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CLAW-DECOMPOSITION OF THE KNESER GRAPH KGn,3

C. SANKARI1, R. SANGEETHA1∗, K. ARTHI1, §

Abstract. The Kneser graph KGn,3 is the graph whose vertices are the 3-element sub-
sets of n-elements, in which two vertices are adjacent if and only if their intersection
is empty. A claw is a star with three edges. In this paper, we prove that KGn,3 is
claw-decomposable if and only if n ≥ 9 and n ≡ 0, 1, 2, 3, 4, 5(mod 9).
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1. Introduction

All the graphs considered in this paper are finite. If a graph G has no edges, then it is
called a null graph. Let Km,n denote a complete bipartite graph with m and n vertices in
the parts. A star with k edges is denoted by Sk and Sk

∼= K1,k. If k = 3, then the graph
S3 is called a claw. A path with k edges is denoted by Pk and a cycle with k edges is
denoted by Ck. A Hamilton cycle of G is a cycle that contains every vertex of G. A graph
G is Hamiltonian if it contains a Hamilton cycle. The degree of a vertex x of G, denoted
by dG(x) is the number of edges incident with x in G. A graph G is said to be k-regular, if
each vertex in G is of degree k. If H1, H2, ...,Hl are edge disjoint subgraphs of a graph G
such that E(G) = E(H1)∪E(H2)∪ ...∪E(Hl), then we say that H1, H2, ...,Hl decompose
G and we denote it by G = H1 ⊕H2 ⊕ ... ⊕Hl. If Hi

∼= Sk for i = 1, 2, ..., l, then we say
that G is Sk-decomposable and we denote it by Sk|G. Let X ⊆ V (G). The subgraph of G
induced by X is denoted by ⟨X⟩. Let A = {1, 2, 3, ..., n}. Then Pk(A) denotes the set of
all k-element subsets of A. The Kneser Graph KGn,3 is defined as follows: V (KGn,3)=
P3(A) and E(KGn,3) = {XY |X,Y ∈ P3(A) and X ∩ Y = ∅}. The Generalized Kneser
Graph, GKGn,k,r is the graph whose vertices are the k-element subsets of A, in which two
vertices are adjacent if and only if they intersect in precisely r elements.

In 1955, Kneser [3] introduced the Kneser graph. In 2000, Chen [1] proved that KGn,2
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is Hamiltonian, when n ≥ 3k, k ≥ 1. In 2004, Shields and Savage [7] proved that all con-
nected Kneser graphs (except KG5,2) have Hamilton cycles, when n ≤ 27 and the problem
KGn,2 (except KG5,2) is Hamiltonian is still open. In 2015, Rodger and Whitt [4] estab-
lished the necessary and sufficient conditions for a P3-decomposition of the Kneser graph
KGn,2 and the Generalized Kneser GraphGKGn,3,1. In 2015, Whitt and Rodger [8] proved
that the Kneser graph KGn,2 is P4-decomposable if and only if n ≡ 0, 1, 2, 3(mod 16). In
2018, Ganesamurthy and Paulraja [2] proved that if n ≡ 0, 1, 2, 3(mod 8k), k ≥ 2, then
the Kneser graph KGn,2 can be decomposed into paths of length 2k. In the same pa-

per they also proved that, for k = 2l, l ≥ 1, KGn,2 has a P2k-decomposition if and

only if n ≡ 0, 1, 2, 3(mod 2l+3). Recently, the authors [5, 6] proved that KGn,2 is claw-
decomposable, for all n ≥ 6 and KGn,2 is S5-decomposable if and only if n ≥ 7 and
n ≡ 0, 1, 2, 3(mod 5). In this paper, we prove that the Kneser graph KGn,3 is claw-
decomposable if and only if n ≥ 9 and n ≡ 0, 1, 2, 3, 4, 5(mod 9).

2. Preliminaries

Let G be a graph on n vertices and {1, 2, ..., k} ⊂ V (G). The notation (1; 2, 3, ..., k)
denotes a star with a center vertex 1 and k− 1 pendent edges 12, 13, ..., 1k. Let X and Y
be two disjoint subsets of V (G). Then E(X,Y ) denotes the set of edges in G, whose one
end vertex is in X and the other end vertex is in Y . The notation ⟨E(X,Y )⟩ denotes the
graph induced by the edges of E(X,Y ). To prove our results we use the following:

Theorem 2.1. (Yamamoto et al. [9]) Let k,m and n ∈ Z+ with m ≤ n. There exists an
Sk-decomposition of Km,n if and only if one of the following holds:

(i) k ≤ m and mn ≡ 0(mod k);
(ii) m < k ≤ n and n ≡ 0(mod k).

3. Claw-decomposition of KGn,3

Note that, the cardinality of the edges of KGn,3 is 1
2

(
n
3

)(
n−3
3

)
and is divisible by

3, if n ≥ 9 and n ≡ 0, 1, 2, 3, 4, 5(mod 9). Now, we prove that these obvious necessary
conditions are also sufficient for the existence of a claw-decomposition of KGn,3.

Lemma 3.1. KG9,3 is claw-decomposable.

Proof. We know that |V (KG9,3)|=84. Note that, the addition in the subscripts are taken
modulo 3 with residues 1,2,3. We partition V (KG9,3)=A ∪B ∪ C ∪D, where

A =
3⋃

i=1

Ai, where A1 = {1, 2, 3}, A2 = {4, 5, 6} and A3 = {7, 8, 9}

B =

3⋃
i=1

Bi, where Bi = {{a, b, c}|a ∈ Ai, b, c ∈ Ai+1 and b < c}

C =

3⋃
i=1

Ci, where Ci = {{a, b, c}|a, b ∈ Ai, a < b and c ∈ Ai+1}

D =

3⋃
i=1

Di, where Di = {{a, b, c}|a = i, b ∈ A2 and c ∈ A3}



C. SANKARI et al.: CLAW-DECOMPOSITION OF THE KNESER . . . 1391

Therefore, |Ai|=3, |Bi|=|Ci|=|Di|=9, 1 ≤ i ≤ 3. Observe that, the graph KG9,3=⟨A⟩ ∪
⟨B⟩∪ ⟨C⟩∪ ⟨D⟩∪ ⟨E(A,B)⟩∪ ⟨E(A,C)⟩∪ ⟨E(A,D)⟩∪ ⟨E(B,C)⟩∪ ⟨E(B,D)⟩∪ ⟨E(C,D)⟩.
Now, we show that each subgraph ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩, ⟨E(A,B)⟩, ⟨E(A,C)⟩, ⟨E(A,D)⟩,
⟨E(B,C)⟩, ⟨E(B,D)⟩ and ⟨E(C,D)⟩ is claw-decomposable.

We write ⟨C⟩=
⋃3

i=1⟨E(Ci, Ci+1)⟩. Note that d⟨E(Ci,Ci+1)⟩({a, b, c})=3, for all {a, b, c} ∈
Ci, 1 ≤ i ≤ 3. Hence, ⟨C⟩ is claw-decomposable.

We write ⟨D⟩=
⋃3

i=1⟨E(Di, Di+1)⟩. Let l ∈ {1, 2} and t ∈ {0, 1, 2}. Take 1 ≤ i ≤ 3,
j=i+ t+ 3 and k=j + 3. Let x ∈ {i, j, k}

x+ l =


i+ l − 3 if i+ l > 3

j + l − 3 if j + l > 6

k + l − 3 if k + l > 9

We choose the set of stars Si = {({i, j, k}; {i+1, j+1, k+1}, {i+1, j+1, k+2}, {i+1, j+
2, k + 1})}. Note that, d⟨E(Di,Di+1)⟩∖E(Si)({a, b, c})=3, for all {a, b, c} ∈ Di+1, 1 ≤ i ≤ 3.

Hence, ⟨D⟩ is claw-decomposable.
In ⟨E(A,C)⟩, d⟨E(A,C)⟩({a, b, c})=9, for all {a, b, c} ∈ A. Now, by fixing each vertex

of A as a center vertex (3 times), we get a claw-decomposition in ⟨E(A,C)⟩. The graph

⟨E(A,D)⟩ is a null graph. In ⟨E(B,C)⟩, we choose a set of stars, say S ′
as follows:

({1, 2, 4}; {5, 7, 8}, {5, 7, 9}, {5, 8, 9}), ({1, 2, 5}; {6, 7, 8}, {6, 7, 9}, {6, 8, 9}),
({1, 2, 6}; {4, 7, 8}, {4, 7, 9}, {4, 8, 9}), ({4, 5, 7}; {8, 1, 2}, {8, 1, 3}, {8, 2, 3}),
({4, 5, 8}; {9, 1, 2}, {9, 1, 3}, {9, 2, 3}), ({4, 5, 9}; {7, 1, 2}, {7, 1, 3}, {7, 2, 3}),
({7, 8, 1}; {2, 4, 5}, {2, 4, 6}, {2, 5, 6}), ({7, 8, 2}; {3, 4, 5}, {3, 4, 6}, {3, 5, 6})
and ({7, 8, 3}; {1, 4, 5}, {1, 4, 6}, {1, 5, 6}). We observe that, d⟨E(B,C)⟩∖E(S′ )({a, b, c})=6,

for all {a, b, c} ∈ B. Now, by fixing each vertex of B as a center vertex (2 times), we get

a claw-decomposition in ⟨E(B,C)⟩∖ E(S ′
).

In ⟨E(B,D)⟩ and ⟨E(C,D)⟩, the degree of each vertex of B and C respectively, is ex-
actly 6. Now, by fixing each vertex of B and C as a center vertex (2 times), we get a
claw-decomposition in ⟨E(B,D)⟩ and ⟨E(C,D)⟩ respectively.

Let H=⟨A⟩ ∪ ⟨B⟩ ∪ ⟨E(A,B)⟩. In H, we choose a set of stars, say S as follows:
S1:({1, 2, 3}; {4, 5, 6}, {4, 7, 8}, {4, 7, 9}), S2:({4, 5, 6}; {7, 8, 9}, {7, 1, 2}, {7, 1, 3}),
S3:({7, 8, 9}; {1, 2, 3}, {1, 4, 5}, {1, 4, 6}), S4:({4, 8, 9}; {1, 2, 3}, {7, 1, 2}, {7, 1, 3}),
S5:({7, 2, 3}; {4, 5, 6}, {4, 8, 9}, {1, 4, 6}), S6:({8, 2, 3}; {1, 4, 5}, {1, 4, 6}, {1, 5, 6}),
S7:({9, 2, 3}; {1, 4, 5}, {1, 4, 6}, {6, 7, 8}), S8:({1, 4, 5}; {7, 2, 3}, {6, 7, 9}, {6, 8, 9}),
S9:({1, 4, 6}; {5, 7, 8}, {5, 7, 9}, {5, 8, 9}) and S10:({1, 5, 6}; {7, 8, 9}, {4, 7, 8}, {4, 7, 9}).

Let F be a subgraph of H such that F=(⟨A⟩ ∪ ⟨E(A,B)⟩) − (E(S1 ∪ S2 ∪ S3) ∪
{1, 2, 3}{4, 8, 9} ∪ {4, 5, 6}{7, 2, 3} ∪ {7, 8, 9}{1, 5, 6}). We observe that H ∖ E(S) = F ∪
⟨E(B1∖N1, B2∪B3)⟩∪⟨E(B2∖{4, 8, 9}, B1∪B3)⟩, where N1 = {{1, 4, 5}, {1, 4, 6}} ⊂ B1.
Now, we prove that each of the subgraph in the above union is claw-decomposable. Note
that, dF ({a, b, c})=6, for all {a, b, c} ∈ A, hence we get a claw-decomposition in F , see
Figure 3.1. In ⟨E(B1 ∖ N1, B2 ∪ B3)⟩, the degree of each vertex of B1 ∖ N1 is exactly
6 except {1, 5, 6} and the degree of a vertex {1, 5, 6} is exactly 3, hence we get a claw-
decomposition in ⟨E(B1∖N1, B2∪B3)⟩, see Figure 3.2. Finally, we consider the subgraph
⟨E(B2 ∖ {4, 8, 9}, B1 ∪ B3)⟩, the degree of each vertex of B2 ∖ {4, 8, 9} is exactly 3 and
hence we get a claw-decomposition in ⟨E(B2 ∖ {4, 8, 9}, B1 ∪B3)⟩, see Figure 3.3.

□

Theorem 3.1. If n ≡ 0(mod 9), then the graph KGn,3 is claw-decomposable.
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Figure 3.1. The subgraph F of H

Figure 3.2. The subgraph ⟨E(B1 ∖N1, B2 ∪B3)⟩
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Figure 3.3. The subgraph ⟨E(B2 ∖ {4, 8, 9}, B1 ∪B3)⟩

Proof. We define the vertex set V (KGn,3) as follows: Let n1=9 and n2=n−n1. As n=9t for
some t ≥ 1, we have n2=9(t−1). Define V1={1, 2, ..., 9} and V2={10, 11, ..., n}. Now define
V (KGn,3)=N1∪N2∪N3∪N4, where N1={{i, j, k}|i, j, k ∈ P3(V1)}, N2={{i, j, k}|i, j, k ∈
P3(V2)}, N3={{i, j, k}|i, j ∈ P2(V1), k ∈ V2} and N4={{i, j, k}|i, j ∈ P2(V2), k ∈ V1}.
Therefore, |N1|=

(
n1

3

)
, |N2|=

(
n2

3

)
, |N3|=n2

(
n1

2

)
and |N4|=n1

(
n2

2

)
. Now, we write

KGn,3=⊕8
i=1Gi where Gi, 1 ≤ i ≤ 8 is as follows: G1=⟨N1⟩ ∼= KGn1,3, G2=⟨N2⟩ ∼=

KGn2,3, G3=⟨E(N1, N2)⟩ ∼= K|N1|,|N2|, G4
∼= ⟨N3⟩, G5

∼= ⟨N4⟩, G6
∼= ⟨E(N3, N4)⟩,

G7
∼= ⟨E(N1, N3 ∪N4)⟩ and G8

∼= ⟨E(N2, N3 ∪N4)⟩.
We apply mathematical induction on t, to prove the theorem. Now, we show that

the graph KGn,3=⊕8
i=1Gi is claw-decomposable. If t=1, then the graph KG9,3 is claw-

decomposable, by Lemma 3.1. Hence, the result is true for t=1. Now, assume that the
result is true for t < k. We prove that the result is true for all t=k, t > 1. The graph G1

is claw-decomposable, by Lemma 3.1 and G2 is claw-decomposable, by our assumption.
The graph G3 is claw-decomposable, by Theorem 2.1.

For i, j ∈ V1 and i < j, letXl={i, j, l+9|1 ≤ l ≤ n2}. Then G4 =
⋃

1≤l<m≤n2

⟨E(Xl, Xm)⟩.

Note that, the degree of a vertex {i, j, l + 9} in ⟨E(Xl, Xm)⟩, 1 ≤ l < m ≤ n2 is exactly(
9
2

)
− [(9 − 1) + (9 − 2)]=21. By fixing these vertices as center vertices, we get a claw-

decomposition in ⟨E(Xl, Xm)⟩ and hence G4 is claw-decomposable.
For i, j ∈ V2 and i < j, let Yl={i, j, l|1 ≤ l ≤ 9}. Then G5=

⋃
1≤l<m≤9

⟨E(Yl, Ym)⟩.

Note that, the degree of a vertex {i, j, l} in ⟨E(Yl, Ym)⟩, 1 ≤ l < m ≤ 9 is exactly(
n2

2

)
− [(n2 − 1) + (n2 − 2)]=

(
n2

2

)
− (2n2 − 3) which is a multiple of 3. By fixing these

vertices as center vertices, we get a claw-decomposition in ⟨E(Yl, Ym)⟩ and hence G5 is
claw-decomposable.

We prove that, the graph G6=⟨E(
⋃

i,j∈P2(V1)
{i, j, k}, N4)⟩, 10 ≤ k ≤ n is claw-de
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composable. For each k, 10 ≤ k ≤ n we prove that ⟨E(
⋃

i,j∈P2(V1)
{i, j, k}, N4)⟩ is claw-

decomposable. Let Ak=
⋃

i,j∈P2(V1)
{i, j, k}, 10 ≤ k ≤ n. Then |Ak|=36. Note that,

d⟨E(Ak,N4)⟩({a, b, c})=(n1 − 2)[
(
n2

2

)
− (n2 − 1)], for all {a, b, c} ∈ Ak, which is congurent

to 1 modulo 3. Now, we partition each Ak into 12 subsets such that each subset has 3
vertices as follows:
For 1 ≤ w ≤ 12, Tk,w={{iwt, jwt, k}|1 ≤ t ≤ 3}, where
Tk,1={{1, 2, k}, {1, 3, k}, {1, 4, k}}, Tk,2={{1, 5, k}, {1, 6, k}, {1, 7, k}},
Tk,3={{1, 8, k}, {1, 9, k}, {2, 3, k}}, Tk,4={{2, 4, k}, {2, 5, k}, {2, 6, k}},
Tk,5={{2, 7, k}, {2, 8, k}, {2, 9, k}}, Tk,6={{3, 4, k}, {3, 5, k}, {3, 6, k}},
Tk,7={{3, 7, k}, {3, 8, k}, {3, 9, k}}, Tk,8={{4, 5, k}, {4, 6, k}, {4, 7, k}},
Tk,9={{4, 8, k}, {4, 9, k}, {5, 6, k}}, Tk,10={{5, 7, k}, {5, 8, k}, {5, 9, k}},
Tk,11={{6, 7, k}, {6, 8, k}, {6, 9, k}} and Tk,12={{7, 8, k}, {7, 9, k}, {8, 9, k}}.
For 1 ≤ w ≤ 12, define sw=max{iwt, jwt; 1 ≤ t ≤ 3}. Consider the set of stars as follows:

S =


({k + 1, k + w + 1, sw + 4}; {iw1, jw1, k}, {iw2, jw2, k}, {iw3, jw3, k}) if 1 ≤ w ≤ 7

({k + 2, k + 3, sw + 1}; {iw1, jw1, k}, {iw2, jw2, k}, {iw3, jw3, k}) if w = 8

({k + 4, k + w − 4, sw + 1}; {iw1, jw1, k}, {iw2, jw2, k}, {iw3, jw3, k}) if 9 ≤ w ≤ 12

where addition in the first and second coordinates are taken modulo n − n1 with
residues n1 + 1, ..., n and third coordinate is taken modulo n1 with residues 1, 2, ..., n1.
The set of stars S of ⟨E(

⋃
i,j∈P2(V1)

{i, j, 10}, N4)⟩ in KG18,3 is given in Figure 3.4. In

⟨E(Ak, N4)⟩ ∖ E(S), the degree of each vertex of Ak is [ (n2−1)(n2−2)(n1−2)
2 ] − 1, which

is congurent to 0 modulo 3. So, fix each vertex of Ak as a center vertex, we get a
claw-decomposition in ⟨E(Ak, N4)⟩ ∖ E(S). By proceeding the same argument, we get a
claw-decomposition in ⟨E(

⋃
i,j∈P2(V1)

{i, j, k}, N4)⟩, where 10 ≤ k ≤ n. Hence, the graph

G6 is claw-decomposable. In ⟨E(N1, N3)⟩, the degree of each vertex of N1 is n2
2 [92 − (7×

9) + 12]=30n2
2 . In ⟨E(N1, N4)⟩, the degree of each vertex of N1 is n2(n2−1)(9−3)

2 =6n2(n2−1)
2

and note that n2 ≡ 0(mod 9). In G7, the degree of each vertex of N1 is n2
2 [30 + 6(n2 −

1)]=3n2(n2+4). Now, fix each vertex of N1 as a center vertex, we get a claw-decomposition

in G7. In ⟨E(N2, N3)⟩, the degree of each vertex of N2 is
9(9−1)(n2−3)

2 =9
2 [8(n2−3)] and note

that n2 ≡ 0(mod 9). In ⟨E(N2, N4)⟩, the degree of each vertex of N2 is
9
2 [n

2
2−7n2+12]. In

G8, the degree of each vertex of N2 is 9
2 [8(n2−3)+(n2

2−7n2+12)]=9
2 [n

2
2+n2−12]. Now,

by fixing each vertex of N2 as a center vertex, we get a claw-decomposition in G8. By the
principle of mathematical induction, we get the graph KGn,3 is claw-decomposable. □

Theorem 3.2. If n ≡ 1, 2, 3, 4, 5(mod 9), then the graph KGn,3 is claw-decomposable.

Proof. We define the vertex set of KGn,3 as follows: Let B={1, 2, ..., n}, N1={{i, j, k}|
i, j, k ∈ P3(B ∖ n)} and N2={{i, j, n}|i, j ∈ P2(B ∖ n)}. Now, we write KGn,3=⟨N1⟩ ∪
⟨N2⟩ ∪ ⟨E(N1, N2)⟩. Note that, the graph ⟨N2⟩ is a null graph. If n ≡ 1, 2, 4, 5(mod 9),

the degree of each vertex of N1 in ⟨E(N1, N2)⟩ is exactly [ (n−1)(n−2)
2 ]− 3(n− 3). Now, by

fixing each vertex of N1 as a center vertex, we get a claw-decomposition in ⟨E(N1, N2)⟩. If
n ≡ 3(mod 9), the degree of each vertex of N2 in ⟨E(N1, N2)⟩ is exactly

(
n−1
3

)
− (n− 3)2.

Now, by fixing each vertex of N2 as a center vertex, we get a claw-decomposition in
⟨E(N1, N2)⟩. Note that, the graph ⟨N1⟩ ∼= KGn−1,3. If n ≡ 1(mod 9), then the graph
KGn−1,3 is claw-decomposable by Lemma 3.1 and Theorem 3.1. If n ≡ 2, 3, 4, 5(mod 9),
then by repeatedly applying the above procedure, we get a claw-decomposition of KGn,3.

□



C. SANKARI et al.: CLAW-DECOMPOSITION OF THE KNESER . . . 1395

Figure 3.4. The set of stars in S when n = 18 and k = 10

By Combining Theorem 3.1 and 3.2, we get the following result:

Theorem 3.3. KGn,3 is claw-decomposable if and only if n ≥ 9 and n ≡ 0, 1, 2, 3, 4,
5(mod 9).

4. Conclusions

In this paper, we have proved that KGn,3, the Kneser Graph is Claw-decomposable if
and only if n ≥ 9 and n ≡ 0, 1, 2, 3, 4, 5(mod 9).
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