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A STUDY ON MAXIMUM CARDINALITY r-L(2, 1)-LABELLING

PROBLEM ON CIRCULAR-ARC GRAPH AND ITS APPLICATION

N. PATRA1, S. AMANATHULLA2, S. MONDAL1 AND M. PAL3∗, §

Abstract. Graph labelling is one of the most applicable problem in graph theory, often
applied to solve real-world challenges. This article explores a range of L(2, 1)-labelling
problems (L21LPs), specifically focusing on the r-L21LP within CirGs. In the standard
L21LP, each vertex in a graph is assigned a label from a set of non-negative integers. The
labeling follows these rules: for adjacent vertices, the label difference must be at least 2;
for vertices at distance two, the label difference must be at least 1; and for vertices farther
apart, there are no label restrictions. The difference between the highest and lowest
labels among all vertices is denoted as λ2,1(G). This paper introduces a variation of the
L(2, 1)-labelling problem, known as the restricted L21LP, where a maximum label limit r
is imposed. Consequently, the valid labels are restricted to {0, 1, 2, . . . , r}. The objective
is to L(2, 1)-label the vertices of G using these limited labels to maximize the number of
labelled vertices. If the available r labels suffice to label all vertices, then every vertex
is labelled; otherwise, some vertices remain unlabelled. A polynomial-time algorithm
is proposed to address this problem, along with illustrative examples. Additionally,
an application scenario is presented, demonstrating the use of this labelling scheme to
allocate program slots on telecasting channels for advertising products or disseminating
information for organizations.
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algorithm.
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Abbreviation Description
InvG Interval graph
CirG Circular-arc graph
L21L L(2,1)-labelling
L21LP L(2,1)-labelling problem
LhkL L(h,k)-labelling
LhkLP L(h,k)-labelling problem

Table 1. Table of Abbreviation

In this article we use some abbreviation given in Table 1.

1. Introduction

In mathematical graph theory, graph labelling stands out as a fundamental problem
with wide-ranging applications in solving real-world challenges. It involves assigning labels,
typically integers, to the vertices and/or edges of a graph. More formally, a graph labelling
for a graph G = (V,E) is a mapping ℓ from a set U into the set of non-negative integers,
subject to certain conditions. The set U may represent the set of vertices, edges or both.
This area of graph theory is both fascinating and highly applicable, offering solutions to
a diverse array of problems. The intersection graphs are very useful to model different
types of real world problems [6, 8, 18, 37, 38, 36, 46].

Various types of graph labelling problems, such as simple vertex labelling, edge labelling,
L(h, k)-labelling, harmonic labelling, graceful labelling, magic labelling, anti-magic la-
belling, etc., have been extensively studied by researchers. These labelling problems find
applications in scheduling, traffic planning, job assignment, and more. In particular, the
labelling of interval graphs (InvG) and circular-arc graphs (CirG) has been explored ex-
tensively, showcasing their relevance in practical scenarios.

Moreover, InvG and CirG have been instrumental in solving numerous other problems
beyond graph labelling, as evidenced by their applications in various contexts [31, 32,
45, 46]. These graphs have proven to be versatile tools in addressing a wide range of
challenges, further underscoring the significance of graph theory in problem-solving.

It is true that the real world is full of uncertainties, which are addressed by probabil-
ity theory or fuzzy theory. Consequently, fuzzy graph theory has been developed, and
extensive research has been conducted in this field. Mondal et al. [40, 41] have recently
investigated the utilization of m-polar fuzzy graph to address road network issues, em-
ploying the isometric and antipodal concepts and generalized m-polar fuzzy planar graph.
Some of the very novel work are vailable in [10, 7, 12, 24, 25, 27, 28, 29, 39, 42].

The L(h, k)-labelling problem (LhkLP) has found numerous applications and has been
extensively studied by researchers due to its wide-ranging practical implications. Its origins
trace back to the frequency allocation problem, which was introduced by Roberts [43].
In this context, various types of frequency assignment problems have been investigated
[2, 3, 4, 33, 34, 35, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 26].

In the frequency allocation problem, different linguistic terms such as ’very closed’
and ’closed’ are used to describe the relationship between transmitters and their assigned
frequencies. Specifically, a ’very closed’ transmitter is allocated a frequency that is at
least two units apart from other frequencies, while a ’closed’ transmitter is assigned a
different frequency. However, the exact definitions of these terms may vary depending on
the context.
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The task of assigning frequencies to a given group of televisions or radio transmitters
while adhering to the above conditions is known as the frequency assignment problem.
Hale [21] modeled this problem as a vertex coloring problem.

In this modeling approach, the graph’s vertices represent the transmitters, and the edges
between vertices represent the relationships between transmitters. Two vertices p and q
are considered ’very close’ if their distance, denoted by dist(p, q), is 1 unit, and ’close’ if
their distance is 2 units. Here, the distance between vertices is defined as the minimum
number of edges on the path connecting them.

The LhkLP typically operates under the assumption that two vertices are considered
’closed’ if their distance is 2 units apart, and ’very closed’ if their distance is 1 unit.
Griggs and Yeh [20] formalized the LhkLP, specifically defining the L(2, 1)-labelling (L21L)
of a graph G = (V,E) as a function ℓ mapping vertices in V to non-negative integers
{0, 1, 2, . . .}, satisfying the conditions:

|ℓ(p)− ℓ(q)| ≥ 2, if the dist(p, q) is 1 in G, and
|ℓ(p)− ℓ(q)| ≥ 1, if the dist(p, q) is 2 in G.

The general LhkLP is defined as follows:

|ℓ(p)− ℓ(q)| ≥ h, if dist(p, q) is 1 in G and
|ℓ(p)− ℓ(q)| ≥ k, if dist(p, q) is 2 in G.

The LhkLP has attracted considerable attention from researchers because of its diverse
practical applications. Its origins can be traced back to Roberts’ introduction of the
frequency allocation problem [43]. This problem encompasses various types of frequency
assignment scenarios, where different linguistic terms like ’very closed’ and ’closed’ are
employed to describe the relationship between transmitters and their allocated frequencies.
Specifically, a ’very closed’ transmitter is assigned a frequency that is at least two units
apart from other frequencies, while a ’closed’ transmitter is given a different frequency.
However, the exact definitions of these terms may vary depending on the specific context.

The task of assigning frequencies to a group of radio transmitters or televisions while
adhering to the aforementioned conditions is known as the frequency assignment problem.
Hale [?] approached this problem by modeling it as a vertex coloring problem.

In this modeling approach, the graph’s vertices represent the transmitters, and the edges
between vertices represent the relationships between transmitters. Two vertices p and q
are considered ’very close’ if their distance, denoted by dist(p, q), is 1 unit, and ’close’ if
their distance is 2 units. Here, the distance between vertices is defined as the minimum
number of edges on the path connecting them.

The LhkLP typically assumes that two vertices are ’closed’ if their distance is 2 units
apart, and ’very close’ if their distance is 1 unit. Griggs and Yeh [20] formalized the LhkLP
in 1992, with the L21L of a graph G = (V,E) defined as a function ℓ from V to the set of
non-negative integers {0, 1, 2, . . .}, such that:

Consider a given positive integer r. Then, an r-LhkL of a graph G is defined by a
function ℓ : V → {0, 1, 2, ..., r} such that:
(i) |ℓ(p)− ℓ(q)| ≥ h if dist(p, q) = 1,
(ii) |ℓ(p)− ℓ(q)| ≥ k if dist(p, q) = 2, and
(iii) |V ′| is maximum, where V ′ represents the set of labeled vertices under the labelling
function ℓ.

CirG is a very important subclass of intersection graph. Let A = {A1, A2, . . . , An} be a
set of n arcs around a circle. The CirG can be constructed from this set of arcs as follows:
For each arc an vertex is considered. If two arcs overlap then there is an edge between
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the corresponding vertices and if there is no overlap, then there is no edge between the
vertices.

In the context of the r-LhkLP, a predefined integer r is given, and the objective is to
label the graph using the LhkL approach while ensuring that the maximum label used does
not exceed r. If the label r is adequate to label the entire graph using L-(h, k)-labelling,
then the r-LhkLP reduces to the standard LhkL. However, if the maximum label r falls
short of labelling all vertices in the graph, a new algorithm is necessitated. Presently, no
such algorithm exists for solving the r-LhkLP for circular graphs, even for given values of
h and k.

Various bounds for λ2,1(G) are available for certain types of graphs. Let ∆(G) denote
the maximum degree of the vertices in graph G, sometimes referred to simply as the
graph’s degree and denoted by ∆.

Griggs and Yeh [20] initially provided an upper bound for λ2,1(G), demonstrating that
λ2,1(G) ≤ ∆2+2∆ for all graphs G. This bound was subsequently improved to λ2,1(G) ≤
∆2+∆. Gonçalves [19] made additional improvements, establishing λ2,1(G) ≤ ∆2+∆−2.
Griggs and Yeh [20] also proposed the following conjecture.

Conjecture. For any graph G, λ2,1(G) ≤ ∆2.

This problem remains unresolved, although it holds true for certain particular graphs.
For instance, it is true for the conjecture has been verified for chordal graphs and InvG,
these are the subclass of chordal graphs.

In [61], Yeh made two noteworthy observations:
(a) For a positive integer q and any graph G, λqh,qk = qλh,k.
(b) For any non-null graph G,

lim
i→∞

λi+1,1(G)

λi,1(G)
= 1.

Motivation. In the realm of graph theory, the LhkL problem seeks to assign labels to
vertices in a graph with the minimal number of labels possible, without imposing con-
straints on the label values. The primary objective is to minimize the total number of
labels used, ensuring that as many vertices as possible receive labels while adhering to
the LhkL condition. Initially explored by Chang and Kuo [15], they established that for
strongly chordal graphs, the λ2,1 labeling is bounded above by 2∆, where ∆ represents the
maximum degree of the graph. This finding extends to InvG and unit InvG graphs. Sakai
[44] further contributed to this field by demonstrating that for unit InvG graphs, the λ2,1

labeling falls within the range of 2χ−2 ≤ λ2,1(G) ≤ 2χ, where χ is the chromatic number.
Calamoneri et al. [13] expanded upon this research, proving that for InvG graphs, the
upper bound for λh,k is max(h, 2k)∆. Particularly, when k = 1 and h = 2, their results
coincide with those of Chang and Kuo. Additionally, Calamoneri et al. [14] demonstrated
that for Circular Graphs (CirG), λh,k(G) ≤ max(h, 2k)∆+hω, where ω denotes the clique
number. Notably, the decision version of the LhkLP for h = 0, k = 1 is NP-complete for
planar graphs [15].

A comprehensive review of LhkLP is provided by Calamoneri et al. [14]. For n-

dimensional hypercubes Qn, Wan [63] established that λ0,1(Qn) ≤ 2[logn], providing a
corresponding labeling scheme. This scheme proves optimal when n takes the form 2t for
some integer t, otherwise constituting a 2-approximation. Das et al. [17] proposed an

alternative algorithm utilizing 2[logn]+1 labels with time and space complexities of O(n),
representing an advancement in efficiency over previous methods. For bipartite graphs,
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Bodlaender et al. [11] established that λ0,1(G) ≥ ∆2/4, a lower bound subsequently im-
proved by a constant factor of 1/4 in [1]. Chiang and Yan [16] explored the L(d, 1)-labeling
of Cartesian products of cycles and paths, a problem initially introduced by Griggs and
Yeh [20, 62] in the context of frequency assignment in multiple radio networks.

Our work. In this paper, we address the r-LhkLP and introduce a solution algorithm with
a time complexity of O(n∆2), where n denotes the number of vertices in the graph and ∆
represents the maximum degree of the graph. We offer an illustrative example to showcase
the algorithm’s effectiveness. To the best of our knowledge, no existing algorithm can solve
the r-LhkLP for CirG, even when the parameters h and k are provided.

Additionally, we explore an application involving the selection of program slots from
telecasting channels. We present an O(n∆2) time algorithm designed to address this
problem, accompanied by a suitable example to illustrate its functionality.

The remainder of this paper is structured as follows:
Section 2: We define CirG, providing necessary background for the subsequent discus-

sion.
Section 3: We present a polynomial time algorithm specifically designed to solve the

r-L21LP for CirG. We also include essential results required to establish the correctness
of the algorithm, and discuss its time complexity.

Section 4: We introduce an application scenario related to program slot selection from
telecasting channels.

This paper aims to contribute to the field of graph theory by providing practical solu-
tions to challenging labelling problems and demonstrating their real-world applicability.

2. Circular-arc graph

As we navigate clockwise around the circle, each arc is defined by its ”starting point,”
where it’s encountered initially, and its ”finishing point,” where it concludes. Denoted as
Ai, each arc corresponds to a closed interval [aj , bi], with aj marking its counterclockwise
end (starting point) and bi indicating its clockwise end (finishing point), satisfying aj <
bi. Dividing the arcs are lines extending from the circle’s center through the finishing
points, segregating them into two sets: ”backward arcs” (SB), intersected by the line, and
”forward arcs” (SF ), untouched. If k denotes the number of arcs intersected by this line,
expressed as |SB| = k, the backward arcs’ endpoints are initially labeled clockwise from 1
to k, while the rest, from k+1 to n, are sequentially labeled based on their starting points.
This labeling establishes an order of arcs based on increasing counterclockwise ends. When
two arcs Ai and Aj share common points on the circle, they’re termed ”intersecting arcs”;
otherwise, they’re deemed ”independent arcs.”

The primary focus lies on scenarios where every point on the circle is covered by at least
one arc. If any portion of the circle lacks coverage by any arc within a Circular Graph
(CirG), it reveals a gap, simplifying the CirG’s arc model to an interval model enveloping
the circle. Consequently, algorithms tailored for interval graphs can then determine the
maximum weight independent set.

A key aspect is the equivalence between the arcs and vertices of the CirG, which results
from its construction using the set of arcs.

To ascertain adjacency between two arcs (or vertices) Ai = [aj , bi] and Aj = [ak, bk], a
straightforward method can be employed.

Lemma 2.1. For any two adjacent arcs Ai = [aj , bi] and Aj = [ak, bk], one of the following
conditions is true
(i) aj < ak < bi < bk or
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(ii) aj < ak < bk < bi or
(iii) ak < aj < bi < bk.

To exemplify our issue, we consider the CirG depicted in Figure 1.

Figure 1. (a) An example of circular-arc graph; (b) The circular arc
representation of the graph of Fig. (a)

In the following section, an algorithm is presented to solve the r-L21LP for CirG.

3. An algorithm

Notations:
J(Ak): Set of labels used before labelling arc Ak.
J1(Ak): Set of labels at distance 1 from arc Ak before labelling Ak.
J2(Ak): Set of labels at distance 2 from arc Ak before labelling Ak.
Jvl(1, Ak): Set of valid labels for labelling arc Ak before labelling Ak, satisfying adja-

cency conditions.
Jvl(2, Ak): Set of valid labels for labelling arc Ak before labelling Ak, satisfying the

L21L condition.
l(k): Label of arc Ak or vertex vk.
Here we present an algorithm to compute Jvl(1, Ak) and Jvl(2, Ak), k = 2, 3, . . . , n.

Algorithm KVL
Input: The set of arcs Ak, k = 2, 3, . . . , n .
Output: Jvl(r,Ak) for r = 1, 2; k = 2, 3, . . . , n.
Step 1: Compute J1(Ak), J2(Ak) and J(Ak).

for i = 1 to p where p = max{J(Ak)}+ 2
for j = 1 to |J1(Ak)|

if |i− lq| ≥ 2, then adding element i to the set Jvl(1, Ak),
i.e., Jvl(1, Ak) = {i}, where lq be the qth element of J1(Ak).

end for;
end for;

Step 2:
for s = 1 to |Jvl(1, Ak)|

for t = 1 to |J2(Ak)|
if |ls − pt| ≥ 1, then Jvl(2, Ak) = {ls},
where ls ∈ Jvl(1, Ak), pt ∈ J2(Ak).

end for;
end for;

end KVL

Theorem 3.1. The algorithm KVL correctly compute Jvl(1, Ak) and Jvl(2, Ak).

Proof: In algorithm KVL every element i of Jvl(1, Ak) is differ from lq by at least 2
for every element lq of J1(Ak).

So for any i ∈ Jvl(1, Ak) and lq ∈ J1(Ak), |i− lq| ≥ 2.
So, Algorithm KVL correctly computes Jvl(1, Ak), k = 2, 3, . . . , n.
Again, according to Algorithm KVL any element lα ∈ Jvl(2, Ak) differs from lβ ∈ J2(Ak)

by at least 1.
Therefore, |ll−pl| ≥ 2 for all ls ∈ Jvl(2, Ak) and for all pt ∈ J1(Ak) and also |ls−pt| ≥ 1

for all ls ∈ Jvl(2, Ak) and for all pt ∈ J2(Ak).
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Therefore, Jvl(2, Ak) is correctly computed by algorithm KVL.

Lemma 3.1. For every CirG G, Jvl(1, Ak) is the non-empty largest set of labels satisfying
the condition at distance 1 of L21L, where m ≤ s for all m ∈ Jvl(1, Ak), s = max{J(Ak)}+
2 for any Ak ∈ A(set of arcs of G).

Proof: Obviously, J1(Ak) ⊆ J(Ak) and since, s = max{J(Ak)}+ 2, so |s− lp| ≥ 2 for
all lp ∈ J1(Ak).

So, s ∈ Jvl(1, Ak) and hence, Jvl(1, Ak), is non-empty.
Therefore, s ∈ Jvl(1, Ak) and hence Jvl(1, Ak) is non-empty.
Now, let A be any set of labels which satisfies the condition of distance 1 of L21LP,

where m ≤ s for all m ∈ A.
Also, let α ∈ A. Then |α− lp| ≥ 2 for all lp ∈ J1(Ak).
Thus, α ∈ Jvl(1, Ak).
So, α ∈ A implies α ∈ Jvl(1, Ak).
Therefore, A ⊆ Jvl(1, Ak).
Since A is arbitrary, so Jvl(1, Ak) is a non-empty largest set.

Lemma 3.2. For every CirG G, Jvl(2, Ak) is the non-empty largest set of labels satisfying
L21L condition, where m ≤ s for all m ∈ Jvl(1, Ak), s = max{J(Ak)}+2 for any Ak ∈ A
set of arcs of G.

Proof: Obviously, J1(Ak) ⊆ J(Ak) and J2(Ak) ⊆ J(Ak) and also since s = max{J(Ak)}+
2, so |s− lp| ≥ 2 for all lp ∈ J1(Ak), lp ∈ J2(Ak).

That is, |s− lp| ≥ 2 for all lp ∈ J1(Ak), and
|s− lp| ≥ 1 for all lp ∈ J2(Ak).

So, s is the valid L(2, 1)-label for the arc Ak. Thus Jvl(2, Ak).
This shows that Jvl(2, Ak) is non-empty.
Again, let A be any set of labels which satisfies L21L condition and m ≤ s for all m ∈ A.
Also, consider, α ∈ A. Then |α − lp| ≥ 2 for all lp ∈ J1(Ak) and |α − lq| ≥ 1 for all

lq ∈ J2(Ak).
Therefore, α ∈ Jvl(2, Ak).
Hence, A ⊂ Jvl(2, Ak).
Since A is arbitrary, Jvl(2, Ak) is non-empty largest set of labels satisfying L21L con-

dition, where m ≤ s for all m ∈ Jvl(2, Ak), and s = max{J(Ak)}+ 2 for any Ak ∈ A.
Let’s consider R labels necessary for L21L a CirG G. Now, assume we have r(> 0)

labels available, where r < R. Consequently, some vertices remain unlabeled. Denote the
sets of unlabeled and labeled vertices as Vu and Vl respectively, such that Vl = V − Vu.

The aims of Algorithm KL21-CirG is to label all vertices of a CirG by using r labels.
Algorithm KL21-CirG
Input: The set of arcs (vertices) of a CirG, A = {A1, A2, . . . , An} and Jvl(1, Ak), Jvl(2, Ak)
for k = 2, 3, · · · , n, and r, number of maximum available labels.
Output: The set of labeled vertices, Vl.

Step 1: (Initialization)
ℓ(1) = 0;
Vl = {v1};
J(A2) = {0};
Step 2:
For k = 2 to n− 1

ℓ(k) = min{Jvl(2, Ak)};
J(Ak+1) = J(Ak) ∪ {ℓ(k)};
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if ℓ(k) < r then
Vl = Vl ∪ {ℓ(k)};

endfor;
Step 3:

ℓ(n) = min{Jvl(2, An)};
if ℓ(n) < r then

Vl = Vl ∪ {ℓ(n)}.
end KL21-CirG

Theorem 3.2. The Algorithm KL21-CirG correctly labels a CirG by L21L using r labels,
where r < R.

Proof: Let G be a CirG with vertices A = {A1, A2, . . . , An}. We set ℓ(1) = 0 and
J(A2) = {0}.

Consider a scenario where some arcs A1, A2, . . . , Ak−1 are already labeled for k =
2, 3, . . . , n, and the remaining vertices are unlabeled. Our objective is to label the arc
Ak by L21L. According to Lemma 3.2, Jvl(2,Ak) represents the largest non-empty set of
labels satisfying the L21L condition.

To minimize the label usage, we set ℓ(k) = q, where q = min{Jvl(2, vk)}.
If q ≤ r, then q is a valid r-L(2, 1)-label for the arc Ak. Since Ak is arbitrary, Algorithm

KL21-CirG correctly labels any CirG by L21L using r(< R).
To illustrate the algorithm, let us consider a CirG G shown in Figure 1. In this graph

V = {v1, v2, · · · , v8} and A = {A1, A2, · · · , A8}.
Assume that r = 5.

Iteration: Initially, ℓ(1) = 0, J(A2) = {0}, Vl = {A1}
Iteration 1: For k = 2
J1(A2) = {0}, J2(A2) = ∅
Jvl(1, A2) = {2}, Jvl(2, A2) = {2}
∴ ℓ(2) = 2, J(A3) = {0, 2}
Since, ℓ(2) = 2 < 5, Vl = {A1, A2}.
Iteration 2: For k = 3
J1(A3) = {0, 2}, J2(A3) = ∅
Jvl(1, A3) = {4}, Jvl(2, A3) = {4}
∴ ℓ(3) = 4, J(A4) = {0, 2, 4}
Since, ℓ(3) = 4 < 5, Vl = {A1, A2, A3}.
Iteration 3: For k = 4
J1(A4) = {4}, J2(A4) = {0, 2}.
Jvl(1, A4) = {0, 1, 2}, Jvl(2, A4) = {1}
∴ ℓ(4) = 1, J(A5) = {0, 1, 2, 4}.
Here, ℓ(4) = 1 < 5, Vl = {A1, A2, A3, A4}
Iteration 4: For k = 5
J1(A5) = {1, 4}, J2(A5) = {0, 2}.
Jvl(1, A5) = {6}, Jvl(2, A5) = {6}
∴ ℓ(5) = 6, J(A6) = {0, 1, 2, 4, 6}.
In this case, ℓ(5) = 6 > 5, Vl = {A1, A2, A3, A4}.
Iteration 5: For k = 6
J1(A6) = {6}, J2(A6) = {1, 4}
Jvl(1, A6) = {0, 1, 2, 3, 4, 8}, Jvl(2, A6) = {0, 2, 3, 8}
∴ ℓ(6) = 0, J(A7) = {0, 1, 2, 4, 6}
Here, ℓ(6) = 0 < 5, Vl = {A1, A2, A3, A4, A6}.
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Iteration 6: For k = 7
J1(A7) = {0}, J2(A7) = {0, 6}
Jvl(1, A7) = {2, 3, 4, 5, 6, 7, 8}, Jvl(2, A7) = {2, 3, 4, 5, 7, 8}.
∴ ℓ(7) = 2, J(A8) = {0, 1, 2, 4, 6}
In this case, ℓ(7) = 2 < 5, Vl = {A1, A2, A3, A4, A6, A7}.
Iteration 7: For k = 8
J1(A8) = {0, 2}, J2(A8) = {0, 2, 4}
Jvl(1, A8) = {4, 5, 6, 7, 8}, Jvl(2, A8) = {5, 6, 7, 8}.
∴ ℓ(8) = 5,
Since, ℓ(5) = 5, Vl = {A1, A2, A3, A4, A6, A7, A8}.
Hence, Vu = V − Vl = {v5}.

Theorem 3.3. The running time of Algorithm KL21-CirG for a graph with n vertices
and a maximum degree ∆ is O(n∆2).

Proof: According to our proposed algorithm ℓ(k), the L(2, 1)-label of the arc Ak is
found if Jvl(2, Ak) is available.

The sets Jvl(i, Ak), i = 1, 2 are computed by Algorithm KVL using O(∆2) time.
Hence, the total time complexity of this algorithm is O(n∆2).

4. An Application

An application of maximum cardinality r-L21LP is considered here. Nowadays televi-
sion and online sites became popular and powerful medias both for entertainment, broad-
casting and receiving various information, viz. news, any kind of circular, product infor-
mation, etc. Again, during the last few years a huge number of television channels and
online news portals are initiated and as a result the general people facing problems to
select the television or online channels. Many good channels are now available that are
playing very good entertaining programs. On the other hand, a big competition amongst
different governmental, nongovernmental,national, international, channels have increased
its popularity. The aims of the channels are to catch the maximum number of audiences to
broadcast their programs and generate the maximum amount of revenue. The most of the
revenue is coming from the advertisement of the different products for the manufacturing
companies and other organizations, institutions, etc.

Some channels, whether television or online, broadcast their programs 24 hours a day.
Each channel offers a variety of programs scheduled at different times. However, programs
aired on different channels at the same time do not overlap. Typically, an individual cannot
watch more than one program simultaneously, especially when it comes to entertainment
shows. The viewership for each program can be assessed using various methods, with
different programs attracting varying numbers of viewers. The quality of a program plays
a crucial role in enticing viewers to watch it, ultimately determining its success in attracting
more viewers compared to programs airing simultaneously on other channels.

It is obvious that the aim of the advertisers is to send the product information or other
information to the maximum number of people by spending a minimum amount of money.
To achieve this goal the advertiser will select some popular television programs or online
programs. But, it generally happens that the advertisement cost of the popular programs
are high compared to non-popular programs. The advertisers follow different rules for
broadcasting their information among the maximum number of people. Some advertisers
may decide that they will advertise
(i) for the whole day, but they will select only one program at a time.
(ii) for a certain number of programs, say r number of programs. These programs may be
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Figure 2. Depicting the program slots outlined in Tables 2, 3, and 4
using circular arcs.

Figure 3. Representation of the program slots of Tables 2, 3 and 4 as
circular arcs.

disjoint or simultaneously telecasted,
(iii) for some programs with a gap of at least one program,
(iv) for a certain number of programs, but they have a fixed amount of money, say maxi-
mum $ M .

Many different such strategies are adopted by the advertisers depending on the avail-
ability of the money, need, etc. In this article, it is assumed that the advertisers will
advertise their product or information through some channels in r number of program
slots such that no two program slots are consecutive, i.e. between two selected program
slots there must at least one program slot in between them which is(are) not selected for
advertisement.

This problem can be solved from the output obtained by algorithm KL21-CirG.
It’s fascinating to note that we can represent all program slots of all channels as a CirG.

Each program slot is visualized as a concentric circular arc spanning the 24-hour duration,
with the length of each arc representing the duration of the program. To maintain clarity
and avoid confusion, each program seamlessly transitions from the end of the preceding
program to the start of the succeeding one. For instance, if program A on a channel
airs from 14:30 to 15:00, it’s immediately followed by the program starting at 15:00, with
no gaps in between. This approach ensures a continuous flow of programming without
overlaps or gaps.

Now, we can depict all programs of all channels as arcs in a CirG. Each program corre-
sponds to a distinct arc, with intersecting arcs representing programs that share a common
time slot. Notably, programs within the same channel do not overlap in time, resulting in
non-intersecting arcs. The number of viewers for each program can be represented by the
weight assigned to the corresponding arc in the graph.

4.1. An Illustration. To demonstrate the scenario, let’s consider three television chan-
nels: Sony, BBC, and DD1. Sony and BBC broadcast programs continuously throughout
the 24-hour duration, while DD1 remains inactive only during the time interval [23:30,
24:00]. The programs telecasted on these channels are tabulated in Tables 2, 3, and 4,
respectively. The number of viewers for each program is provided in millions. For sim-
plicity, programs on Sony are denoted as S1, S2, etc., those on BBC as B1, B2, etc., and
those on DD1 as D1, D2, etc.

All the program slots for three channels are depicted in Figure 2.
The graph corresponding to the circular arcs is depicted in Figure 3.
Performing the algorithm KL21-CirG for the graph of Figure 2, the labels on the vertices

are determined and the vertices and the labels are shown in Table 5.
From the definition of L21L the following fact is obvious:

If the label difference between two vertices p and q is i, (i = 0, 1, 2), then the distance
between them is 3− i or more. This concept is used to find the set of r vertices (program
slots) among n(> r) vertices. To find such a set of vertices the following algorithm is used.
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Time slots 0.00-2.30 2.30-3.30 3.30-4.30 4.30-5.00
Program name S1 S2 S3 S4

No. of viewers 0.5 1.1 1.5 1.4

Time slots 5.00-5.30 5.30-6.30 6.30-9.20 9.20-10.20
Program name S5 S6 S7 S8

No. of viewers 1.3 2.5 4 1.5

Time slots 10.20-11.00 11.00-11.30 11.30-12.30 12.30-14.00
Program name S9 S10 S11 S12

No. of viewers 3.5 5.5 4.5 8.2

Time slots 14.00-15.30 15.30-16.30 16.30-17.00 17.00-18.00
Program name S13 S14 S15 S16

No. of viewers 3.5 4.4 4.2 5.3

Time slots 18.00-19.30 19.30-21.00 21.00-22.00 22.00-24.00
Program name S17 S18 S19 S20

No. of viewers 4.5 7.2 8.5 2.50

Table 2. Programs for the TV channel Sony

Time slots 0.00-1.00 1.00-1.40 1.40-3.00 3.00-4.00
Program name B1 B2 B3 B4

Number of viewers 2 1.5 2 2.1

Time slots 4.00-5.00 5.00-6.00 6.00-7.00 7.00-8.00
Program name B5 B6 B7 B8

Number of viewers 2.5 1.6 2.5 2.2

Time slots 8.00-9.00 9.00-10.00 10.00-11.00 11.00-12.00
Program name B9 B10 B11 B12

Number of viewers 4.5 4.2 1.5 2.5

Time slots 12.00-13.00 13.00-14.00 14.00-15.00 15.00-15.40
Program name B13 B14 B15 B16

Number of viewers 9.5 6.3 5 8.5
Time slots 15.40-17.00 17.00-18.00 18.00-19.00 19.00-20.00
Program name B17 B18 B19 B20

Number of viewers 5 7 3. 4.2
Time slots 20.00-21.00 21.00-22.00 22.00-23.00 23.00-24.00
Program name B21 B22 B23 B24

Number of viewers 4.2 3.5 2 1.9

Table 3. Programs of the TV channel BBC

Let Pj be the set of vertices with the same labels, j = 1, 2, . . . , λ, where λ is the total
number of groups of vertices with the same labels. All Pj are non-empty and |Pj | ≥ 1 for
all j. One important observation is stated below:

Note 1. Let x ∈ Pi and y ∈ Pj be two vertices. Then ℓ(x) < ℓ(y) if and only if i < j.

Algorithm FindrSlots
Input: Program slots (vertices) and their labels for the graph G = (V,E) and r.
Output: Set (P ) of r program slots.
Step 1: Sort the vertices according to their labels.
Step 2: Select largest Pj and let it be Pα, α ∈ {1, 2, 3, . . . , λ}.
Step 3: There are three cases.
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Time slots 23.30-2.00 2.00-3.00 3.00-3.30 3.30-4.00
Program name D1 D2 D3 D4

Number of viewers 1.8 2.1 3.4 3.3

Time slots 4.00-5.00 5.00-5.30 5.30-6.00 6.00-6.30
Program name D5 D6 D7 D8

Number of viewers 2.4 2.8 3.1 2.7

Time slots 6.30-7.00 7.00-7.15 7.15-8.15 8.15-8.30
Program name D9 D10 D11 D12

Number of viewers 2.3 3.4 2.1 4.5

Time slots 8.30-9.30 9.30-10.00 10.00-11.00 11.00-12.30
Program name D13 D14 D15 D16

Number of viewers 2.4 1.5 4.2 4.4
Time slots 12.30-13.30 13.30-14.30 14.30-15.00 15.00-16.00
Program name D17 D18 D19 D20

Number of viewers 3.2 2.2 3.1 7.1

Time slots 16.00-16.15 16.15-16.45 16.45-20.00 20.00-20.30
Program name D21 D22 D23 D24

Number of viewers 4.5 4.8 4.7 2.2

Time slots 20.30-21.00 21.00-22.00 22.00-22.30 22.30-23.00
Program name D25 D26 D27 D28

Number of viewers 0.8 1.4 1.8 1.5

Table 4. Programs of the TV channel DD1

Vertex Label Vertex Label Vertex Label Vertex Label
S1 0 S2 1 S3 2 S4 3
S5 0 S6 1 S7 0 S8 1
S9 0 S10 0 S11 1 S12 2
S13 0 S14 1 S15 0 S16 10
S17 2 S18 1 S19 0 S20 1
B1 2 B2 4 B3 3 B4 5
B5 0 B6 3 B7 4 B8 2
B9 3 B10 5 B11 3 B12 3
B13 5 B14 4 B15 3 B16 4
B17 3 B18 4 B19 5 B20 6
B21 4 B22 2 B23 3 B24 5
D1 7 D2 6 D3 7 D4 8
D5 6 D6 5 D7 6 D8 7
D9 6 D10 7 D11 8 D12 9
D13 10 D14 7 D15 6 D16 7
D17 8 D18 6 D19 5 D20 7
D21 5 D22 6 D23 8 D24 7
D25 9 D26 5 D27 6 D28 8

Table 5. Vertices and their labels
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P1 : S1 S7 S9 S16 S18 S20 B5 B14 D3 D7 D20

0 0 0 0 0 0 0 0 0 0 0
P2 : S10 B6 B10 B15 B17 D27

1 1 1 1 1 1
P3 : S3 S12 S17 S19 B1 B3 B7 B18 D2 D5 D12 D24 D28

2 2 2 2 2 2 2 2 2 2 2 2 2
P4 : S8 B2 B12 D19 D21

3 3 3 3 3
P5 : S2 S4 S6 B9 B13 B16 B19 B21 B23 D1 D4 D9 D11

4 4 4 4 4 4 4 4 4 4 4 4 4
P5 : D15 D18 D22 P6 : D14 D16 D26

4 4 4 5 5 5
P7 : S5 S11 S13 S15 B4 B8 B20 B24 D8 D13 D25

6 6 6 6 6 6 6 6 6 6 6
P8 : S14 B11 B22 D6 D10 D17 D23

8 8 8 8 8 8 8

Table 6. Ordered program slots according to labels

Step 3.1: If |Pα| = r, then Pα is the output, i.e. P .
Step 3.2: If |Pα| > r, then remove |Pα| − r program slots from Pα

whose number of viewers is less than the other sets and this reduced
set is the output, P .
Step 3.3: If |Pα| < r. // Need r − |Pα| more program slots//
Let P t = Pα.
Select Pα−1 or Pα+1 if they exist. At least one such set must exist if λ > 1.
Let such a set be P ′′. Select a vertex x from P ′′ such that the distance
between x and the vertices of Pα is more than 2. Add x to P t.
Select left or right side set of P ′′ and repeat this process until |P t| becomes r.

end FindrSlots

Theorem 4.1. The time to find the r program slots among n slots when program slots
are at least two distance apart is O(n∆2), where ∆ is the degree of the graph.

Proof: If the graph has n vertices then the labels of the vertices can be ordered in
O(n) time, as the labels are non-negative integers. Selection of the largest Pj can also be
done within the same time. So, steps 1 and 2 can be computed in O(n) time. Now, in
step 3, there are three cases, among them case 3.1 and 3.2 are trivial. If case 3.1 is true
then the time for this step is O(1). Step 3.2 can be performed in O(n) time. There are
many operations in step 3.3, though this step can be executed in O(n) time.

Lastly, the labels of the vertices, which is the input of the algorithm, can be determined
in O(n∆2).

Hence, the overall time to find the r program slots among n slots is O(n∆2). □

An illustration. For the graph shown in Figure 3, the program slots arranged as per
ascending order of the labels are shown in Table 6.

The graph of Figure 3 has 72 vertices, but interestingly it is labeled using only eight
labels. Hence, there are eight different sets Pj and they are mentioned in Table 6 and
λ = 8. Note that label 7 is not used. So, this label is called hole for this case.
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S2 S4 S6 B9 B13 B16 B19 B21 B23 D1 D4 D9 D11 D15 D18 D22

1.1 1.4 2.5 4.5 9.5 8.5 3 4.2 2 1.8 3.3 2.3 2.1 4.2 2.2 4.8

Table 7. The set P5 and number of viewers

Now, for given different values of r we different results. Mainly there are three different
cases.
Case 1: Let r = 16.
In this case, there is only one set with 16 program slots and that is P5, i.e.
{S2, S4, S6, B9, B13, B16, B19, B21, B23, D1, D4, D9, D11, D15, D18, D22}.

Other different solutions may be obtained by applying Step 3.3 of Algorithm FindrSlots.
Case 2: Let r = 13.
In this case, there is one readily available solution which is P3, i.e.
{S3, S12, S17, S19, B1, B3, B7, B18, D2, D5, D12, D24, D28}.

Other solutions can be determined from the set P5 by removing three program slots.
We can remove any three program slots, but to spread out the advertisement to more
people, we remove such program slots whose number of viewers are less (see Table 7).

From Table 7 it follows that the programs S2, S4 and D1 have the least number of
viewers, viz. 1.1, 1.4 and 1.8. So, we can delete these programs and obtained another
solution {S6, B9, B13, B16, B19, B21, B23, D4, D9, D11, D15, D18, D22}.

Again, another solution may be obtained by applying the Step 3.3 of Algorithm Find-
rSlots.

5. Discussion

The r-L21LP is investigated for CirGs. An algorithm whose time complexity O(n∆2)
is designed for finding the solution to this problem. Also, an application is presented
to choose the r program slots among n(> r) program slots from telecasting channels. A
polynomial time algorithm is presented to solve this problem. The application is illustrated
by real data collected from three television channels. This method can be employed to
identify r (a specified integer) disjoint program slots that attract the highest number of
viewers. Also, cost of advertisement may be incorporated with the program slots. Then
bi-objective problem, i.e. maximized number of viewers and minimized advertising cost,
can be modelled and solved by graph theoretic approach. The r-L(2,1)-labeling problem
on circular-arc graphs faces scalability issues, as finding an optimal labeling becomes
computationally intensive with increasing graph size, making it difficult to handle very
large graphs efficiently. Additionally, the restriction to labels within 0, 1, 2, . . . , r can limit
the flexibility of the labeling scheme, often resulting in suboptimal coverage in complex
or densely connected graphs. In future we will try to solve this type of problems using
another classes of intersection graph.
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