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MATHEMATICAL MODEL ON COVID-19 TRANSMISSION WITH

ABSENCE AND PRESENCE OF SECOND DOSE OF VACCINATION

IN TURKEY

G. SHARMA1∗, A. SHARMA1, N. PARMAR2, §

Abstract. In this paper, we have explored COVID-19 transmission dynamics with vac-
cination drive in Turkey. The present study elaborates the impact of vaccination drives to
prevent infection transmission among Turkish people. The proposed model is equipped
with seven compartments which is mainly focused on the impacts of vaccination drives.
The two years real cumulative data of infected Turkish individuals, from 1 January, 2022
to 31 December, 2023, is taken for best data fit with the model which emphasizes the
accuracy of our model. The numerical solution provides the better insights which is
in the favour of our model compartments. We have estimated the parameters involved
in model formulation. The impact of effective transmission rate, both first and second
dose of vaccination rates on individuals have been analysed. A comparative study of
presence and absence of double dose of vaccination drive emphasizes the importance of
vaccination drive to cure the individuals. The observed results demonstrate that the
model is suitable for prediction of COVID-19 infection, and emphasize how the second
dose of vaccination can be an unavoidable tool to reduce the infection among the individ-
uals. Further, residual, sensitivity analysis, disease free equilibrium, local stability, basic
reproduction number, positivity, and boundedness of the model are analysed. These
pivotal information leads us to unravel the complexity of the disease. Our model indi-
cates that both vaccination drives are essential to reduce the disease transmission among
the individuals and provide a great support to immune system in the combat of current
infection. The reduction in observed basic reproduction number dictates the removal of
infection in near future.
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1. Introduction

Vaccines are essential for halting the virus’s transmission against COVID-19. They have
the ability to decrease the adverse effects of infection on public health, and eventually
putting an end to the pandemic. Although, vaccination drives have been widely accepted
across the globe but do not provide complete protection against the virus due to its
mutation. As the virus continues to evolve and produce new variants, more contagious
strains are very dangerous and awful. It is very hard to trace the infection and for timely
treatment of the individuals to reduce the casualties. The newer mutated variants, include
beta, delta, and omicron, are extremely contagious. Currently, sub-variants like BA.2,
stealth omicron, BA.2.75, BA.2.86 and newly reported JN.1 are emerged worldwide and
have the ability to survive among the individuals. To ensure the best possible defense
against the virus, the immune system must be primed and can be boosted with booster
doses of the COVID-19 vaccine. It improves effectiveness, offers more resilient immunity,
and protects more effectively against newer variants of the virus.

Certain models documented in scientific literature depict real-world occurrences and
forecast the severity of infectious diseases by employing mathematical principles [1–3].
Some simple models have been modified which reflect the spread of infection among the
individuals, and vaccination has been introduced to control the infection [1, 4–14]. The
existing COVID-19 models have been modified by including vaccination techniques, al-
lowing for accurate projections of infection spread and the effectiveness of immunization
efforts. These enhanced models offer important new information on how well immuniza-
tion campaigns contribute to controlling the epidemic and improving public health efforts
[15–30].

An epidemiological SEIHR model, with and without instinctive vaccination drive is
reported in the literature and the obtained results are in the support of reduction of infec-
tion [15]. For Indian territory, an extended mathematical model with ten compartments
is developed and put some light on spreading the infection. To maintain the economic
burden on government and people, some study have enlightened the science community
by opting cost-effectiveness and the optimal intervention strategies [16, 17, 28]. Further, A
mathematical model is focused on first wave of infection in Senegal from March 29, 2020,
to April 29, 2020, where the data fitting with the model has enhanced its credibility [18].
Several studies have focused on vaccine supply, vaccination impact on infection and vaccine
optimal control strategy to mitigate the infection among the individuals [19–21, 25, 26].

The influence of non-pharmaceutical interventions (NPIs) with vaccination drives on
infected individuals are reported in the literature [22, 29]. Some computational models
with vaccine efficacy are developed to understand the situation of COVID-19 infection in
England, Africa, and New York. These models emphasize the vaccination efforts to reduce
the burden of COVID-19 broadly [23, 24, 27].

Further, in view of existing models, a modified measles compartmental model with
double dose of vaccination is developed. The vaccination drive provide the fruitful result
in Bangladesh as mild and critical cases of infection have been decreased after vaccination
[8, 12]. It has been observed that adopting double doses of vaccination programme reduces
infection among the population globally. Additionally, implementing additional preventive
measures and control tactics can be crucial in mitigating the present epidemic [31–43].

The second dose of vaccination drives is one of the pivotal tactics and it is adopted across
the globe [31–37]. The implication of double dose has ample outcomes and can be seen
in the form of reduction in infection among the individuals. The increase in vaccination
drives leads to optimizes the disease burden. The incorporation of other interventions like
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quarantine, media campaign etc along with double dose of vaccination are an indispensable
part to mitigate the infection [38, 39].

A comparative study between adopting vaccination and no vaccination drives is reported
in the literature. The developed model is fitted using Ethiopian data on vaccinated indi-
viduals and cumulative daily infected cases [40]. In view of reduction in infection, several
studies have focused on optimal control strategies and cost-effectiveness analysis [41, 42].
Further, a case study to rollout of double dose of vaccination drives emphasize the vacci-
nation strategy against COVID-19 imposed in Italy [43]. However, the idea of a booster
dose is frequently adopted globally in order to achieve herd immunity. It is revealed that
the booster dose helps to improve vaccination efficacy, and slow down the infection rate
in individuals [44–52, 54? –56].

As of March 17, 2024, the total number of COVID-19 cases reported to the WHO is
17 million and received reports of 101,400 COVID-19 deaths. Further, 69% of the total
population has received at least one dose of the COVID-19 vaccine while 63% and 33% of
the total population have received the whole primary series and at least one booster dose
of the COVID-19 vaccination on 26 November 2023 for Turkey, respectively [57].

In this study, We separated the paper into six sections. The section (2)is bifurcated
into five subsections as model formulation, non-negativity, boundedness, disease free equi-
librium points and basic reproduction number (R0), and local stability, respectively. The
seven compartmental model SEIQRV1V2 is formulated where the impact of vaccination
drives is focused mainly. For all positive solutions, the non-negativity of the model em-
phasises that all of the model’s variables and parameters are positive for any t > 0. The
boundedness of the model depicts that the solutions are bounded with respect to non-
negative. The DFE points indicates the removal of infection among the individuals while
the future of the disease can be predicted with the help of BRN. If the value of R0 is
lesser or greater than one then the infection will disappear or remain among the individ-
uals, respectively. Further, in section (3), parameter estimation using MATLAB ode45
package and model fitting by least square curve fitting method are discussed. The sensi-
tivity analysis of each parameter of the model with respect to R0 elaborates in section (4).
The section (5) covers numerical simulations of the proposed model and provide better
insights. Finally, section (6) includes discussion and conclusion in the form of outcomes
of our proposed study.

2. Mathematical Analysis of the COVID-19 Model

In this section, we have discussed the model with schematic diagram, model formulation,
boundedness, non-negativity, epidemic equilibrium, and basic reproduction number of the
COVID-19 model (1).
2.1. Model Formulation.
The existing several studies are revealed that the infection spread due to contact of human-
to-human and their droplets after sneezing [58]. Therefore, it is evident from the literature
that the interventions like social distancing, quarantined, vaccination drive etc., can help
to reduce the risk of current pandemic and mitigate COVID-19 infection in near future
[59]. The vaccination drives is considered the most effective intervention to reduce the
infection. To understand the invincible importance of vaccine, we have separated the entire
population into seven compartments: susceptible (S), exposed (E), infected (I), isolated
or quarantined (Q), recovered (R), the number of first dose vaccinated individuals (V1),
and the number of double dose vaccinated individuals (V2). N(t) represents the entire
population at time t and can be demonstrated as N(t) = S(t)+E(t)+I(t)+Q(t)+R(t)+
V1(t)+V2(t). In this study, the parameters Λ, δ, d, µ, α, γ, βI , βQ, η1, η2, ζ1, ζ2, τ and λ have
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been taken into account, and nomenclature is manifested in the Table (1). Further, the
Figure (1) demonstrates the dynamics of the model.
2.1.1. Biological Assumptions of the Model.
The present study is analysed after having attention towards some biological assumptions.
These assumptions have the liberty to asses the model and relevant to the symptoms of
spreading the virus infection as follows:

(1) We assume that a susceptible person can go to an exposed class even after taking
double doses of vaccination.

(2) It is evident from the literature that the vaccination do not provide total protection.
In this situation, we suppose that the vaccinated persons get infected when exposed
to the virus.

The model provides a transition from all individuals with birth rate Λ enter into sus-
ceptible class, firstly. After receiving the first dose of the COVID-19 vaccine at a rate
of η1, susceptible individuals migrate to the vaccinated class. Because the first dose of
the vaccine is insufficient to protect against COVID-19, the vaccinated population goes
to the susceptible compartment at a rates of τ . The remaining population moves to the
second dose of the vaccinated class at a rate of η2. It is assumed that individuals in the
population who received the second dose of the vaccination shift to the recovered class at

a rate of λ. The force of infection among individuals is
δ(βII+βQQ)

N , where δ is the effective
transmission rate, βI is the reduction rate in disease transmission for infected individuals,
and βQ is the reduction rate in disease transmission for quarantined individuals. First
dose and double dose (both first and second) of vaccinated population move to exposed

class with the force of infection
ζ1(βII+βQQ)

N and
ζ2(βII+βQQ)

N , respectively. The change in
compartments from exposed to infected, the individuals are moving with the disease rate
µ. The exit rate from infected to quarantine class and quarantine to recovered class are α
and γ, respectively. d is considered as the natural death rate in all compartments.

S
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Figure 1. Graphical representation of the model system (1).

Thus, the following equations demonstrate the model dynamics as:
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dS

dt
= Λ−

δS(βII + βQQ)

N
− (η1 + d)S + τV1,

dE

dt
=

(δS + ζ1V1 + ζ2V2)(βII + βQQ)

N
− (µ+ d)E,

dI

dt
= µE − (d+ α)I,

dQ

dt
= αI − (γ + d)Q, (1)

dR

dt
= γQ− dR+ λV2,

dV1

dt
= η1S −

ζ1V1(βII + βQQ)

N
− (η2 + d+ τ)V1,

dV2

dt
= η2V1 −

ζ2V2(βII + βQQ)

N
− dV2 − λV2.

with the initial conditions S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, Q ≥ 0, R ≥ 0, V1(0) ≥ 0 and
V2(0) ≥ 0.
2.2. Non-Negativity of the Model.
The developed model system (1) emphasizes the population of living entities i.e, humans.
The epidemiological feasibility of our proposed model can be held if the model has all
non-negative solutions or has all positive solutions. So, it can be expected that all of the
model’s variables and parameters are positive for any t > 0. Thus, the following theorem
demonstrates the non negative solutions with non negative initial condition.

Theorem 2.1. The dynamic model represented in (1) with initial conditions given by
S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, Q ≥ 0, R ≥ 0, V1(0) ≥ 0 and V2(0) ≥ 0 has positive solutions(
S(t), E(t), I(t), Q(t), R(t), V1(t), V2(t)

)
, ∀t > 0.

Proof. In particular, when S(0) > 0, an attempt is taken to demonstrate the non-negativity
of the susceptible class S(t), ∀t > 0.

From first equation of the model system (1), we have,

dS

dt
= Λ−

δS(βII + βQQ)

N
− (η1 + d)S + τV1, (2)

dS

dt
≥ −dS. (3)

On integrating equation (3) with respect to t, we get

S(t) ≥ c1e
−dt. (4)

Using initial condition S(0) = S0 in above equation (4), we get,

S(t) ≥ S0e
−dt ≥ 0, (5)

where, S0 = ec1 .
Thus, the positivity of other components can be established similarly. This completes

the proof. □
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2.3. Boundedness of the Model.
The boundedness of the model is one of the key aspect to predict the epidemic accurately.
So, in order to accurate prediction of the epidemic, it is necessary to show that the solutions
of the proposed model is bounded. The following theorem dictates the boundedness of the
model efficiently.

Theorem 2.2. All solutions of the proposed model with non-negative initial conditions
are bounded and N(t) ≤ Λ

d , ∀t > 0.

Proof. From the model system (1), we have

dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt
+

dV1

dt
+

dV2

dt
. (6)

From the above equation (6), we have

dN

dt
= Λ− d(S + E + I +Q+R+ V1 + V2), (7)

which gives us,

dN

dt
= Λ− dN. (8)

Integrating equation (8), we obtain

N(t) =
Λ

d
+

(
N0 −

Λ

d

)
e−dt. (9)

Thus, when t → ∞, the above equation can be written as

N(t) ≤ Λ

d
. (10)

Thus, it can be seen that S(t), E(t), I(t), Q(t), R(t), V1(t), and V2(t) are bounded and
hence the Theorem is proved. □
2.4. Disease Free Equilibrium (DFE) Point and Basic Reproduction Number
(R0) of the Model.
Equating the right-hand side of equation (1) to zero in order to compute the disease free
equilibrium (DFE). Let, the disease state variables E = I = Q = 0, and disease free state
variables S,R, V1 and V2 are non zero. Therefore, the system (1) indicates the disease
free equilibrium point which can be demonstrated as DFE = (S0, E0, I0, Q0, R0, V 0

1 , V
0
2 ),

where
E0, I0, Q0 = 0, and

S0 =

(
Λ (d+ η2 + τ)

d η1 + d η2 + η1 η2 + d τ + d2
,

R0 =
Λ η1 η2 λ

d (d+ λ) (d η1 + d η2 + η1 η2 + d τ + d2)
,

V 0
1 =

Λ η1
d η1 + d η2 + η1 η2 + d τ + d2

, (11)

V 0
2 =

Λ η1 η2
(d+ λ) (d η1 + d η2 + η1 η2 + d τ + d2)

.

Further, to understand the spreading of COVID-19 disease among individuals, basic
reproduction number (R0) is pivotal threshold parameter which predicts the future of the
disease. If the value of R0 is less than one then the infection will disappear in near future
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while if the value of R0 is greater than one then the infection will remain among the
individuals and disease will not be ended. Based on this, the infection peak and size of
epidemic can be demonstrated. More precisely, it can be defined as the expected average
number of secondary cases of infection that will occur when a single infectious individual
is introduced into a completely susceptible population. For further simulation, we have
opted the next generation matrix method to find the basic reproduction number (R0)
[60–65]. Let us consider the following matrices:

F =

 (I βI+QβQ) (S δ+V1 ζ1+V2 ζ2)

N
0
0

 ,

V =

 E d+ E µ
I (α+ d)− E µ
Q (d+ γ)− I α

 .

The Jacobian matrix of F and V at DFE, denoted by F and V are given as follows:

F =

 0
βI (S0 δ+V 0

1 ζ1+V 0
2 ζ2)

N0

βQ (S0 δ+V 0
1 ζ1+V 0

2 ζ2)
N0

0 0 0
0 0 0

 ,

V =

 d+ µ 0 0
−µ α+ d 0
0 −α d+ γ

 .

The dominant eigenvalue of FV −1 represents R0, which is

R0 = RI +RQ, (12)

where,

RI =
βI µ

(
S0 δ + V 0

1 ζ1 + V 0
2 ζ2

)
N0 (α+ d) (d+ µ)

,

RQ =
αβQ µ

(
S0 δ + V 0

1 ζ1 + V 0
2 ζ2

)
N0 (α+ d) (d+ γ) (d+ µ)

.

2.5. Local stability analysis of the disease free equilibrium.
For local stability, Theorem (2.3) demonstrates wonderful result which is in support of
our proposed model. It can be seen that the disease will wipe out in near future if R0 is
smaller than unity. The observed result provides us a straightforward understanding and
epidemiological consequence as the entry of small influx of newly infected individuals in
the system will not affect the society until the basic reproduction number R0 < 1 holds
accurately. In other words, the illness will quickly disappear if the starting size of the
infected people is inside the DFE basin of attraction and the basic reproduction number
R0 < 1 [31, 66–70].

Theorem 2.3. The disease-free equilibrium DFE is locally stable if R0 < 1.
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Proof.

J =



∂f1
∂S

∂f1
∂E

∂f1
∂I

∂f1
∂Q

∂f1
∂R

∂f1
∂V1

∂f1
∂V2

∂f2
∂S

∂f2
∂E

∂f2
∂I

∂f2
∂Q

∂f2
∂R

∂f2
∂V1

∂f2
∂V2

∂f3
∂S

∂f3
∂E

∂f3
∂I

∂f3
∂Q

∂f3
∂R

∂f3
∂V1

∂f3
∂V2

∂f4
∂S

∂f4
∂E

∂f4
∂I

∂f4
∂Q

∂f4
∂R

∂f4
∂V1

∂f4
∂V2

∂f5
∂S

∂f5
∂E

∂f5
∂I

∂f5
∂Q

∂f5
∂R

∂f5
∂V1

∂f5
∂V2

∂f6
∂S

∂f6
∂E

∂f6
∂I

∂f6
∂Q

∂f6
∂R

∂f6
∂V1

∂f6
∂V2

∂f7
∂S

∂f7
∂E

∂f7
∂I

∂f7
∂Q

∂f7
∂R

∂f7
∂V1

∂f7
∂V2


,

where,

f1 = Λ−
δS(βII + βQQ)

N
− (η1 + d)S + τV1,

f2 =
(δS + ζ1V1 + ζ2V2)(βII + βQQ)

N
− (µ+ d)E,

f3 = µE − (d+ α)I,

f4 = αI − (γ + d)Q,

f5 = γQ− dR+ λV2,

f6 = η1S −
ζ1V1(βII + βQQ)

N
− (η2 + d+ τ)V1,

f7 = η2V1 −
ζ2V2(βII + βQQ)

N
− dV2 − λV2.

Thus, it can be written as

J =



−d− η1 −M1 0 −S βI δ
N −S βQ δ

N 0 τ 0
M1 −d− µ βI M2 βQM2 0 M3 M4

0 µ −α− d 0 0 0 0
0 0 α −d− γ 0 0 0
0 0 0 γ −d 0 λ

η1 0 −V1 βI ζ1
N −V1 βQ ζ1

N 0 −M5 −M3 0

0 0 −V2 βI ζ2
N −V2 βQ ζ2

N 0 η2 −d− λ−M4


,

where,

M1 =
δ (I βI +QβQ)

N
,

M2 =
(S δ + V1 ζ1 + V2 ζ2)

N
,

M3 =
ζ1 (I βI +QβQ)

N
,

M4 =
ζ2 (I βI +QβQ)

N
,

M5 = d+ η2 + τ.
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The above mentioned Jacobian matrix at disease-free equilibrium (DFE) is

J(DFE) =



−d− η1 0 −S0 βI δ
N0 −S0 βQ δ

N0 0 τ 0
0 −d− µ M11 M22 0 0 0
0 µ −α− d 0 0 0 0
0 0 α −d− γ 0 0 0
0 0 0 γ −d 0 λ

η1 0 −V 0
1 βI ζ1
N0 −V 0

1 βQ ζ1
N0 0 −M5 0

0 0 −V 0
2 βI ζ2
N0 −V 0

2 βQ ζ2
N0 0 η2 −d− λ


, (13)

where,

M11 =
βI

(
S0 δ + V 0

1 ζ1 + V 0
2 ζ2

)
N0

,

M22 =
βQ

(
S0 δ + V 0

1 ζ1 + V 0
2 ζ2

)
N0

.

Thus, for steady states, it can be seen in (11), S0 and N0 are steady states, where
N0 = S0+R0+V 0

1 +V 0
2 . In view of disease-free equilibrium of the above Jacobi matrix (13),

the following eigenvalues are observed −0.0006096, −0.007531, −9.724 × 10−5, −0.1192,
−0.07789, −0.06749 and −0.03781, which are negative. Therefore, we conclude that DFE
of model system (1) is locally stable if R0 < 1, and unstable otherwise. □

3. Parameter Estimation and Model Fitting

Here, we have estimated the parameters using MATLAB ode45 package to solve model
system (1). The daily reported cases of COVID-19 infection in Turkey is used for pa-
rameters estimation which is given in Table (1). Particularly, the model is configured
to examine the impact of vaccination control on disease burden, specifically as measured
by the total number of daily reported cases in Turkey between January 01, 2022, and
December 31, 2023.

With the values in Table (1), the disease-free equilibrium value isDFE = (S0, E0, I0, Q0,
R0, V 0

1 , V
0
2 ) = (986088.27, 0, 0, 0, 114806992.45, 800431.26, 10111815.95), and R0 = 0.84 <

1. This shows that the infection is under control and it may be vanish in near future.
The model’s solution curves with varying initial conditions are shown in Figure (2), where
they tend to the stability of the disease-free equilibrium point. The results of the model
fitting in Figure (3) and residual in Figure (4) using the reported cumulative number of
daily cases are shown below:
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Figure 2. Solution curve of COVID-19 transmission dynamics for Turkey
from January 1, 2022 to December 31, 2023.
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Figure 3. Data fitting of total COVID-19 reported cases with model.
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Figure 4. Residual of model system (1)

Table 1. Nomenclature of parameters used in the model system (1).

Parameters Meaning Value Reference
S(0) Initial Susceptible class 84893759.25 Estimated
E(0) Initial Exposed class 20208.25 Estimated
I(0) Initial Infected class 9340043.75 Estimated
Q(0) Initial Quarantined class 95294.67 Estimated
R(0) Initial Recovered class 160854.12 Estimated
V1(0) Initial first dose of Vaccinated class 33929.85 Estimated
V2(0) Initial second dose of Vaccinated class 47456.26 Estimated
Λ Recruitment rate 77241.98 Estimated
µ Incubation period 0.08 Estimated
α Infection time 9.81× 10−6 Estimated
d Natural death rate 6.10× 10−4 Estimated
γ Recovery time 0.04 Estimated
βI Reduction rate in disease transmission

for infected individuals
0.12 Estimated

βQ Reduction rate in disease transmission
for quarantined individuals

0.08 Estimated

η1 First dose of vaccine rate 0.08 Estimated
η2 Second dose of vaccine rate 0.10 Estimated
ζ1 Vaccine inefficacy (first dose) 0.16 Estimated
ζ2 Vaccine inefficacy (second dose) 0.02 Estimated
δ Effective transmission rate 0.17 Estimated
τ Progression rate from V1 to S 0.01 Estimated
λ Recovery rate due to second dose of vaccination 0.01 Estimated
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4. Sensitivity Analysis

The most sensitive parameters for the basic reproduction number R0 can be measured
with the use of the sensitivity index technique. The value of the parameters have been
taken from the Table (1) for analysis. The normalized sensitivity index for the basic repro-

duction number is given by SR0
P = ∂R0

∂P × P
R0

, where P = Λ, δ, d, µ, α, γ, βI , βQ, η1, η2, ζ1, ζ2, τ
and λ. We obtain,

SR0
µ =

∂R0

∂µ
× µ

R0

=
d

d+ µ
= 0.0079

In similar manner, the sensitivity index of each parameter for R0 is assessed and men-
tioned in Table (2). It has been observed that seven out of fourteen sensitivity indices
are positive, the other remaining six indices are negative while one index is non-negative.
The positive and negative sensitivity indices indicate that R0 increases and decreases, re-
spectively, if the corresponding parameters with R0 are in increasing manner (see Figure
(5)). Therefore, the goal of intervention strategies should be to decrease and increase in
parameter’s value with positive and negative indices, respectively.

Table 2. The sensitivity index of R0 with respect to parameters P used
in the model.

Parameters Meaning Sensitivity Index
Λ Recruitment rate 0.0
µ Incubation period +0.0079
α Infection time -0.0157
d Natural death rate -0.0420
γ Recovery time -0.0002
βI Reduction rate in disease transmission

for infected individuals
+0.9998

βQ Reduction rate in disease transmission
for quarantined individuals

+0.0002

η1 First dose of vaccine rate -0.2970
η2 Second dose of vaccine rate -0.2467
ζ1 Vaccine inefficacy (first dose) +0.2311
ζ2 Vaccine inefficacy (second dose) +0.4641
δ Effective transmission rate +0.3048
τ Progression rate from V1 to S +0.0202
λ Recovery rate due to second dose of vaccination -0.4265

The Figure (5) demonstrates the plot of R0 corresponding to different parameters man-
ifested in Table (1). We have varied the parameters one by one for each plot that are
plotted against R0.
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Figure 5. Sensitivity analysis of R0 with respect to parameters for model
system (1).

5. Numerical Simulations

5.1. The Impact of Effective Transmission Rate (δ) on Individuals.
Figure (6) displays the impact of transmission rate δ for each of the population compart-
ments specified in model system (1). Here, the other parameters have been fixed and
varied the effective transmission rate as δ = 0.15, 0.17, 0.19. It can be seen that E and
I population compartments have significant changes while the remaining compartments
S, Q, R, V1 and V2 have minor changes. This means that in order to prevent the spread
of the disease, we must follow some interventions strictly as wearing masks, washing our
hands, and avoiding close contact with others.
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Figure 6. Time series of model system (1) with 0.15 ≤ δ ≤ 0.19.

5.2. The Impact of First Dose of Vaccination Rate (η1) on Individuals.
Figure (7) demonstrates the impact of first dose of vaccination η1 on the population
compartments. It can be seen that the population compartments S,E, I, V1 and V2 have
major impact while the remaining compartments Q and R are less influenced. Further,
if we increase the rate η1 then the population decrease in S,E, I, and Q compartments
while there is an increment in R, V1 and V2 population compartments. This indicates that
the first vaccination dose significantly reduce the overall number of infected population.
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Figure 7. Time series of model system (1) with 0.06 ≤ η1 ≤ 0.10.
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5.3. The Impact of Second Dose of Vaccination Rate (η2) on Individuals.
Figure (8) demonstrates that the effect of η2 for each population compartments in interval
0.08 ≤ η2 ≤ 0.12. It is observed that on increasing in second dose of vaccination rate (η2),
there is a decrement in population compartments S,E, I,Q and V1, while increment in
the remaining population compartments R and V2. According to a biological phenomena,
we can mitigate the transmission of COVID-19 and the endemic condition when the rate
of second dose vaccination rises.
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Figure 8. Time series of model system (1) with 0.08 ≤ η2 ≤ 0.12.

5.4. The Impact of the Absence of Second Dose of Vaccination Rate (η2 = 0)
on Individuals.
Here, Figure (9) demonstrates the effect of the absence of η2 on population compartments.
It has been observed significant impact of η2. The presence and absence of η2 provide
the better insights to hold down the infection. The presence of second dose of vaccination
emphasizes the increment and decrement in recovered individuals and infected individuals,
respectively. Thus, infection can be disappeared in near future among the individuals.

6. Discussion and Conclusion

In this study, we have explored the effect of vaccination drive on population of Turkey.
The proposed study demonstrates the model formulation, solution, parameters estimation,
real cumulative infected data fit with model, residuals, sensitivity analysis, and numerical
simulations. We have estimated all the parameters for simulation, mentioned in Table
(1). The optimal solution provides the vital information of each compartment and is
manifested in Figure (2). For best data fit with the model, we have taken the data for
two years confirmed infected cases from January 01, 2022 to December 31, 2023 which is
represented successfully in Figure (3). The residual of the model is also carried out and
given in Figure (4) which emphasizes the effectiveness of the proposed model using real
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Figure 9. The impact of presence and absence of η2 on model system (1).

data. The sensitivity analysis demonstrates the influence of the parameters on the model.
It has been observed that seven out of fourteen sensitivity indices are positive, the other
remaining six indices are negative while one index is non-negative which is represented in
Figure (5). Thus, it can be seen that the parameters in Table (2) have the most influence
on the spread or hold down of the current disease.

Further, we have analysed the impact of effective transmission rate, both first and sec-
ond dose of vaccination rates on individuals successfully, and the corresponding Figures
(6), (7) and (8) are in support of our observations. Thus, in order to prevent the spread
of the disease, we must adopt the vaccination drive and interventions like wearing masks,
washing our hands, and avoiding close contact with others, strictly. A comparative study
of presence and absence of double dose of vaccination drive is portrayed in Figure (9) which
emphasizes the importance of vaccination drive that impact the dynamics of COVID-19
transmission among the individuals. We have found the non-negativity, boundedness, dis-
ease free equilibrium, basic reproduction number, local stability of the model, successfully.
The value of basic reproduction number, (R0) < 1, indicates the disease free environment
in near future. Overall, the present study provides the better insights for adopting the
interventions to hold down the infection.

The findings that can be drawn from this study are;

(1) The seven compartmental non-linear mathematical model focuses on the vaccina-
tion drives in Turkey and assess the COVID-19 infection among the individuals
broadly.

(2) The model is non negative or has positive solutions. Further, all solutions of the
model system (1) are bounded with non-negative initial conditions. Theorems
(2.1) and (2.2) are in support of these findings.

(3) The DFE is pointed out and is locally stable with (R0) < 1 which is elaborated in
Theorem (2.3), successfully.
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(4) The involved parameters are estimated and the data from January 01, 2022 to
December 31, 2023 has been taken for best data fit with model. Figure (3) revealed
the data fitting of total COVID-19 reported cases with the proposed model.

(5) The sensitivity analysis, demonstrated in Figure (5), emphasize the influence of
the most sensitive parameters on the model.

(6) Further, the impact of effective transmission rate, both first and second vaccination
dose, presence and absence of second vaccination dose are elaborated which provide
us better insights of the model.

The proposed model can be extended with delay differential equation to understand
the current position of the infection waging among the individuals. Some more methods
like Statistical methods, different fractional operators, machine learning technique can
be adopted to develop this model. The inclusion of some compartments like hospitalized,
booster dose of vaccination, symptomatic and asymptomatic infection spreader may be the
keen interest of future research and more complex model can be generated. The complex
model will generate more information definitely which can be useful for biomedical and
science community for further research.
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