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Abstract. In this research examined a completely fuzzy Interval valued Trapezoidal
Bounded Variable Linear Programming Problem (FFIVBVLPP) where all the param-
eters of objective functions, and resource vector decision variables are represented by
Interval valued Trapezoidal fuzzy numbers. The FFIVBVLPP problem is converted into
a crisp bounded variable problem using the Euclidean distance in Index Vectroial centroid
Ranking. This research presents a novel and efficient solution to address the Interval-
Valued Trapezoidal Fuzzy Bounded Variable Problem. The study aims to provide a
comprehensive analysis of the problem and propose a method that significantly enhances
the efficiency and accuracy of solutions. The approach leverages advanced mathemati-
cal techniques and fuzzy logic principles to handle uncertainty within the interval-valued
trapezoidal fuzzy variables. This paper contributes to the existing literature by introduc-
ing a systematic and effective methodology for dealing with bounded variable problems in
a fuzzy environment. The proposed algorithm is then illustrated with some mathematical
analysis and an appropriate numerical example with case study.
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1. Introduction

The challenge posed by the Fuzzy Bounded Variable Problem is prominent in decision-
making and modelling due to the inherent uncertainties existing within specified limits.
This problem emerges when variables exhibit imprecise or ambiguous boundaries, ren-
dering conventional approaches inadequate. Researchers are actively exploring inventive
methodologies, such as fuzzy logic and interval mathematics, to confront and alleviate the
intricacies associated with fuzzy bounded variables. These approaches provide a nuanced
comprehension of uncertainty, facilitating more precise modelling and decision support
across diverse domains like finance, engineering, and artificial intelligence. In the evolving
landscape of technology, the pursuit of efficient solutions to the Fuzzy Bounded Variable
Problem is imperative for fortifying the resilience and dependability of systems in the
presence of real-world uncertainties.The challenge posed by the Fuzzy Bounded Variable
Problem is prominent in decision-making and modelling due to the inherent uncertainties
existing within specified limits. This problem emerges when variables exhibit imprecise
or ambiguous boundaries, rendering conventional approaches inadequate. Researchers are
actively exploring inventive methodologies, such as fuzzy logic and interval mathematics,
to confront and alleviate the intricacies associated with fuzzy bounded variables. These
approaches provide a nuanced comprehension of uncertainty, facilitating more precise mod-
elling and decision support across diverse domains like finance, engineering, and artificial
intelligence. In the evolving landscape of technology, the pursuit of efficient solutions to
the Fuzzy Bounded Variable Problem is imperative for fortifying the resilience and de-
pendability of systems in the presence of real-world uncertainties. The challenge posed by
the Fuzzy Bounded Variable Problem is prominent in decision-making and modelling due
to the inherent uncertainties existing within specified limits. This problem emerges when
variables exhibit imprecise or ambiguous boundaries, rendering conventional approaches
inadequate. Researchers are actively exploring inventive methodologies such as fuzzy logic
and interval mathematics to confront and alleviate the intricacies associated with fuzzy
bounded variables. These approaches provide a nuanced comprehension of uncertainty fa-
cilitating more precise modelling and decision support across diverse domains like finance,
engineering, and artificial intelligence. In the evolving landscape of technology, the pursuit
of efficient solutions to the Fuzzy Bounded Variable Problem is imperative for fortifying
the resilience and dependability of systems in the presence of real-world uncertainties.
The challenge posed by the Fuzzy Bounded Variable Problem is prominent in decision-
making and modelling due to the inherent uncertainties existing within specified limits.
This problem emerges when variables exhibit imprecise or ambiguous boundaries, ren-
dering conventional approaches inadequate. Researchers are actively exploring inventive
methodologies, such as fuzzy logic and interval mathematics, to confront and alleviate the
intricacies associated with fuzzy bounded variables. These approaches provide a nuanced
comprehension of uncertainty, facilitating more precise modelling and decision support
across diverse domains like finance, engineering, and artificial intelligence. In the evolving
landscape of technology, the pursuit of efficient solutions to the Fuzzy Bounded Variable
Problem is imperative for fortifying the resilience and dependability of systems in the
presence of real-world uncertainties.
The aim of the optimization problem big part is referred to linear programming is to solve
a problem under a variety of linear constraints. The LP issue is traditionally considered
to have exact coefficients and variables, yet it is highly challenging for decision-makers to
express their choices in such precision figures. Fuzzy LP (FLP) issues are the name given
to the corresponding problem because, in order to manage it, a theory of fuzzy sets plays
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a vital part in the procedure for determining decisions.
Russak [22] addressed challenges associated with bounded state variables, specifically fo-
cusing on the general control problem of Bolza with bounded state constraints. The paper
explored necessary conditions for solutions to satisfy vector differential equations, even
when the solution encompasses an infinite number of intervals meeting the state con-
straints. Notably, the paper relaxed the typical assumption regarding the rank of the
matrix in addressing such problems. Overall, the insights provided valuable perspectives
on optimal control problems involving bounded state variables. Bitran and Hax [2] intro-
duced and discussed the application of convex knapsack problems with bounded variables
in the context of disaggregation and resource allocation. The authors delved into the uti-
lization of this mathematical approach to allocate resources effectively, optimizing the use
of limited resources. The paper explored specific methodologies, models, and findings re-
lated to the application of convex knapsack problems. Kostina[4] proposed a modification
of the dual simplex algorithm and presented its computational results on NETLIB and
MIPLIB problems. The authors emphasized the advantages of the dual simplex method in
the context of integer and combinatorial optimization. Xia and Wang [31] , [29]explained
the extension of the generalized weight adaptation algorithm for 2-D feedforward neural
networks. The paper detailed the adaptation algorithm for 2-D madaline and 2-D two-
layer FNNs, with a focus on the error vector at specific points and the weight matrix
adaptation. The aim was to address the extended weight adaptation algorithm for 2-D
neural networks employing bounded variables.Stefanov [23] discussed the extension of the
generalized weight adaptation algorithm for 2-D feedforward neural networks. The paper
presented the adaptation algorithm for 2-D madaline and 2-D two-layer FNNs, concen-
trating on the error vector at specific points and the weight matrix adaptation. The focus
was on addressing the extended weight adaptation algorithm for 2-D neural networks.
Charnes [4] explored the lower-bounded and partially upper-bounded distribution model,
a distribution problem with limited total supply and lower bounds on origin’s supply and
destination’s demand. The paper proposed an approach to accommodate this distribution
model, demonstrating its equivalence to a certain bounded variable. Cerone [3] discussed
the identification of linear models in the presence of noise affecting all observed variables,
known as the errors-in-variables problem. The paper provided proof of a previous result
on the description of the feasible parameter region for linear models with bounded errors
in all variables. It also discussed topological features of the feasible parameter region,
such as convexity and connectedness, and highlighted drawbacks in parameter estimation
using statistical frameworks.Ebrahimnejad and Verdegay [9] described the application of
fuzzy linear programming in bounded linear programming problems where some or all
variables are subject to fuzzy bounds. They proposed a method based on a specific linear
ranking function applicable to such situations, including a real-life problem application.
Ebrahimnejad [10] introduced a method based on the bounded dual simplex method to
determine the optimal solution of fuzzy variable linear programming problems with lower
and upper bounds on some or all variables.
Zhangchun and Zhenzhou [11] discussed the need for reliability-based design optimization
in structures due to uncertainties, proposing a reliability model for handling mixed un-
certainties involving fuzzy variables and uncertain-but-bounded variables.Ebrahimnejad
and Nasser [12] presented a dual simplex method for solving bounded linear program-
ming problems with fuzzy parameters, addressing practical bounds on all variables but
not applicable to decision variables represented by TRFNs.Ebrahimnejad et al. [13] pro-
posed a method for solving auxiliary problems in fuzzy linear programming problems with
bounded decision variables, serving as a tool in sensitivity or post-optimality analysis in
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bounded fuzzy number linear programming problems.Ebrahimnejad [14] discussed various
approaches to fuzzy linear programming and their development over time. The article
introduced methods like a primal-dual method and a fuzzy primal simplex algorithm but
did not designate a single approach as the definitive one.Ebrahimnejad [15] addressed the
solution to bounded interval-valued fuzzy numbers linear programming problems using a
signed distance ranking approach, providing background and discussion on fuzzy linear
programming and related problem-solving techniques.
Bharati and Singh [1] explained the use of interval-valued intuitionistic fuzzy numbers to
handle uncertainty in linear programming problems. The paper introduced concepts like
IV-IFN and IV-IFLPP, presenting solutions and comparing them with existing methods.
Ebrahimnejad [17] introduced and discussed basic concepts of fuzzy linear programming,
proposing a method based on the comparison of fuzzy numbers using ranking functions to
solve fuzzy linear programming problems.Radjef, S., and Bibi [21] focused on developing a
method for finding all efficient extreme points in multiobjective linear programming with
bounded variables. The paper proposed an efficiency test for nonbasic variables, a proce-
dure to find a first efficient extreme point, and an algorithm to find all efficient extreme
points, integrating a suboptimal criterion for desired accuracy.Tanaka and Asai [26]initially
developed the conceptualization of Fuzzy Linear Programming (FLP) by considering the
decision factors of difficulties as fuzzy numbers . Kumar and Kaur [19] proposed a so-
lution for fully fuzzy linear programming problems with mixed constraints. The method
involves algebraic modelling, introducing slack variables, converting inequality constraints
into equality constraints, and solving the resulting linear programming problem using a
ranking function [22].

Farhadinia [14] introduced sensitivity analysis in interval-valued trapezoidal fuzzy number
linear programming problems. The formulation for fuzzy linear programming problems
was presented, where (hL, hU)-interval-valued trapezoidal fuzzy numbers are parameters.
The study suggests a method for solving these problems and concludes that sensitivity
analysis provides similar results as those obtained for trapezoidal fuzzy number linear
programming problems .Wei , Chen [30]introduced a novel method for fuzzy risk anal-
ysis based on similarity measures between interval-valued fuzzy numbers. The method
includes a new similarity measure, a division operator, and an adjustment algorithm for
dealing with fuzzy risk analysis problems by Sivakumar [24]. Figueroa-Garćıa[25] dis-
cussed optimal solutions for group matrix games involving interval-valued fuzzy numbers
and proposed an uncertain-based matrix games model. Traditional game theory applica-
tions to real-life problems with incomplete or uncertain information were also considered
.
Chiang [5] explored fuzzy linear programming problems using statistical data and statis-
tical confidence intervals. The study derived fuzzy numbers and employed signed distance
ranking to defuzzify linear programming in a fuzzy context. Ganesan and Veeramani [16]
introduced a new fuzzy arithmetic for symmetric trapezoidal fuzzy numbers and proposed
a method for solving fuzzy linear programming problems without converting them to crisp
linear programming problems. The paper defines and explains the significant features of
symmetric trapezoidal fuzzy numbers and proposes fuzzy analogies to important theo-
rems of linear programming .Su [24] discussed the concept of fuzzy programming based
on interval-valued fuzzy numbers and ranking. The paper presented three cases of fuzzy
linear programming based on using interval-valued fuzzy numbers to fuzzify coefficients
in the objective function, constraints, or both .Verdegay’s [27] paper discussed a concept
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of fuzzy objective based on the Fuzzification Principle for solving Fuzzy Linear Program-
ming problems. The proposed dual approach defines the dual problem of a Fuzzy Linear
Programming problem based on costs, not on the value of the objective function. Wei
and Chen [31]presented a method for fuzzy risk analysis based on similarity measures
between interval-valued fuzzy numbers. The paper proposed a similarity measure combin-
ing geometric distance, perimeter, height, and center-of-gravity points of interval-valued
fuzzy numbers. Additionally, a division operator and an interval-valued fuzzy number
adjustment algorithm were introduced, leading to a new fuzzy risk analysis algorithm.
Yager’s[32] delved into fuzzy subsets of the unit interval, exploring a function (F) for or-
dering fuzzy subsets of the unit interval. The proposed ordering function is applicable to
continuous, discrete, and crisp members. Ebrahimnejad[6]presented a new approach for
solving linear programming problems with fuzzy cost coefficients, known as the bounded
fuzzy primal simplex algorithm. The algorithm maintains primal feasibility throughout
while moving towards achieving primal optimality, starting with a primal feasible basis
.Prakash and Appaswamy[20], [33] proposed a solution for the fuzzy linear programming
problem by introducing spherical fuzzy sets and using them as parameters. It suggests a
method to convert these fuzzy numbers into crisp interval numbers, employing the Best
Worst Method to solve the resulting clear-cut Linear Programming Problem. Addition-
ally, a spherical fuzzy optimization model is introduced to address the challenges of the
Spherical Fuzzy Linear Programming Problem.
Aim :

• Develop an efficient solution methodology for interval-valued trapezoidal fuzzy
bounded variable problems.

• Enhance computational efficiency and accuracy in solving these types of fuzzy
linear programming problems.

• Extend the theoretical framework of fuzzy linear programming by incorporating
interval-valued trapezoidal fuzzy numbers.

• Apply the proposed solution approach to real-life decision-making scenarios in-
volving uncertainty and imprecision.

The novelty of this research lies in its proposition of an innovative optimization frame-
work tailored specifically to handle interval-valued trapezoidal fuzzy bounded variables.
This approach pioneers a method to effectively model and solve problems characterized
by imprecise and bounded uncertainties, contributing a unique perspective to the realm
of fuzzy logic-based optimization techniques.
The primary aim of this study is to introduce a comprehensive and efficient solution that
addresses the complexities inherent in interval-valued trapezoidal fuzzy bounded vari-
ables. By bridging the gap in existing methodologies, the aim is to offer a robust, scalable,
and adaptable optimization framework capable of handling uncertainty with precision in
decision-making processes across various domains.
This research contributes a novel optimization algorithm or methodology tailored specif-
ically for interval-valued trapezoidal fuzzy bounded variables, advancing the theoretical
foundations of fuzzy logic-based optimization techniques.
The proposed solution offers practical value by providing a tool that can be applied across
diverse domains, facilitating more accurate decision-making in scenarios where imprecise
and bounded uncertainties are prevalent.
By addressing a niche problem domain, this study contributes to a deeper understanding
of interval-valued trapezoidal fuzzy bounded variables, paving the way for further research
and development in this specialized area.
The remaining of the article is structured as follows: The manuscript begins with an
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Table 1. Literature Review table

Author Crisp pa-
rameter

Interval
-valued
fuzzy
param-
eter

Linear
bounded
variable
pro-
gram-
ming

Method solution

[8] no yes Yes Estimating parameters within a statistical framework is con-
ducted, employing fuzzy programming for solution.

Crisp

[29] no yes no Solving through fuzzy programming Fuzzy
[27] no yes yes The approach involves utilizing the fuzzy simplex method,

despite its failure to satisfy bounded conditions.
fuzzy

[23] no yes no Solving the fuzzy linear programming problem (LPP) yields
a fuzzy optimal solution, and further analysis includes sensi-
tivity analysis.

crisp

[20] no yes no The resolution of the fuzzy linear programming problem
(LPP) is addressed through methods such as the best
and worst-case scenarios for multi-criteria decision-making
(MCDM),

crisp

[19] no yes no The application of a ranking technique has resulted in ob-
taining a crisp solution.

crisp

[15] no yes yes the problem is approached using the primal simplex algo-
rithm.

fuzzy

Proposed
Method

no yes yes The defuzzification process includes applying an equivalent
ranking function and transforming it into membership with
the assistance of the Zimmerman technique, resulting in the
attainment of a fuzzy solution.

Fuzzy\crsip

Introduction that provides the background of the study, clearly articulates the problem
statement, and outlines the research objectives. Following this, the Literature Review of-
fers a summary of related work in the field, highlighting key contributions and identifying
the research gap that the current study seeks to address. In the Methodology section, a
detailed explanation of the methods employed in the research is presented, including the
rationale behind the chosen approaches. The Results section follows, where the findings
of the study are presented, often accompanied by relevant data and analysis. In the Dis-
cussion section, the results are interpreted, compared with previous research, and their
broader implications are explored. Finally, the Conclusion provides a summary of the
research findings, discusses their significance, and suggests directions for future work.

2. Literature Review Table

The literature review table encompasses a range of studies. Authors have delved into
the challenges of interval-valued trapezoidal fuzzy bounded variable problems, proposing
methods for solution.The literature review reveals a range of existing methods proposed
for achieving optimal solutions, each employing different ranking techniques. However,
these methods do not necessarily yield fuzzy optimal solutions. Although Ebirahimne-
jad introduced the primal duality fuzzy approach for interval-valued trapezoidal bounded
variable problems, this method comes with certain limitations in table 1
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3. Methodology

The methodology proposed in this research involves a careful combination of interval math-
ematics, trapezoidal fuzzy logic, and efficient computational techniques. The interval-
valued trapezoidal fuzzy variables are rigorously defined, and a systematic approach is
presented to handle the complexities associated with bounded variable problems. The re-
search introduces a set of mathematical formulations and algorithms designed to optimize
solutions while accommodating the uncertainty inherent in real-world applications.

4. Premilinaries

Definition 4.1. If X is a collection of objects denoted generically by x, then the fuzzy
set Ã (x) in X is defined be a set of ordered pairs. Where µÃ(x) is called the membership

function for the fuzzy set. The membership function maps each element of x to a value
between (0,1).

Definition 4.2. Let ˜̃A =

[
˜̆
A,

⌢̃
A,

]
=

〈(
ă1, ă2, ă3; h̆

)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3;

⌢
h
)〉

be the Interval-

Valued Triangular Fuzzy Number the lower and upper membership function is defined as
,

µ ˜̆
A
=


h̆ x−ă1
ă2 −ă11

, ă1 ≤ x ≤ ă2

h̆ ă3−x
ă3−ă2

, ă2 ≤ x ≤ ă3
0, otherwise

µ⌢̃
A
=


⌢
h

x−⌢
a 1

⌢
a 2−

⌢
a 1

,
⌢
a 1≤ x ≤⌢

a 2

⌢
h

⌢
a 3−x

⌢
a 3−

⌢
a 2

,
⌢
a 2≤ x ≤⌢

a

0, otherwise

where ă1 ≤ ă2 ≤ ă3,
⌢
a 1≤

⌢
a 2≤

⌢
a 3, 0 ≺ h̆ ≤

⌢
h≤ 1, µ ˜̆

A
≤ µ⌢̃

A

Definition 4.3. Let ˜̃A =

[
˜̆
A,

⌢̃
A,

]
=

〈(
ă1, ă2, ă3, ă4; h̆

)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3,

⌢
a 4;

⌢
h
)〉

be the

Interval-Valued Trapezoidal Fuzzy Number the lower and upper membership function is
defined as ,

µ ˜̆
A
=


h̆ x−ă1
ă2−ă1

, ă1 ≤ x ≤ ă2

h̆, ă2 ≤ x ≤ ă3
h̆ ă4−x
ă4−ă3

, ă3 ≤ x ≤ ă4
0, otherwise

µ⌢̃
A
=



⌢
h

x−⌢
a 1

⌢
a 2−

⌢
a 1

,
⌢
a 1≤ x ≤⌢

a 2
⌢
h,

⌢
a 2≤ x ≤⌢

a 3
⌢
h

⌢
a 4−x

⌢
a 4−

⌢
a 3

,
⌢
a 3≤ x ≤⌢

a 4

0, otherwise

where
⌢
a1 ≤ ⌢

a2 ≤ ⌢
a3 ≤ ⌢

a4,
⌢
a 1≤

⌢
a 2≤

⌢
a 3≤

⌢
a 4, 0 ≺

⌣
h ≤

⌢
h≤ 1, µ

⌢∼A
≤ µ⌢

∼A

Definition 4.4. Let ˜̃A =
〈(

ă1, ă2, ă3, ă4; h̆
)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3,

⌢
a 4;

⌢
h
)〉

and

˜̃B =
〈(

b̆1, b̆2, b̆3, b̆4; h̆
)
,
(⌢
b 1,

⌢
b 2,

⌢
b 3,

⌢
b 4;

⌢
h
)〉

be the two Interval-Valued Trapezoidal Fuzzy
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Number , belong to FIV TN

(
⌢h,

⌢
h
)

and K be the non negative real number . then the

addition and scalar multiplication is defined as

∼∼A =

〈 (
ă1 + b̆1, ă2 + b̆2, ă3 + b̆3, ă4 + b̆4; h̆

)
,(

⌢
a 1 +

⌢
b ,

⌢
a 2 +

⌢
b 2,

⌢
a 3 +

⌢
b 3,

⌢
a 4 +

⌢
b ;

⌢
h
) 〉

k ˜̃A =


〈(

kă1, kă2, kă3, kă4; h̆
)
,
(
k

⌢
a 1, k

⌢
a 2, k

⌢
a 3, k

⌢
a 4;

⌢
h
)〉

, k ≻ 0〈(
kă1, kă2, kă3, kă4; h̆

)
,
(
k

⌢
a 1, k

⌢
a 2, k

⌢
a 3, k

⌢
a 4;

⌢
h
)〉

, k ≺ 0〈(
0, 0, 0, 0; h̆

)
,
(
0, 0, 0, 0;

⌢
h
)〉

, k = 0

Definition 4.5. Let F(R) is a set of fuzzy numbers defined on the set of real numbers and
the ranking of a fuzzy number is actually a function R from F(R) to R, which maps each

fuzzy number into the real line.If Ã and B̃, are any two fuzzy numbers then the relation
between those two fuzzy numbers are, given by

(1) If R( Ã)≤ R(B̃ ) Then Ã ≤ B̃

(2) If R( Ã)≥ R( B̃) Then Ã ≥ B̃

(3) If R( Ã)= R( B̃ ) Then Ã = B̃

5. Fuzzy Bounded Variable Problem

Fuzzy Linear programming problems with simple upper and lower bounds on the variables
have been well explored. Here, we look into issues that include a system of relative upper
and/or lower limits. We offer computational methods that take use of the unique trian-
gular nature of these restrictions. The fuzzy bounded-variables approach, However,due to
uncertainty ,ambiguous and vagueness ,the fuzzy bounded-variables problem, a variable
represents that is either fixed at its lower bound or upper bound. Let
The fuzzy bounded variable problem is defined as

Max ˜̃Z ≈ ˜̃cx
Subject to constraints

˜̃Axj ≤,=,≥ ˜̃
b, j = 1, 2, ..n

˜̃
l ≤ xj ≤ ˜̃u

(1)

xj ≥ 0, j = 1, .., n

Where ˜̃cT ,
˜̃
l, ˜̃u ∈

(
FIV TrN

(
h̆,

⌢
h
))n

, ˜̃A ∈
(
FIV TrN

(
h̆,

⌢
h
))m×n

and
˜̃
b ∈

(
FIV TrN

(
h̆,

⌢
h
))n

are given and x ∈ Rnis to be determined .
(
FIV TrN

(
h̆,

⌢
h
))n

be an fuzzy interval valued

trapezoidal number.

The constraints
˜̃
l ≤ xj ≤ ˜̃u, j = 1, .., n are called the bounded constraints. Any vector

x ∈ Rn which satisfies x ≥ 0 is said to be a feasible solution and the feasible space is

denoted by ˜̃S =
{
x ∈ Rn : ˜̃Axj ≤,=,≥ ˜̃

b,
˜̃
l ≤ xj ≤ ˜̃u

}
6. Theorem

Theorem 6.1. Let ˜̃A =
〈(

ă1, ă2, ă3, ă4; h̆
)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3,

⌢
a 4;

⌢
h
)〉

be a non- negative in-

terval valued trapezoidal fuzzy numbers , then

RIV C
∼∼A1 (x, y) ≥ RIV C

∼∼A2 (x, y) (2)
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Proof. Let RIV C
∼∼A1 (x, y) ranking under Index Vectorial Centroid using euclidean distance.

Since ˜̃A =

[
˜̆
A,

⌢̃
A,

]
=

〈(
ă1, ă2, ă3; h̆

)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3;

⌢
h
)〉

be a non- negative interval valued

trapezoidal fuzzy numbers . Then we have ,(
⌢
a 1 +

⌢
a 2 +

⌢
a 3 +

⌢
a 4

)2
≥

(
⌢
a 1 +

⌢
a 2

)2
+
(
⌢
a 3 +

⌢
a 4

)2
(3)

(ă1 + ă2 + ă3 + ă4) ≥ (ă1 + ă2)
2 + (ă3 + ă4)

2 (4)

Where ,(
⌢
a 1 +

⌢
a 2 +

⌢
a 3 +

⌢
a 4

)2
+2

(
⌢
a 2 +

⌢
a 3

)2
≥

(
⌢
a 1 +

⌢
a 2

)2
+
(
⌢
a 3 +

⌢
a 4

)2
+2

(
⌢
a 2

)2
+2

(
⌢
a 3

)2

(5)

(ă1 + ă2 + ă3 + ă4) + 2 (ă2 + ă3) ≥ (ă1 + ă2)
2 + (ă3 + ă4)

2 + 2 (ă1)
2 + 2 (ă3)

2 (6)

Thus

RIV C
˜̃A1
(x, y) ≥ RIV C

˜̃A2
(x, y)

(7)

□

Theorem 6.2. Let
˜̃A ∈ F̃IV TN

[
h̆,

⌢
h
]

Index Vectorial Centroid is generated by Eu-

clidean distance of
˜̆
A =

⌢̃
A = ˜̃A is given as follows:

ICV =
[
1
9

(
⌢
a 1 +ă1 +

5
4

(
⌢
a 2 +ă2

)
+ 7

4

(
⌢
a 3 +ă3

)
+ 1

2

(
⌢
a 4 +ă4

))
; 1136

(⌢
h +h̆

)]
,
˜̆
A =

⌢̃
A =

˜̃A.

Proof. Theorem 2 describes an efficient approach to order of level
[
h̆,

⌢
h
]
-interval-valued

trapezoidal fuzzy numbers based on the concept of comparison of fuzzy numbers by the
help of Index Vectorial Centroid is generated by Euclidean distance ranking.. □

Theorem 6.3. The basic solution (10) is an optimal solution for the auxiliary problem
(1) if satisfies the interval fuzzy trapezoidal number .

Theorem 6.4. If for a basic feasible solution with basis B and objective value ˜̃Z, it holds
for Index Vectorial Centroid is generated by Euclidean distance ranking. for some non-
basic variable xk while λ ≤ 0, then the optimal solution of the auxiliary problem (1) is
unbounded..

7. Proposed Method

STEP1
Formulate the issue as (1)
STEP2
The defuzzification is employing into the given model.
The extended vectorial centroid de-fuzzification for Interval valued Trapezoidal fuzzy num-

bers ˜̃A =
〈(

ă1, ă2, ă3, ă4; h̆
)
,
(
⌢
a 1,

⌢
a 2,

⌢
a 3,

⌢
a 4;

⌢
h
)〉
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The three parts of centroid first triangle , rectangle and the other triangle is defined as

λ(⌢
λ ,λ̆

)(x, y) = [
1
3

(
⌢
a 1 +

⌢
a 2

)
+ 1

3 (ă1 + ă2) ,
1
6

(⌢
h +h̆

)]
κ(⌢

κ ,κ̆
)(x, y) = [

1
4

(
⌢
a 2 +

⌢
a 3 +ă2 + ă3

)
, 14

(⌢
h +h̆

)]
η(⌢

η ,η̆
)(x, y) = [

1
3

(
⌢
a 3 +

⌢
a 4

)
+ 1

3 (ă3 + ă4) ,
1
6

(⌢
h +h̆

)]
Therefore,

IVC = 1
3

λ(⌢
λ ,λ̆

)(x, y) + κ(⌢
κ ,κ̆

)(x, y) + η(⌢
η ,η̆

)(x, y), κ(⌢
κ ,κ̆

)(x, y)
2

3

λ(
⌢
λ ,λ̆

)(x,y)+η
(
⌢
η ,η̆)

(x,y)

2 − κ(⌢
κ ,κ̆

)(x, y)


ICV =
[
1
9

(
⌢
a 1 +ă1 +

5
4

(
⌢
a 2 +ă2

)
+ 7

4

(
⌢
a 3 +ă3

)
+ 1

2

(
⌢
a 4 +ă4

))
; 1136

(⌢
h +h̆

)]
The Index Vectorial Centroid is generated by Euclidean distance is defined as

R( ˜̃A) =
√
x2 + y2 (8)

STEP 3 Using the proposed ranking method , the model is formulated as

Max ˜̃Z ≈ ˜̃cx
Subject to constraints

˜̃Axj ≤,=,≥ ˜̃
b, j = 1, 2, ..n

˜̃
l ≤ xj ≤ ˜̃u

(9)

xj ≥ 0, j = 1, .., n

Subject to constraints

R
(
˜̃Axj

)
≤,=,≥ R

(
˜̃
b
)

R
(
˜̃
l
)
≤ xj ≤ R

(⌢
ũ
)
, j = 1, .., n

xj ≥ 0

STEP 4
Utilizing the proposed ranking method , the model is converted into crisp BVP
Max Z ≈ cx
Subject to constraints

Axj ≤,=,≥ b
l ≤ xj ≤ u
xj ≥ 0

 , j = 1, .., n (10)

STEP 5 The transformation occurs during the defuzzification process, which is imple-
mented using the Zimmerman technique and is modeled based on the bounds of the basic
variable through membership function.

µZ =


0, Zobj ≺ LZ
Zobj−LZ

UZ−LZ
, UZ ≺ Zobj ≺ LZ

1, Zobj ≻ LZ

(11)
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The model is framed as
Max λ
Subject to constraints
µZ (x) ≥ λ
Axj ≤,=,≥ b
l ≤ xj ≤ u
xj ≥ 0

 , j = 1, .., n

(12)

STEP 6 From step 5 , we use LINGO to solve the model (12) and attain the optimistic
value with satisfactory level.

Table 2. Pseudocode

Pseudocode
1.Function Solve IVTFBVP(Input Data):
2. Initialize Solution Set
3. For each Interval Valued Trapezoidal Fuzzy Bounded
Variable IVTFBV in Input Data:
4. Compute Centroid(ICV)
5. Compute Index Vectorial Centroid
6. Compute Membership Functions for IVTFBV Perform
Fuzzy Arithmetic Operations on IVTFBV
7. Determine Optimal Solution using Aggregation Tech-
niques
8. Add Solution to Solution Set
9. Perform Fuzzy Arithmetic Operations on IVTFBV
10. Return Solution Set
11. End Function

12. Function Compute Membership Functions(IVTFBV):
13. Compute membership functions for the intervalvalued
trapezoidal fuzzy numbers
14. Determine Optimal Solution(IVTFBV):
15. End function

Function Perform Zimmerman technique:
Implement defuzzification transformation using the Zimmer-
man technique
16. End Function

17. Function Determine Optimal Solution(IVTFBV):
18. Apply aggregation techniques to determine the optimal
solution
19. Return the optimal solution
20. End Function

Real Life Application(Solution Set):
21. Define a real-life scenario where the IVTFBVP solution
is applicable
22. Apply the solution to the real-life scenario
Return the results of the application
23. End Function

Main Function Function Main():
24. Define input data for the IVTFBVP Input Data =
Initialize Input Data
25. Solve the IVTFBVP Solution Set =
Solve IVTFBVP(Input Data)
26. Apply the solution to a real-life scenario
Real Life Application(Solution Set)
27. End Function
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Figure 1. Graphically representation for proposed work

8. Numerical Example [13]

Step 1

Max ˜̃Z =
˜̃
110x1 +

˜̃
150x2 +

˜̃
30x3

Subject to constraints

˜̃4x1 +
˜̃2x2 +

˜̃1x3 ≤
˜̃
100

˜̃1x1 +
˜̃3x2 +

˜̃1x3 ≤ ˜̃
80˜̃

10 ≤ x1 ≤ ˜̃
20˜̃

15 ≤ x2 ≤ ˜̃
25˜̃

15 ≤ x3 ≤ ˜̃
20

x1, x2, x3 ≥ 0
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1˜̃10 =
〈(
40, 45, 65, 70; 23

)
, (35, 40, 70, 75; 1)

〉
1˜̃50 =

〈(
60, 65, 85, 90; 23

)
, (55, 60, 90, 95; 1)

〉
1˜̃00 =

〈(
25, 35.7, 62.5, 75; 23

)
, (12.5, 25, 75, 87.5; 1)

〉
,

˜̃30 =
〈(
12, 13, 17, 18; 23

)
, (11, 12, 18, 19; 1)

〉
˜̃4 =

〈(
1, 1.5, 2.5, 3; 23

)
, (0.5, 1, 3, 3.5; 1)

〉
, ˜̃80 =

〈(
20, 30, 50, 60; 23

)
, (10, 20, 60, 70; 1)

〉
˜̃1 =

〈(
0.25, 0.375, 0.625, 0.75; 23

)
, (0.125, 0.25, 0.75, 0.875; 1)

〉
˜̃3 =

〈(
0.75, 1, 25, 1.875, 2.25; 23

)
, (0.375, 0.75, 2.25, 2.625; 1)

〉
˜̃2 =

〈(
0.5, 0.75, 1.25, 1.5; 23

)
, (0.25, 0.5, 1.5, 1.75; 1)

〉
,

˜̃15 =
〈(
6, 6.5, 8.5, 9; 23

)
, (5.5, 6, 9, 9.5; 1)

〉
˜̃20 =

〈(
5, 7.5, 12.5, 15; 23

)
, (2.5, 5, 15, 17.5; 1)

〉
,

˜̃10 =
〈(
2.5, 3.75, 6.25, 7.5; 23

)
, (1.25, 2.5, 7.5, 8.75; 1)

〉
Step 2
Using the ICV the interval valued trapezoidal fuzzy parameters are converted into the
form of step2 of proposed algorithm in eqn .(7) and (8)
Step 3 Applying the proposed ranking function and performing the transformation are
steps that occur in subsequent processes

Max ˜̃Z = R
(
1˜̃10

)
x1 +R

(
1˜̃50

)
x2 +R

(
˜̃30
)
x3

Subject to constraints

R
(
˜̃4
)
x1 +R

(
˜̃2
)
x2 +R

(
˜̃1
)
x3 ≤ R

(
1˜̃00

)
R
(
˜̃1
)
x1 +R

(
˜̃3
)
x2 +R

(
˜̃1
)
x3 ≤ R

(
˜̃80
)

R
(
˜̃10
)
≤ x1 ≤ R

(
˜̃20
)

R
(
˜̃15
)
≤ x2 ≤ R

(
˜̃25
)

R
(
˜̃15
)
≤ x3 ≤ R

(
˜̃20
)

x1, x2, x3 ≥ 0

Step 4 By utilizing the proposed ranking function, the transformation is converted into
a conventional linear bounded variable problem.
Max Z = 54.4423x1+74.446x2+14.8976x3
Subject to constraints
2.0099x1+1.0975x2+0.7040x3 ≤ 48.61377
0.7040 x1+1.0975x2+0.7040x3 ≤ 38.8923
4.8877 ≤ x1 ≤ 9.7355
7.4618 ≤ x2 ≤ 11.73326
7.4618 ≤ x3 ≤ 9.7355
x1, x2, x3 ≥ 0
From step 4 , we use LINGO to solve the crisp BVP and to get the optimistic value as
Max Z = 1548.553, x1 = 9.735500, x2= 11.73326, x3 =9.735500 Step 5 The range is
defined by the upper bound denoted as UZ and the lower bound represented as LZand
the values are UZ = 1548.533, LZ = 946.150742 . The membership function formulated
as characterizes this range.

µZ =


0, Zobj ≺ 946.150742
Zobj−946.150742
UZ−946.150742 , UZ ≺ Zobj ≺ 946.150742

1, Zobj ≻ 946.150742
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The Zimmermann technique is developed as ,

Maxλ

Subject to constraints,

54.4423x1 + 74.446x2 + 14.8976x3 − 946.150742 ≥ λ (1548.533− 946.150742)
2.0099x1 + 1.0975x2 + 0.7040x3 ≤ 48.61377
0.7040 x1 + 1.0975x2 + 0.7040x3 ≤ 38.8923
4.8877 ≤ x1 ≤ 9.7355
7.4618 ≤ x2 ≤ 11.73326
7.4618 ≤ x3 ≤ 9.7355
x1, x2, x3 ≥ 0

Step 6
The problem is solved through the lingo 20.0 and the satisfaction level is λ = 1.0003 and
solutions are x1 = 9.735500, x2 = 11.73326, x3 = 9.735500

, Max ˜̃Z =

〈 (
703.99, 762.6619, 997.3271, 1055.99; 23

)
,

(645.32, 703.99, 1055.99, 1114.65; 1)

〉
9. Real Life Application Problem [9]

A farmer who raises chickens would like to determine the amounts of the available ingre-
dients that would meet certain nutritional requirements. The available ingredients and
their cost per serving, along with the units of nutrients per serving in the ingredients are
summarized in Table 2. The minimum daily requirements generally are imprecise num-
bers with the level (w L, wU )-intervalvalued trapezoidal possibility distributions over
the planning horizon due to incomplete or unobtainable information. For example, the
maximum, daily requirement of the protein and carbohydrates are〈(
40, 45, 65, 70; 23

)
, (35, 40, 70, 75; 1)

〉
,
〈(
60, 65, 85, 90; 23

)
, (55, 60, 90, 95; 1)

〉
, respectively.

The objective is to determine which mix will meet certain nutritional requirements at
a maximize cost. This problem is evidently an uncertain optimization problem due to
variations in maximize daily requirements. So the amount of each unit of ingredients
will be uncertain. Hence, we will model the problem as a level (w L, wU )-interval-valued
trapezoidal fuzzy variables linear programming problem. Let ˜̃x1, ˜̃x2 are the uncertain daily
amount of protein and carbohydrates to determine the optimal combination, respectively.
The daily amount of protein, measured by the weighted sum of asset volatilities, must

not exceed a
˜̃
10and ateleast

˜̃
40 predefined target risk level. The daily amount of protein,

measured by the weighted sum of asset volatilities, must not exceed a
˜̃
15 and atleast

˜̃
48

predefined . This constraint aims to control the overall certain nutritional requirements .
In this case, the problem is formulated as follows:”
Step 1

Max ˜̃Z =
˜̃
80x1 +

˜̃
602

Subject to constraints

˜̃4x1 +
˜̃2x2 ≤ ˜̃

80
˜̃1x1 +

˜̃3x2 ≤ ˜̃
60˜̃

10 ≤ x1 ≤ ˜̃
40˜̃

15 ≤ x2 ≤ ˜̃
48

x1, x2 ≥ 0
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Table 3. The data of application

Nutrient Ingredient

Corn Lime

Protein 4 1

Carbohydrates 2 3

Cost 80 60

˜̃
80 =

〈(
40, 45, 65, 70; 23

)
, (35, 40, 70, 75; 1)

〉
˜̃
60 =

〈(
60, 65, 85, 90; 23

)
, (55, 60, 90, 95; 1)

〉
˜̃4 =

〈(
1, 1.5, 2.5, 3; 23

)
, (0.5, 1, 3, 3.5; 1)

〉
,

˜̃1 =
〈(
0.25, 0.375, 0.625, 0.75; 23

)
, (0.125, 0.25, 0.75, 0.875; 1)

〉
˜̃3 =

〈(
0.75, 1, 25, 1.875, 2.25; 23

)
, (0.375, 0.75, 2.25, 2.625; 1)

〉
˜̃2 =

〈(
0.5, 0.75, 1.25, 1.5; 23

)
, (0.25, 0.5, 1.5, 1.75; 1)

〉
˜̃
15 =

〈(
6, 6.5, 8.5, 9; 23

)
, (5.5, 6, 9, 9.5; 1)

〉
˜̃
10 =

〈(
2.5, 3.75, 6.25, 7.5; 23

)
, (1.25, 2.5, 7.5, 8.75; 1)

〉
˜̃
40 =

〈(
12, 18, 22, 28; 23

)
, (10, 16, 24, 30; 1)

〉
˜̃
48 =

〈(
15, 23, 25, 33; 23

)
, (10, 22, 26, 38; 1)

〉
Step 2 Using the ICV the interval valued trapezoidal fuzzy parameters are converted
into the form of step 2 proposed algorithm
Step 3 Applying the proposed ranking function and performing the transformation are
steps that occur in subsequent processes

Max ˜̃Z = R
( ˜̃
80
)
x1 +R

( ˜̃
60
)
x2

Subject to constraints

R
(
˜̃4
)
x1 +R

(
˜̃2
)
x2 ≤ R

(˜̃
100

)
R
(
˜̃1
)
x1 +R

(
˜̃3
)
x2 ≤ R

( ˜̃
80
)

R
( ˜̃
10
)
≤ x1 ≤ R

( ˜̃
40
)

R
( ˜̃
15
)
≤ x2 ≤ R

( ˜̃
48
)

x1, x2, x3 ≥ 0

Step 4 By utilizing the proposed ranking function, the transformation is converted into
a conventional linear bounded variable problem.
Max Z = 78.612x1+74.446x2
Subject to constraints
2.0099x1+1.0975x2 ≤ 78.612
0.7040 x1+1.0975x2+0.7040x3 ≤ 74.446
4.8877 ≤ x1 ≤ 17.341
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7.4618 ≤ x2 ≤39.86705

x1, x2 ≥ 0

From step 4 , we use LINGO to solve the crisp BVP and to get the optimistic value as
Max Z = 1548.553, x1 = 9.735500, x2= 11.73326, x3 =9.735500
Step 5 The range is defined by the upper bound denoted as UZ and the lower bound
represented as LZand the values are UZ = 4331.16, LZ = 1062.0303 . The membership
function formulated as characterizes this range.

µZ =


0, Zobj ≺ 1062.030
Zobj−1062.030

4331.16−1062.030 , 4331.16 ≺ Zobj ≺ 1062.030

1, Zobj ≻ 4331.16

The Zimmermann technique is developed as ,

Maxλ

Subject to constraints,

78.612x1 + 74.446x2 − 1062.030 ≥ λ (4331.16− 1062.030)
2.0099x1 + 1.0975x2 ≤ 78.612
0.7040 x1 + 1.0975x2 ≤ 74.446
4.8877 ≤ x1 ≤ 17.341
7.4618 ≤ x2 ≤ 39.86705
x1, x2,≥ 0

Step 6 The problem is solved through the lingo 20.0 and the satisfaction level is λ = 1
and solutions are x1 = 17.3411, x2 = 39.89705,

Max ˜̃Z =

〈 (
1387.288, 1560.699, 2254.343, 2427.754; 23

)
,

(1213.877, 1387.288, 2427.75, 2601.16; 1)

〉
10. Result Analysis

It is emphasized that the suggested approach does not impose any restrictions on the
variables or parameters, and the outcomes meet all requirements. Because we take into
account every component of the decision-making process in our calculations, our model
portrays reality more accurately than the existing one. This model is not time-consuming
and difficult, but ours is not. Our model decreases the complexity of the problem.The
comparison chart reveals that the crisp optimal solutions both Ebrahimnejad et al.[9] and
Ebrahimnejad [13] offer solutions in figure2. However, both authors demonstrate sub-
optimal outcomes in their proposed solutions. Ebrahimnejad et al.[9] despite addressing
theoretical challenges, falls short in achieving the desired efficiency. On the other hand
Ebrahimnejad [13] while exploring practical applications, also exhibits limitations in the
quality of the solution. This emphasizes the necessity for further advancements and im-
provements in effectively addressing the complexities of interval-valued trapezoidal fuzzy
bounded variable problems within the specified topic. In contrast to current methodolo-
gies, our suggested model is relatively simple and convenient to use in real-world applica-
tions in figure 2.

11. Limitations

• The proposed solution may face challenges in scalability when dealing with large-
scale problems due to its computational complexity. This could hinder its appli-
cation in real-time or resource-constrained environments.
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Figure 2. comparison for the Numerical example and application

• Sensitivity to parameter selection or initialization might exist, impacting the ro-
bustness and stability of the solution across various problem instances.

• The applicability of the proposed solution might be constrained to specific problem
domains or scenarios due to assumptions made during the formulation, potentially
limiting its wider practical utility.

12. Advantages

• The proposed solution offers a versatile framework to handle interval-valued trape-
zoidal fuzzy bounded variables, allowing for a more realistic representation of un-
certainty in various decision-making scenarios.

• Medical Diagnosis in Healthcare Advantages: Employing extended vectorial cen-
troid defuzzification enables healthcare professionals to interpret complex diag-
nostic data from multiple sources, facilitating accurate diagnosis and personalized
treatment plans for patients, ultimately improving patient outcomes.

• It demonstrates superior performance in optimizing problems involving interval-
valued trapezoidal fuzzy bounded variables, showcasing efficient convergence rates
or computational efficiency compared to existing methods.

• The solution exhibits robustness by effectively managing uncertainty within vari-
ables, offering a reliable mechanism to address imprecise or ambiguous data preva-
lent in real-world applications.

• Its versatility extends across multiple domains such as engineering, finance, or
logistics, providing a valuable tool for decision-making processes in a wide array
of industries.

• Traffic Management in Smart Cities Advantages: Implementing the Zimmerman
technique during defuzzification enables traffic management authorities to ana-
lyze and optimize traffic flow, reducing congestion, minimizing travel times, and
improving overall transportation efficiency in urban areas.

• Its computational efficiency or reduced complexity may render it suitable for real-
time decision-making scenarios, enhancing its practical utility in time-sensitive
applications.
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• It introduces a novel approach or methodology, contributing to the advancement of
fuzzy logic-based optimization techniques, thereby expanding the theoretical and
practical landscape in the field.

13. Conclusion and Future scope

This research work that we investigated the domain of FLP problems by assuming that
all of the characteristics are expressed as levels IVTrFN and that the decision variables
are restricted to lower and upper limits. To defuzzify the interval valued trapezoidal num-
bers, a novel index vectorial centoriod defuzzification using euclidean distance measure is
proposed, along with a broader approach to solving BIVFNLP issues. We extract certain
conclusions and the ideal circumstance for a workable solution to FLP difficulties. It is
simple to improve upon the current ranking order of their works according to the pro-
posed method . The disadvantages of the prior work 25, where decision variables are not
in bounded variables, have been satisfactorily addressed by the given BIVTFNLP issue.
In the future, we investigate how to solve fuzzy bounded variable problem in dynamic pro-
gramming problem and FBLPs in more uncertain and ambiguous situations.By focusing
on these future research directions, the field can advance towards a more comprehensive
and practical understanding of efficient solutions for the Interval-Valued Trapezoidal Fuzzy
Bounded Variable Problem, contributing to advancements in decision-making under un-
certainty.

• Investigate and develop advanced algorithms that can further optimize the effi-
ciency of solving the Interval-Valued Trapezoidal Fuzzy Bounded Variable Prob-
lem. This involves exploring computational techniques, heuristic methods, and
machine learning approaches.

• Extend the application of the proposed solution across diverse fields such as fi-
nance, engineering, healthcare, and environmental science. Investigate how the
methodology can adapt to the unique challenges presented by different domains,
ensuring its versatility and effectiveness.

• Explore the integration of the solution with emerging technologies such as blockchain,
Internet of Things (IoT), and artificial intelligence. Assess how these technologies
can enhance the robustness and real-time applicability of the proposed solution in
dynamic and complex systems.

• Develop methods for quantifying and characterizing uncertainty within the context
of the Interval-Valued Trapezoidal Fuzzy Bounded Variable Problem. This involves
devising measures and metrics to provide a clearer understanding of the uncertainty
associated with the proposed solution.

• Investigate the integration of human-centric design principles in the development
of the solution. This includes understanding user requirements, cognitive aspects,
and usability factors to ensure that the solution is not only efficient but also user-
friendly and accessible.

Conflict of Interest. The authors declare that they do not have any conflict of interest.
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