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COMPLETENESS AND COMPACTNESS IN TYPE-2 FUZZY METRIC

SPACES

U. SAMANTA1∗, §

Abstract. In this paper completeness and compactness in type-2 fuzzy metric spaces
are studied. Cantor’s intersection theorem characterizing the completeness of a type-2
fuzzy metric space is proved. Baire’s category theorem is also extended in this space.
Notions of compactness, sequential compactness, total boundedness and Lebesgue num-
ber have been introduced. It is shown that a type-2 fuzzy metric space is compact if
and only if it is totally bounded and complete. It is shown that in this space sequential
compactness and compactness are equivalent to each other.

Keywords: Fuzzy metric, type-2 fuzzy metric, completeness, compactness, fuzzy num-
bers.
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1. Introduction

Motivating from the idea of Probabilistic metric space,in 1975, Kramosil and Michalek
[9] first introduced the concept of fuzzy metric space replacing the role of probability dis-
tribution by an appropriate fuzzy set. Afterwards several authors introduced fuzzy metric
in different ways. In 1979, Ercez [4] defined fuzzy metric considering distance between two
fuzzy sets. Deng [5] in 1982, defined fuzzy metric as a distance between two fuzzy points.
In 1984, approaching in a different way Kaleva and Seikkala [8] defined fuzzy metric on a
nonempty crisp set X as a non-negative fuzzy real number valued function over X × X.
Afterwards in 1989, T. Bandyopadhyay et. al. [1] proposed a definition of fuzzy metric
generalizing both of Deng and Kaleva-Seikkala. In 1994, with a view to obtain a Hausdorff
topology from a fuzzy metric, George and Veeramani [6] made a slight modification of the
fuzzy metric introduced by Kramosil-Machalek [9].
Other types of generalizations of fuzzy metric were continued to evolve. In this direction
Park [12] introduced intuitionistic fuzzy metric space in 2004 and later its modified version
by Sadati et al. [13] in 2008. Shen et al. [16] introduced a definition of interval-valued
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fuzzy metric in 2012.

On the other hand, in order to deal with higher order uncertainties, Zadeh [18] in 1975,
proposed an idea of type-2 fuzzy sets, which generalizes his own idea of fuzzy sets [17].
Since then works are going on in the field of type-2 fuzzy setting in set theory, logic,
algebra and their applications in decision making problems ([2, 7]). Recently in [14], we
have first introduced a definition of type-2 fuzzy metric space and studied some of its
properties. As a continuation of this, in this paper, we study completeness, compactness,
sequential compactness, total boundedness and their interrelations in a type-2 fuzzy metric
space. Cantor’s intersection theorem and Baire’s category theorem are also extended in
this space. In Section 4, compactness related results are studied in type-2 fuzzy metric
spaces.

The organization of the paper is as follows: In the Preliminary section we take all
the definitions and results which are to be used in the rest of this paper. In Section 3,
we prove Cantor’s intersection theorem characterizing the completeness of a type-2 fuzzy
metric space. Next the Baire’s category theorem is also extended in this space. In Section
4, compactness related results are studied in type-2 fuzzy metric spaces.

2. Preliminaries

Definition 2.1. [15] A t-norm is a function ∗[0, 1]× [0, 1] → [0, 1] which is commutative,
associative, monotonic increasing w.r.t. both the components and a ∗ 1 = a,∀a ∈ [0, 1].

In 1975, Kramosil and Michalek [9] introduced a definition of a fuzzy metric space which
is given below.

Definition 2.2. [9] The triplet (X,M, ∗) is a fuzzy metric space if X is a nonempty set,
* is a continuous t-norm and M is a fuzzy set on (X2 × R) satisfying for all x, y, z ∈ X
and t, s ∈ R the following axioms:
(KM1) M(x, y, t) = 0, ∀t < 0.
(KM2) M(x, y, t) = 1, ∀t > 0 ⇐⇒ x = y.
(KM3) M(x, y, t) = M(y, x, t).
(KM4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s).
(KM5) M(x, y, .) : (0,∞) → [0, 1] is left continuous and non -decreasing
(KM6) lim

t→∞
M(x, y, t) = 1.

In [6], George and Veeramani slightly changed some of the above conditions to introduce
following definition of a fuzzy metric space whose induced topology is Hausdorff.

Definition 2.3. [6] The triplet (X,M, ∗) is said to be a fuzzy metric space if X is a
nonempty set, ‘*’ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying
for all x, y, z ∈ X and t, s > 0 the following axioms:
(GV1) M(x, y, t) > 0
(GV2) M(x, y, t) = 1 ∀t > 0 ⇐⇒ x = y
(GV3) M(x, y, t) = M(y, x, t)
(GV4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s)
(GV5) M(x, y, .) : (0,∞) → [0, 1] is continuous.

On the other hand taking the value set of the fuzzy metric to be the set of non-negative
fuzzy real numbers, Kaleva and Seikkala [8] introduced the definition of fuzzy metric in a
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different way.
Before we present the definition of fuzzy metric introduced by Kaleva and Seikkala, we
give the definition and some properties of fuzzy real numbers.

Definition 2.4. A fuzzy real number u is a function from R to [0, 1] which is is upper
semicontinuous, convex and normal. A non-negative fuzzy real number is a fuzzy real
number u for which u(t) = 0, ∀t < 0. The set of all non-negative fuzzy real numbers

is denoted by R̂+. For any α ∈ (0, 1], α − level set [u]α is a closed bounded interval
[u−α , u

+
α ]. For any r ∈ R, r is the fuzzy real number defined by r(x) = 0, for x ̸= r and

r(x) = 1 for x = r As in Congxin and Cong [3], it is also assumed in this paper that

[u]0 = cl{x ∈ R, u(x) > 0} is compact. For any fuzzy real number t, define t◦ =
a+ b

2
,

where [t]0 = [a, b], and t◦ is called first approximation of the fuzzy real number t.

Following [8, 10], some algebraic operations are defined below:
(u⊕ v)(t) = sup

s∈R
{u(s) ∧ v(t− s)}

(u⊖ v)(t) = sup
s∈R

{u(s) ∧ v(s− t)}

(u⊙ v)(t) = sup
s∈R, s̸=0

{u(s) ∧ v(t/s)}

(u⊘ v)(t) = sup
s∈R

{u(st) ∧ v(s)}

For k > 0, ku(t) = u(t/k) and 0u = 0.

It can be shown that for u, v ∈ R̂+, k > 0,
[u⊕ v]α = [u−(α) + v−(α), u+(α) + v+(α)];
[u⊖ v]α = [u−(α)− v+(α), u+(α)− v−(α)];
[u⊙ v]α = [u−(α)v−(α), u+(α)v+(α)];
[u⊘ v]α = [u−(α)/v+(α), u+(α)/v−(α)];
[ku]α = [ku−(α), ku+(α).

Inequalities among the members of R̂+ are defined as
u ≤ v if u−(α) ≤ v−(α) and u+(α) ≤ v+(α),∀α ∈ (0, 1]
u < v if u−(α) < v−(α) and u+(α) < v+(α),∀α ∈ [0, 1]
u ≪ v if there is ϵ > 0 such that u⊕ ϵ ≤ v
For simplicity, whenever necessary, we shall use the symbols + and - instead of ⊕ and ⊖
respectively, and juxtaposition for the product ⊙.

For our purpose we shall take fuzzy real numbers as considered in Congxin and Cong [3].

A subset A of R̂ (set of all fuzzy real numbers) is said to be bounded above if there exists
a fuzzy number M such that u ≤ M , for all u ∈ A. M is called the supremum of A if M
is an upper bound of A and M ≤ W for any upper bound W of A. It is denoted by SupA
or ∨A. A lower bound and infimum of A are defined similarly. Existence of supremum for
bounded above set and existence of infimum of bounded below set of fuzzy real numbers
have been established by Congxin and Cong [3]. The set of all fuzzy real numbers α > 0
is denoted by E and the set of all fuzzy real numbers α such that 0 ≤ α ≤ 1 is denoted
by I.

Definition 2.5. [14] Let * be a t-norm on [0, 1]. Then the induced mapping ∗ : I× I → I,
defined by a ∗ b = c, where c−(λ) = a−(λ) ∗ b−(λ), c+(λ) = a+(λ) ∗ b+(λ), ∀λ ∈ [0, 1],
is called the induced t-norm on I. Clearly if * is a continuous t-norm on [0, 1], then the
induced t-norm is continuous.
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Definition 2.6. [8] Let X be a nonempty set and d : X×X → R̂+ be a mapping satisfying
the following conditions for x, y, z ∈ X
(KS1) d(x, y) = 0 if and only if x = y
(KS2) d(x, y) = d(y, x)
(KS3) d(x, y) ≤ d(x, z)⊕ d(z, y)
Then d is said to be a fuzzy metric on X and (X, d) is said to be a fuzzy metric space.

In [14], Type-2 fuzzy metric space is defined as follows:

Definition 2.7. [14] Let X be a nonempty set. A mapping M : X×X×E → I satisfying
the conditions for all x, y, z ∈ X and s, t ∈ E
(M1)M(x, y, t) ≫ 0;
(M2) For any given 0 ≪ α ≪ 1,M(x, y, t) ≥ α for all t ≫ 0 if and only if x = y;
(M3)M(x, y, t) = M(y, x, t);
(M4) For any x, y ∈ X and any 0 ≪ α ≪ 1, there is t(≫ 0) ∈ E such that M(x, y, s) ≥
α,∀s(≥ t) ∈ E;
(M5)M(x, y, t+ s) ≥ M(x, z, t) ∗M(z, y, s), t, s ∈ E;
(M6)M(x, y, .) is monotonically increasing and continuous, where * is the induced t-norm
on I,
is called a type-2 fuzzy metric (or simply a fuzzy metric) on X, and (X,M) is called a
type-2 fuzzy metric space (or simply a fuzzy metric space).

Definition 2.8. [14] In a fuzzy metric space (X,M), for x ∈ X, t ≫ 0, 0 ≪ α ≪ 1 the
set Bα(x, t) = {y ∈ X;M(x, y, t) ≫ 1−α} is called an open ball about x with radius t and
grade α.

Definition 2.9. [14] A set O(⊂ X) is said to be an open set in a fuzzy metric space
(X,M) if for each x ∈ O,∃t ≫ 0 and 0 ≪ α ≪ 1 such that Bα(x, t) ⊂ O

Remark 2.1. It is shown in [14] that the underlying topology of the fuzzy metric space is
Hausdorff and first countable.

Definition 2.10. [14] A sequence {xn} in a fuzzy metric space (X,M) is said to be
convergent if there is x ∈ X such that for any ϵ ≫ 0 and for any 0 ≪ α ≪ 1 there is a
positive integer N such that M(xn, x, t) ≥ α, ∀n ≥ N.
‘x′ is called the limit of {xn}.

Definition 2.11. [14] A sequence {xn} in a fuzzy metric (X,M) is said to be Cauchy
if for any ϵ ≫ 0 and for any 0 ≪ α ≪ 1 there is a positive integer N such that
M(xn, ym, ϵ) ≥ α, ∀m,n ≥ N.

Definition 2.12. [14] A fuzzy metric space (X,M) is said to be complete if every Cauchy
sequence in X is convergent.

3. Completeness of Type-2 Fuzzy Metric Spaces

Definition 3.1. Let (X,M) be a fuzzy metric space and Y ⊂ X. Then Y is said to be
bounded if for any 0 ≪ α ≪ 1 there is a fuzzy real number K ≫ 0 such that M(x, y,K) ≥
α,∀x, y ∈ Y.

Theorem 3.1. Every Cauchy sequence is bounded.
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Proof. Let {xn} be a Cauchy sequence in a fuzzy metric space (X,M). Take 1 ≫ α ≫ 0.
By the continuity of the t-norm ‘∗′, there exists α′ ≫ 0 such that α′ ∗ α′ ≥ α.
Since {xn} is a Cauchy sequence, for ϵ = 1, there exists a positive integer n0 such that
M(xn, xm, 1) ≥ α′ ≥ α, ∀n,m ≥ n0..................(i)
Again there exists a positive number K such that
M(xi, xj ,K) ≥ α′ ≥ α ∀i, j = 1, 2, ...., n0.............(ii)
Now for all positive integer 1 ≤ i ≤ n0 and j ≥ n0

M(xi, xj ,K + 1) ≥ M(xi, xn0 ,K) ∗M(xn0 , xj , 1) ≥ α′ ∗ α′ ≥ α. .........(iii)
Combining (i), (ii) and (iii), we get that
M(xi, xj ,K + 1) ≥ α, ∀i, j = 1.2, .....
Hence {xn} is bounded. □

Theorem 3.2. In a fuzzy metric space every Cauchy sequence having a convergent sub-
sequence is convergent.

Proof. Let (X,M) be a fuzzy metric space and {xn} be a Cauchy sequence in (X,M)
having a convergent subsequence, say, {xni} converging to x ∈ X. Choose ϵ ≫ 0 and
0 ≪ α ≪ 1. Then there exists 0 ≪ α′ ≪ 1 such that α′ ∗ α′ ≥ α. By the Cauchyness of
{xn}, there exists a positive integer n0 such that
M(xn, xm, ϵ/2) ≥ α′, ∀n,m ≥ n0.
By the convergence of {xni} to x, there exists a positive integer i0 such that
M(xni , x, ϵ/2) ≥ α′, ∀i ≥ i0.
Choose i1 ≥ i0 such that ni ≥ n0∀i ≥ i1. Then for n ≥ n0,
M(xn, x, ϵ) ≥ M(xni1

, xn, ϵ/2) ∗M(xni1
, x, ϵ/2) ≥ α′ ∗ α′ ≥ α.

Hence {xn} converges to x. □

Theorem 3.3. Let (X,M) be a fuzzy metric space and F ⊂ X. If for any given ϵ ≫ 0
and 0 ≪ α ≪ 1,M(x, y, ϵ) ≥ α holds ∀x, y ∈ F then M(ξ, η, ϵ) ≥ α holds ∀ξ, η ∈ F (F
denotes the closure of F ).

Proof. Since ξ, η ∈ F , there exist sequences {xn}, {yn} in F such that xn → ξ and yn → η.
Since 0 ≪ α ≪ 1, there exists a positive real number r such that 0 ≪ α − r ≪ α. Then

there exists 0 ≪ α′ ≪ 1 such that α′ ∗ (α− 1

2
r) ∗ α′ ≫ α− r.

Since xn → ξ and yn → η, for any δ > 0, there exists a positive integer n(δ) such that
M(ξ, xn, δ/2) ≥ α′ and M(η, yn, δ/2) ≥ α′, ∀n ≥ n(δ).
Then M(ξ, η, ϵ+ δ)
≥ M(ξ, xn(δ), δ/2) ∗M(xn(δ), yn(δ), ϵ) ∗M(yn(δ), η, δ/2)
≥ α′ ∗ α ∗ α′

≥ α′ ∗ (α− 1

2
r) ∗ α′

≫ α− r.
Since r can be made a positive number as small as we please, M(ξ, η, ϵ+ δ) ≥ α.
Further letting δ → 0, by using continuity of M(ξ, η, .),
M(ξ, η, ϵ) = limδ→0M(ξ, η, ϵ+ δ) ≥ α. □

3.1. Cantor’s Theorem and Baire’s Category Theorem. In this section we shall
prove Cantor’s intersection theorem and Baire’s category Type-2 fuzzy metric space. In
this context it might be mentioned that Mazumder and Bag [11] extended Cantor’s the-
orem in Cone fuzzy metric space and George and Veeramani [6] proved Baire’s category
theorem in fuzzy metric space.
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Theorem 3.4. (Cantor’s theorem): A fuzzy metric space (X,M) is complete if and only if
for every decreasing sequence of closed sets F1 ⊃ F2 ⊃ ..... ⊃ Fn ⊃ ... such that there exist
ϵn ≫ 0 and 1 ≫ αn ≫ 0, n ∈ N with ϵn → 0 and αn → 1 and M(x, y, ϵn) ≥ αn, ∀x, y ∈
Fn, ∀n ∈ N, the intersection

⋂∞
n=1 Fn is a singleton set.

Proof. Suppose (X,M) is complete. Let F1 ⊃ F2 ⊃ .... ⊃ Fn ⊃ .... be a decreasing
sequence of closed sets such that there exist ϵn ≫ 0 and 1 ≫ αn ≫ 0, n ∈ N with ϵn → 0
and αn → 1 and M(x, y, ϵn) ≥ αn, ∀x, y ∈ Fn, ∀n ∈ N. Choose xn ∈ Fn, n ∈ N. Then for
any n,m ≥ n0, xn, xm ∈ Fn0 and hence M(xn, xm, ϵno) ≥ αn0 .
Take an ϵ ≫ 0 and 0 ≪ α ≪ 1. Since αn → 1 and ϵn → 0, there exists n0 ∈ N such that
0 ≪ ϵn ≪ ϵ and 0 ≪ α ≪ αn ≪ 1, ∀n ≥ n0. Then M(xn, xm, ϵ) ≫ α,∀n,m ≥ n0. So {xn}
is a Cauchy sequence in (X,M). By the completeness of (X,M), there exists x ∈ X such
that {xn} converges to x. Now xn ∈ Fm, ∀n ≥ m and Fm is closed. So x ∈ Fm. This is
true ∀m ∈ N. So x ∈

⋂∞
m=1 Fm. If possible, let y(̸= x) ∈

⋂∞
m=1 Fm. Then M(x, y, ϵm) ≥

αm, ∀m ∈ N. As ϵn → 0 and αn → 1, for any ϵ ≫ 0 and 0 ≪ α ≪ 1,M(x, y, ϵ) ≥ α. Then
x = y. So

⋂∞
m=1 Fm is a singleton set.

Conversely, suppose that the condition holds. Let {xn} be a Cauchy sequence in (X,M).
Then for any ϵ ≫ 0 and 1 ≫ α ≫ 0, there exists n(ϵ, α) ∈ N such that M(xn, xm, ϵ) ≥
α,∀n,m ≥ n(ϵ, α).

Let Fn = {xn, xn+1, ....}. Then F1 ⊃ F2 ⊃ .... ⊃ Fn ⊃ .... is a decreasing sequence of
closed sets and for 0 ≪ ϵ and 0 ≪ α ≪ 1, there exists n(ϵ, α) ∈ N such that M(x, y, ϵ) ≥
α,∀x, y ∈ Fn, ∀n ≥ n(ϵ, α). Hence by the given condition

⋂∞
n=1 Fn is a singleton set, say,

{x}. Then M(x, xn, ϵ) ≥ α, ∀n ≥ n(ϵ, α). So {xn} converges x. □

Definition 3.2. A set B is said to be nowhere dense in (X,M) if int(cl(B)) = ϕ A set
Y in (X,M) is said to be of 1st category if it can be expressed as a countable union of
nowhere dense sets. If a set Y is not of 1st category then it is called a set of 2nd category.

Theorem 3.5. (Baire’s category theorem): A complete fuzzy metric space is of 2nd cate-
gory.

Proof. Let (X,M) be a complete fuzzy metric space. Let Y ⊂ X be such that Y =
∪∞
n=1An, where An is nowhere dense in X,n = 1, 2, .... Let U be any non-empty open

set in (X,M). Since A1 is nowhere dense in (X,M), U ∩ (X \ A1) ̸= ϕ. So there exists

an open ball Bα1(x1, t1) ⊂ U ∩ (X \ A1) and Bα1(x1, t1) ⊂ U. Again A2 being nowhere
dense in X,Bα1(x1, t1) ∩ (X \ A2) ̸= ϕ. Then there exists an open ball Bα2(x2, t2) ⊂
Bα1(x1, t1) ∩ (X \ A2), α2 ≪ α1, t2 ≪ t1 and Bα2(x2, t2) ⊂ Bα1(x1, t1). Choosing suitable
t1 ≫ t2 ≫ .... ≫ .... ≫ 0 and 1 ≫ α1 ≫ α2 ≫ .... ≫ αn ≫ .... ≫ 0 such that
tn → 0 and αn → 0 and Bαn+1(xn+1,tn+1

) ⊂ Bαn(xn, tn) ∩ (X \ An+1). Then by Cantor’s

intersection theorem for completeness of a fuzzy metric space, ∩∞
n=1Bαn(xn, tn) ̸= ϕ. and

(∩∞
n=1Bαn(xn, tn)) ∩ (∪∞

n=1An) = ϕ. Hence Y ̸= X So X is not of 1st category. i.e., X is
of 2nd category.

□

4. Compactness in fuzzy metric space

Definition 4.1. A fuzzy metric space (X,M) is said to be compact if every open cover of
X has a finite subcover.

Definition 4.2. A fuzzy metric space (X,M) is said to be sequentially compact if every
sequence {xn} in X has a convergent subsequence.

Theorem 4.1. A compact fuzzy metric space is sequentially compact.
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Proof. Let (X,M) be a compact fuzzy metric space. Let {xn} be a sequence in (X,M).
If possible, let {xn} have no convergent subsequence. Then for each x ∈ X there exists
(ϵ(x), α(x))(ϵ(x) ≫ 0, 1 ≫ α(x) ≫ 0) such that the open ball Bα(x)(x, ϵ(x)) contains only
finitely many terms of {xn}.
Now C = {Bα(x)(x, ϵ(x));x ∈ X} is an open cover of X. By the compactness of X, there
is a finite subfamily, say, {Bα(x1)(x1, ϵ1(x1)), Bα(x2)(x2, ϵ2(x2), .........,
Bα(xn)(xn, ϵn(xn))} of C covering X. Then X = ∪Bα(xi)(xi, ϵi(xi)) will contain finitely
many terms of {xn}, a contradiction. Hence every compact fuzzy metric space is sequen-
tially compact. □

Definition 4.3. Let C be a cover of a fuzzy metric space (X,M). Then a pair (ϵ, α), ϵ ≫
0, 0 ≪ α ≪ 1 is said to be a Lebesgue number for C if for any subset E of X with the
property M(x, y, ϵ) ≥ α for all x, y ∈ E is contained in at least one member of C.

Theorem 4.2. In a sequentially compact fuzzy metric space every open cover has a
Lebesgue number.

Proof. Let (X,M) be a sequentially compact fuzzy metric space and C be an open cover
of X. A set U in X is said to be a big set for C if it is not contained in any member of
C. Let B be the collection of all big sets for C. If possible, let for each ϵ ≫ 0 and for each
0 ≪ α ≪ 1 there exists a big set B for C such that M(x, y, ϵ) ≫ α for all x, y ∈ B. Then
for each n ∈ N, there is a big set Bn with
M(u, v, 1/2n) ≥ n/(n+ 1)) for all u, v ∈ Bn.
Choose xn ∈ Bn, n ∈ N. Then {xn} is a sequence in (X,M). By the sequential compactness
of (X,M) there is a convergent subsequence {xni} of {xn} converging to x, say. Now x
belongs to some member O of C. Since O is open, for any given 1 ≫ α ≫ 0 there is ϵ ≫ 0
such that
Bα(x, ϵ) = {y ∈ X;M(x, y, ϵ) ≥ 1− α} ⊂ O. Choose 0 ≪ β ≪ 1 such that β ⋆ β ≥ 1− α.

Choose a positive integer n0 such that 1/2n0 ≪ ϵ/2 and n0/(1 + n0) ≫ β. Using the
convergence of {xni} to x, there exists i0 such that ni0 ≥ n0 and

M(x, xni0
, (1/2n0)) ≥ n0/(1 + n0) ≥ β.

Then for u ∈ Bni0
,

M(x, u, 1/n0) ≥ M(x, xni0
, 1/2n0) ∗M(xni0

, u, 1/2n0).

≥ n0/(1 + n0) ∗M/(xni0
, u, 1/2ni0) ≥ n0/(1 + n0) ∗ ni0/(1 + ni0)

≥ n0/(1 + n0) ∗ n0/(1 + n0) ≥ β ∗ β ≥ 1− α.

So u ∈ Bα(x, 1/n0) ⊂ Bα(x, ϵ),∀u ∈ Bni0
=⇒ Bni0

⊂ Bα(x, ϵ) ⊂ O ∈ C, a contradiction

to the fact that Bni0
is a big set for C. So there exist an ϵ0 ≫ 0 and 0 ≪ α0 ≪ 1 such

that for any big set B there exists u, v ∈ B such that M(u, v, ϵ0) ̸≥ α0. In other words, for
any set P ⊂ X with the property M(u, v, ϵ0) ≥ α0, ∀u, v ∈ P, is not a big set and hence
contained in at least one member of C. Thus (ϵ0, α0) is a Lebesgue number for the open
cover C. □

Definition 4.4. A fuzzy metric space (X,M) is said to be totally bounded if for any
ϵ ≫ 0 and for any 0 ≫ α ≫ 1 there is a finite (ϵ, α)− chain i.e., there is a finite set, say,
{x1, x2, ...., xn} ⊂ X such that ∪n

i=1Bα(xi, ϵ) = X.

Theorem 4.3. Every sequentially compact fuzzy metric space is totally bounded.

Proof. Let (X,M) be a sequentially compact fuzzy metric space. If possible, let there exist
(ϵ, α), 0 ≪ ϵ and 0 ≪ α ≪ 1 such that X has no finite (ϵ, α)− chain. Choose x1 ∈ X and
consider Bα(x1, ϵ). Then X ̸= Bα(x1, ϵ). Choose x2 ∈ X \Bα(x1, ϵ) and consider Bα(x2, ϵ).
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Then X ̸= Bα(x1, ϵ) ∪ Bα(x2, ϵ). The process can be continued to get a sequence {xn}
such that M(xi, xj , ϵ) ̸≥ 1 − α. Then {xn} is a sequence in (X,M) having no convergent
subsequence, a contradiction to the fact that (X,M) is sequentially compact space. Hence
(X,M) is totally bounded. □

Remark 4.1. Every compact metric space is bounded. but the converse is not neces-
sarily true. For example let X = l2, the metric space of all square summable sequences

of real numbers. For any fuzzy real number t ≫ 0, define M(x, y, t) =
t◦

t◦ + d(x, y)
,

where d is the l2 metric on X. Then (X,M, ∗), where ∗ is the product t-norm, is a
Type-2 fuzzy metric space. Now for any real number r with 0 < r < 1,M(x, y, t) ≥ r

iff d(x, y) ≤ a+ b

2
(
1− r

r
), where t◦ =

a+ b

2
, [a, b] = ClSupp t. Then the closed unit

ball of (X, d) is closed and bounded in (X,M). Also for the sequence {xn} with xn =

(0, 0, ..., 0, 1, 0, ..., 0),M(xn, xm, t) =
t◦

t◦ +
√
2
, which shows that {xn} has no convergent

subsequence, so that the unit ball is not compact in (X.M). Also the sequence {xn} is
bounded but not Cauchy, which justifies that the converse of the Theorem 3.1 does not
hold.

Theorem 4.4. Every sequentially compact fuzzy metric space is compact.

Proof. Let (X,M) be a sequentially compact fuzzy metric space. Let C be an open cover of
X. Then C has a Lebesgue number, say, (ϵ, α), where ϵ ≫ 0 and 0 ≪ α ≪ 1. Since (X,M) is
sequentially compact, it is totally bounded and hence there is a finite (ϵ, 1−α)− chain, say,
{x1, x2, ...., xn} for X. Then ∪n

i=1B1−α(xi, ϵ) = X. Further as (ϵ, α) is a Lebesgue number
for C, each B1−α(xi, ϵ) is contained in some member Bi ∈ C. Then {B1, B2, ...., Bn} is a
finite subfamily of C covering X. So (X,M) is compact. □

Theorem 4.5. Every compact fuzzy metric space is complete.

Theorem 4.6. A fuzzy metric space is compact if and only if it is totally bounded and
complete.

Proof. Let (X,M) be a fuzzy metric space and let it be totally bounded and complete.

Let {xn} be a sequence in X. For each i = 1, 2, ...., X has a finite (1/2i, 1/i)-chain. So

for i = 1, there is an open ball B1(ξ1, 1/2) containing infinitely many terms of {xn}. Let
S1 = {n ∈ N ;xn ∈ B1(ξ1, 1/2)}. Then S1 is infinite. Choose an element of S1 and rename

it as n1. Then xn1 ∈ B1(ξ1, 1/2). Arguing in a similar manner for some ξ2, B1/2
(ξ2, 1/4)

contains infinitely many terms xn for n ∈ S1 Let S2 = {n ∈ S1, xn ∈ B
1/2

(ξ2, 1/4). Choose

an element of S2 \ {n1} and rename it as n2. Then xn2 ∈ B1/2(ξ2, 1/4). Continuing the
process, we get a subsequence {xni} of {xn}, where ni ∈ Si \ {n1, n2, ..., ni−1}. and
xni ∈ B

1−(i−1)/i
(ξi, 1/2i), i = 1, 2, ....

Then for j ≥ i,M(xni , xnj , 1/i) ≥ M(xni , ξi, 1/2i) ∗M(xnj , ξi, 1/2i)

≥ (i− 1)/i ∗ (i− 1)/i.

As (i− 1)/i ∗ (i− 1)/i → 1 ∗ 1 = 1 and 1/i → 0, for any 0 ≪ α ≪ 1 and for any ϵ ≫ 0,
there exists i0 ∈ N such that M(xni , xnj , ϵ) ≥ α,∀i, j ≥ i0.
So {xni} is a Cauchy sequence. By the completeness of (X,M), {xni} is convergent. So
(X,M) is sequentially compact and hence, by a previous theorem, compact. Converse
part is immediate. □
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5. Conclusions

After the introduction of Type-2 fuzzy metric space in [15], in this paper we study
completeness and compactness of this fuzzy metric space. In doing so we have extended
Cantor’s intersection theorem, Baire’s category theorem in this space. Theorem concern-
ing characterizing compactness in terms of completeness and total boundedness is also
established in this Type-2 setting. For the further study establishment of Ascoli’s theo-
rem in this setting will be the next problem. Study of fixed point theorems in this space
can also be done. There is a scope for handling decision making problems applying this
Type-2 fuzzy metric.

Acknowledgement. The authors would like to extend their gratitude to the Referees for
their valuable suggestion in rewriting the paper in the present form. The author is also
grateful to the Editors of the Journal for considering the paper in this Journal.
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