. Given that |E| = m = 4 and that each
vertez’s degree is T'(w;) = 0.6, membership values of each vertexr {(w;) = 0.3. Therefore
SOFD(G) = 1.0181. Now vZ x m x w x T' = 1414 x 4 x 0.3 x 0.6 = 1.0181. Thus the
theorem 4.1 is verified.

Corollary 4.1. If two FDGs él, Go are isomorphic to each other, then SOFD(él) =
SOFD(G2).

Theorem 4.2. An edge connects each pair of vertices in the regular and entirely regular

- ~ _1
FG G = (V,E), where O(V) =n. Then SOF(G) = 71(71[2) X w x I', where I' = T'(w;),
w=&(w;) Vuw eV.



B. SOME, A. PAL : SOMBOR INDEX OF FUZZY GRAPH 1337

(0.3)

FIGURE 7. A FDG (G) with membership values of the vertices are 0.3.

Proof. Given that G is regular, I' = I'(w;), Vw; € V. Additionally, G is totally regular FG,
so I'[w;] = Ai(say) and Vw; € V. We know that I'w;] = T'(w;) + {(w;) = A =T + &(w;)=
Ewi) =A—w=>w=A—-T,Vw € V. As a result vertex of each vertices is constant and

w = &(w;), Yw; € G. Given that |V| = n and that each pair of vertices in G has an edge,
. n(n—1
and it has — edges.

Therefore,
SOR@ = 3 e T +{¢lw)) D)y
_n(n—l) _n(n—l)
= P VP el = M T,
This completes the proof. 0

FIGURE 8. A regular and totally regular FG G with membership values of
the vertices are 0.8.

Example 4.3. Consider the FG G of Figure - 8, and here V- = {w1, w2, ws, w4} and
E = {wjwy,wiws, wiwy, wows, wowy, wsws} and {(v;) = 0.8, i = 1,2,3,4. Hence, n =
V| = 4 and each pair of vertices has an edge connecting them. Now I' = I'(w;) = 1.5,
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Fw;] =08+ L5 =23, Vi=1,2,3,4. As a result, Gisa reqular and totally~7’egular FG.
Therefore SOF(G) = 64/(0.8 x 1.5)2 + (0.8 x 1.5)2 = 10.182. Hence SOF(G) = 10.182.

~ -1 44 -1
Now applying the theorem 4.2 we have SOF(G) = n(Ti@) xwxI'= (\[2)

10.182. Thus the theorem 4.2 is verified.

Theorem 4.3. [13] Let us consider an odd cycle G* = (U, E). A BFGs G = (U, S, T)
is called a regular BFGSs if and only if T = (M% u?) = constant.

x0.8x1.5 =

Theorem 4.4. Let G = (V, E) be a regular fuzzy graph of the crisp graph G* , where
G* is an odd cycle and |V| = n. The vertex set is V. = {w1,wa, w3, wy, -+ ,wy} with
membership values of vertices and edges are §(w;) = wi;, 1 < i < n and (ww;) = ey,
Vw;wj € E. Then SOF(G) = 2v/2e1 (wiwi2 + wigwiz + - - - + wWipwi).

Proof. Since G* is an odd cycle of a regular fuzzy graph, by theorem 4.3, each vertex in
G has exactly two incident edges because G* is a cycle. Additionally, since G is regular,
the degree of all the vertices is the same. Therefore, for every vertex w; € V, we have
deg(w;) = T'(w;) = 2e1. Given that |V| = n, and G* is a cycle, the total number of edges

in G is n. This is because, in a cycle graph, the number of edges equals the number of
vertices. Thus, the total number of edges in G is n. Therefore,

SOF@G)= 3 e T(wi)}? + {€(wj) Tluwy)}2
i

wiw; €E(Q)

= Y w2+ (g 2P

= Z \/86%(7«0111012 + wigwiz + - - wipwip)?
i
wiw; €E(Q)
= 2\/561(10111012 + wiawiz + - - WinW1I).-
O

Corollary 4.2. Let G= (V, E) be a regular fuzzy graph of the crisp graph G* , where G* is
an odd cycle of order n. The vertex set is V = {w1,wa, w3, wy, -+ ,wy} with membership
values of vertices and edges are {(w;) = wi, 1 < i < n and {(ww;) = er, Ywyw; € E. Then
SOF(@) = 2v2nw ey, where wy = £(w;) and ey = E(wiwj), YV w; € V and ¥V wyw; € E.

5. THE RELATIONSHIP BETWEEN THE SOMBOR INDEX AND OTHER TOPOLOGICAL
INDICES

The links between the Sombor index of fuzzy graphs and other topological indices are
shown in this section in multiple instances. First, we looked into the relationship between
the first Zagreb index and the Sombor index.

Theorem 5.1. Let G = (V,E) be a fuzzy graph. Then SOF(G) = %ZFl(G)

Proof. Any two real positive numbers, A\ and u, we have

1
M p® = S+ ) (1)
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In Eq. (1) put A = §(w;)['(w;) and p = {(w;)I'(w;), we get

{€(wi) T(wi)}? + {€(wj) D(w))}* > %[{é(wi) D(wi)} + {€(w;) D(w;)}]

= \/{é‘(wi)F(wz‘)}2 () D)) = = Y Héw) T(@i)} + {&w)) T(w)))]

i#j V2 i#j
wiw]'EE(G) wiLUjEE(G)
~ 1 1 -
= SOF(@) > — 3 ) T} = —=2F\(@G).
V2~ V2
weV(G)
Therefore, SOF(G) = %ZFl(é) Hence the proof. O

The subsequent theorem elucidates the relationship between the Sombor index and the
second Zagreb index for fuzzy graphs .

Theorem 5.2. Suppose G = (V,E) be a fuzzy graph. Then [SOF(G)]? > 2[ZF%(G)].

Proof. Consider two positive real number A and u, and apply arithmetic mean > geometric
mean we get,

N+ 2. 2
5 2 V= VA2 > V2 (2)
In Eq. (2) put A = &(w;)I(w;) and p = &(w;)I'(w;) we get

VA€ T(@i)}2 + {6(w7) Dlwy)}? 2> vy (6(wn) T(wn) HE @) T(w;))

- ; VAE@) T ()} + {€(w)) T(w))}2 > V2 ; V@) T@i) HEw) T(wj))
#F] ()

wiijE(G) winEE(é)

= [SOF(G)]? > 2[ZF*(G)].

Thus [SOF(G))? > 2[ZF?(G)]. Hence the proof. O

The upcoming theorem establishes a link between the Sombor index and the hyper
Zagreb index for fuzzy graphs.

Theorem 5.3. Let G = (V, E) be a fuzzy graph. Then 2[SOF(G)]2 > [HZI(G)).
Proof. We consider two positive real number A and p we have
200 + %) = A+ ) + (A = w)®
= 2V (A + )] > (A + p)*. (3)

Using Eq. (3) put A = §(w;)I'(w;) and p = §{(w;)T(w;) we get,
20 /€ ) D)} + {60) D) P2 > {E(i)T(wi) + E())T (7))

=2 ) [\/{f(wi) D)+ {Ew) TP = D {&w)T(wi) + &(w)T(w;))?
i#j i#i

wiwi €B(G) wiw; €E(G)
= 2[SOF(G)]* > HZI(G).
>

Therefore, 2[SOF(G)]2 > [HZI(G)]. Thus, the proof. O
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The subsequent theorem delineates the correlation between the Sombor index and the
Edge Forgotten index (EFI) for fuzzy graphs.

Theorem 5.4. Consider a fuzzy graph G = (V,E). Then [SOF(G)] < [EFI(G)].

Proof. For any pair of positive real numbers A and p we have :

VA2 4 52 < N2 4 2 (4)

Using Eq. (4) put A = &(w;)I'(w;) and p = §{(w;)T(w;) we get,
V@) T@i))? + {6(w)) T())}? <€) T(@i))? + {€(w)) T(wj))?
= Y JE@OT@ P+ {Ew)T@)2 < > {€w) T + {€(w) Tw))}

i#] i#j
wiw; €E(G) wiw; €E(G)
= [SOF(G)] < [EFI(Q)).
Therefore, [SOF(G)] < [EFI(G)]. Thus, the outcome is evident. O

The following theorem illustrates the relationship between Sombor index and the Randic
index for FGs.

Theorem 5.5. Let us consider a fuzzy graph G = (V,E). Then [SOF(G)]2x [RI(G)] > 2.

Proof. For any two positive real number A and p we have

2, 2
AT+ > /i

2
= [V )P (w2 2 2. (5)
Substitute A = £(w;)[(w;) and = £(w;)T(w;) and taking sum in Eq. (5) we get
> [\/{€(Wi)F(wz')}2 +H{Ew)T@)] Y HE(wi)d(w) HEw)T(w)}] 72 > 2.
wiw;zé%(é) wiwfi%@
Therefore, [SOF(G)]? x [RI(G)] > 2. Hence the proof. O

6. APPLYING THE SOMBOR INDEX FOR FUZZY GRAPHS TO IDENTIFY THE COUNTRY
WITH THE HIGHEST HUMAN TRAFFICKING RATES RELATIVE TO OTHER COUNTRIES

Model construction. Human trafficking is a form of modern-day slavery involving the
illegal transport of individuals through force or deception for labor, sexual exploitation,
or financial gain. There are various categories of human trafficking.

1. Sex Trafficking : Sex trafficking involves compelling a person to engage in the sex trade
through force, fraud, or coercion.

2. Child Trafficking : Exploitation of children for labor, sexual exploitation, or use in
illicit activities like drug trafficking or as child soldiers.

3. Labor Trafficking : Labor trafficking involves obtaining a person for labor services,
often under exploitative conditions.

4. Organ Removal : Organ removal is a component of human trafficking, even though this
is not widely accepted.

There are many reasons for human trafficking (HT), including poverty, lack of education,
demand for cheap labor and sex, lack of human rights protections, lack of legitimate eco-
nomic opportunities, cultural factors, conflict and natural disasters, lack of safe migration
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TABLE 1. Data on human trafficking,

Countries Human Trafficking | Political leadership GDP Total
2023 2021 2023 2021 in USD Population
YAMEN 9.00 8.50 2.00 1.50 9412.03 32,981,641
ETHIOPIA | 8.00 6.00 5.00 4.00 111,271.00 | 120,283,026
IRAN 8.00 7.50 3.00 2.50 359713.03 87,923,432
NEPAL 8.00 7.00 3.50 2.50 36288.83 30,034,989
B. FASO 7.00 6.00 3.50 2.50 19,737.62 22,100,683
NICARGUA | 7.00 6.00 2.00 1.50 14,013.02 6,850,540
U. K 7.00 6.00 8.00 7.50 3,131,380.00 | 67,326,569
SRI LANKA | 6.50 5.50 4.00 2.50 88,927.06 22,156,000
INDIA 8.00 7.00 5.42 5.25 3176,300.00 | 1407,563,842
BHUTAN 6.00 5.50 6.50 6.00 2539.55 777486
SWEDEN 5.00 4.50 7.00 6.50 635,664.00 10425,811
ARGINTINA | 5.00 4.00 7.00 6.50 487,227.00 45,808,747

g (007

NE (0.14)

FIGURE 9. Fuzzy graph of human trafficking
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options, deception and intimidation, and the population size of the country. Two of the
most important factors contributing to human trafficking are the growth rate of Gross
domestic product (GDP) and the total population of a country, as well as the level of
control exercised by political leadership and governance (PLG). Human trafficking begins
and spreads through various routes. Recruiters seek migrants via the internet, employ-
ment agencies, and local contacts in countries of origin such as Southeast Asia, Eastern
Europe, and sub-Saharan Africa. International organizations, governments, and NGOs
work together to raise awareness, prevent trafficking, and assist victims. Their efforts in-
clude implementing legal frameworks, providing victim support programs, and conducting
public education campaigns. Therefore, to effectively combat human trafficking, extensive
collaboration and unity are required. The objective of this article is to decrease human
trafficking on a country-by-country basis, by using Sombor index in fuzzy graph and uti-
lizing the data presented in Table 1. The data presented here are extracted from the
“Global Organized Crime Index 2023” specifically from the rankings on human trafficking
available at https://ocindex.net/rankings/humantrafficking. As illustrated in Fig-
ure 10, the data highlight the top twelve countries with the most significant increases in
human trafficking rates between 2021 and 2023, alongside changes in political leadership
and governance during the same period.

Representation of membership values. Now, the vertex membership value (MV)

HT(2(E;?’F)(50}£)(2021). Similarly, the edge membership value

PLG(2023)—PLG(2021)
PLG(2021)

value (MV) and edge membership value range between 0 and 1. The membership values
for all vertices and edges are provided in Table 2.

is calculated by the formula :

(MV) is calculated using the formula : Here, vertex membership

Now, SOFE(G) = ¥ /{€(w) Tw)}? + {€@;) Twy) 2
wiwj €E(G)
The Sombor index of countries (vertices) is presented in Table 3, calculated using the
formula : SOF¢(Country) = SOF¢(G) — SOF¢(G — Country).

TABLE 2. Membership values of vertex and edges and degrees with respect
to human trafficking

Countries Membership| Membership| Degree of | Degrees of
value of | value of an | vertex an edge
vertex edge

YAMEN(YA) 0.05 0.33 0.05 2.83

ETHIOPIA(ET) 0.33 0.25 0.33 2.83

IRAN (IR) 0.07 0.2 0.07 2.83

NEPAL(NE) 0.14 0.4 0.14 2.83

BURKINA FASO(BF) 0.17 0.4 0.17 2.83

NICARGUA(NI) 0.17 0.33 0.17 2.83

UNITED KINGDOM(UK) | 0.17 0.07 0.17 2.83

SRI LANKA(SL) 0.18 0.6 0.18 2.83

INDIA(IN) 0.14 0.03 0.14 2.83

BHUTAN(BH) 0.18 0.08 0.18 2.83

SWEDEN (SW) 0.22 0.07 0.22 2.83

ARGINTINA (AR) 0.25 0.07 0.25 2.83
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Decision-Making. Our results depend on several parameters, including :
1. The total population and GDP of a country.

2. The total number of human trafficking cases in 2023.

3. The total number of human trafficking cases in 2021.

TABLE 3. Membership value and degrees of the fuzzy graph of Fig 9

Countries SOF®(G) | SOF*(G —v) | SOF¢(Country)
YAMEN (YA) 8.0237 7.0897 0.9340
ETHIOPIA(ET) 8.0237 7.3115 0.7122
IRAN(IR) 8.0237 7.4576 0.5661
NEPAL(NE) 8.0237 6.8904 1.1333
BURKINA FASO(BF) 8.0237 6.8897 1.1640
NICARGUA(NI) 8.0237 7.0881 0.9356
UNITED KINGDOM(UK) | 8.0237 7.8255 0.1982
SRI LANKA (SL) 8.0237 6.3223 1.7014
INDIA(IN) 8.0237 7.9388 0.0849
BHUTAN(BH) 8.0237 7.7970 0.2267
SWEDEN (SW) 8.0237 7.8251 0.1986
ARGINTINA(AR) 8.0237 7.8249 0.1987

TABLE 4. Sombor index values and order of the countries

Countries SOFE(Country)
SRI LANKA (SL) 1.7014
BURKINA FASO(BF) 1.1640
NEPAL(NE) 1.1333
NICARGUA (NI) 0.9356
YAMEN(YA) 0.9340
ETHIOPIA(ET) 0.7122
IRAN(IR) 0.5661
BHUTAN(BH) 0.2267
ARGINTINA (AR) 0.1987
SWEDEN(SW) 0.1985
UNITED KINGDOM (UK) 0.1982
INDIA(IN) 0.0849

Now Sombor index of a vertex indicates that the country(vertex) has realized a large
amount of human trafficking with respect to their total population and GDP and human
trafficking in the last year.

A minimum Sombor index of a vertex indicates that the corresponding country has ex-
perienced the lowest level of human trafficking globally. Next, we arrange the countries
in descending order based on the prevalence of large-scale human trafficking worldwide,
as presented in Table 4. Based on the findings outlined in Table 4, our study offers the
subsequent insights.

(i) If we identify the countries with higher occurrences of human trafficking worldwide
based on the Sombor index, then these countries need to take immediate action to miti-
gate human trafficking.
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(ii) Countries with the highest increase in human trafficking are identified by high pop-
ulation, low GDP growth, and rising trafficking rates. According to Table 1, Yemen,
Ethiopia, and Burkina Faso show significant increases, but our results highlight in Table
4, Sri Lanka, Burkina Faso, and Nepal as the top three in the previous year.

(iii) Countries at the bottom of our results have demonstrated a decrease in human traf-
ficking compared to the previous year. This improvement indicates progress in combating
this issue, reflecting effective measures and efforts in these regions. Continued monitoring
and support will be essential to sustain and further this positive trend.

7. CONCLUSION

In mathematical chemistry, various topological indices have been studied to explain the
physical, chemical, pharmacological, and other properties of molecules. Among these, the
Sombor index, a unique topological index has recently gained attention.The research es-
tablishes upper and lower bounds for the Sombor index within the context of fuzzy graphs,
demonstrating its versatility across different graph structures including cycles, stars, and
isomorphic graphs. Additionally, Sombor index values were computed for regular fuzzy
graphs, fuzzy cycles, and fuzzy directed graphs in our investigation. Furthermore, dis-
tinct correlations between the Sombor index of a fuzzy graph and other indices within the
fuzzy graph framework were explored. Finally, we apply the Sombor index for fuzzy graphs
to identify the country with the highest human trafficking rates relative to other countries.

It is anticipated that further studies in this domain will explore fuzzy soft graphs, picture
fuzzy graphs, bipolar fuzzy graphs, m-polar fuzzy graphs, Pythagorean fuzzy graphs,
spherical fuzzy graphs, and the use of the Sombor index on intuitionistic fuzzy graphs.
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