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COINCIDENCE POINTS IN b-METRIC SPACES VIA L-SIMULATION

FUNCTIONS AND DIGRAPHS

S. K. MOHANTA1∗, §

Abstract. The study of fixed point theory combining digraphs and L-simulation func-
tions is a new development in the domain of contractive type single valued theory. In this
paper, we introduce the notion of a generalized LG- contraction by using L-simulation
functions and digraphs. We discuss the existence and uniqueness of points of coincidence
and common fixed points for a pair of self-mappings satisfying such contractions in b-
metric spaces. Our result will extend and unify several comparable results in the existing
literature including the well known Banach contraction theorem in metric spaces. Finally,
we give some non-trivial examples to illustrate and justify the validity of our main result.

Keywords: L-simulation function, LG-contraction, point of coincidence, common fixed
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1. Introduction

Fixed point theory is an important branch of mathematics due to its applications in
different fields of mathematics and applied sciences. The Banach contraction theorem
[7] is one of the fundamental results that helps many researchers working in this field.
This fundamental result has been generalized by several mathematicians in many direc-
tions(see [8, 17, 20, 25, 26, 27]). Bakhtin [6] introduced b-metric spaces as a generalization
of metric spaces by modifying the usual triangle inequality and proved the famous Banach
contraction theorem in this framework. In 2014, Jleli and Samet [22] gave a generaliza-
tion of the Banach contraction theorem in generalized metric spaces by using the notion
of θ-contractions. After that, Ahmad et al.[3] modified the notion of θ-contractions and
extended the result of Jleli and Samet [22] to metric spaces.

Jungck [23] introduced the concept of weak compatibility. Several authors have obtained
common fixed points by using this notion. In recent investigations, the study of fixed point
theory combining a graph is a new development which takes a vital role in many aspects.
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In [18], Echenique studied fixed point theory by using graphs and then Espinola and Kirk
[19] applied fixed point results in graph theory. In [24], Khojasteh et al. introduced L-
contractions by using the concept of simulation functions and unified some existing metric
fixed point results. Motivated by the idea given in [24] and some recent works on metric
spaces with a graph (see [4, 5, 9, 10, 11]), we reformulated some important coincidence
point and common fixed point results in b-metric spaces endowed with a graph by using
L-simulation functions.

2. Some Basic Concepts

This section begins with some basic notations, definitions and necessary results in b-
metric spaces that will be needed in the sequel.

Definition 2.1. [16] Let X be a nonempty set and b ≥ 1 be a given real number. A
function d : X ×X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ b (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is worth noting that the class of b-metric spaces is effectively larger than that of the
ordinary metric spaces.

The following example supports the above remark.

Example 2.1. [26] Let X = {−1, 0, 1}. Define d : X ×X → R+ by d(x, y) = d(y, x) for
all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1. Then (X, d)
is a b-metric space, but not a metric space since the triangle inequality is not satisfied.
Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that b = 3
2 .

Example 2.2. [28] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is
a real number. Then ρ is a b-metric with b = 2p−1.

Definition 2.2. [13] Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence in X.
Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x

or xn → x(n → ∞).
(ii) (xn) is Cauchy if and only if lim

n,m→∞
d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.1. [13] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

Theorem 2.1. [2] Let (X, d) be a b-metric space and suppose that (xn) and (yn) converge
to x, y ∈ X, respectively. Then, we have

1

b2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ b2d(x, y).
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In particular, if x = y, then lim
n→∞

d(xn, yn) = 0.

Moreover, for each z ∈ X, we have

1

b
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ bd(x, z).

Definition 2.3. [1] Let T and S be self mappings of a set X. If y = Tx = Sx for some x
in X, then x is called a coincidence point of T and S and y is called a point of coincidence
of T and S.

Definition 2.4. [23] The mappings T, S : X → X are weakly compatible, if for every
x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.1. [1] Let S and T be weakly compatible selfmaps of a nonempty set X. If
S and T have a unique point of coincidence y = Sx = Tx, then y is the unique common
fixed point of S and T .

Definition 2.5. [15] Let L be the family of all mappings ξ : [1,∞)× [1,∞) → R such that

(ξ1) ξ(1, 1) = 1;
(ξ2) ξ(t, s) < s

t for all t, s > 1;
(ξ3) for any two sequences (tn), (sn) ⊆ (1,∞) with tn ≤ sn for all n ∈ N,

lim
n→∞

tn = lim
n→∞

sn > 1 ⇒ lim sup
n→∞

ξ(tn, sn) < 1.

We say that ξ ∈ L is an L-simulation function. It is to be noted that ξ(t, t) < 1 for all
t > 1.

Example 2.3. [15] Let ξb, ξw, ξ : [1,∞) × [1,∞) → R be functions defined as follows,
respectively:

(i) ξb(t, s) =
sk

t for all t, s ≥ 1, where k ∈ (0, 1).
(ii) ξw(t, s) =

s
tϕ(s) for all t, s ≥ 1, where ϕ : [1,∞) → [1,∞) is a nondecreasing and

lower semicontinuous function such that ϕ−1({1}) = 1.
(iii)

ξ(t, s) =


1, if (s, t) = (1, 1),

s
2t , if s < t,

sλ

t , otherwise,

for all s, t ≥ 1, where λ ∈ (0, 1).

Then ξb, ξw, ξ ∈ L.

Definition 2.6. [3] Let Θ be the set of all functions θ : (0,∞) → (1,∞) such that

(θ1) θ is nondecreasing;
(θ2) for all (tn) ⊆ (0,∞),

lim
n→∞

θ(tn) = 1 ⇐⇒ lim
n→∞

tn = 0+;

(θ3) θ is continuous on (0,∞).

Example 2.4. [3] Let θ : (0,∞) → (1,∞) be defined as θ(t) = et for all t > 0. Then
θ ∈ Θ.
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We next review some basic notions in graph theory.

Let (X, d) be a b-metric space. We assign a reflexive digraph G with the vertex set
V (G) = X and the set E(G) of its edges contains no parallel edges. So we can identify G
with the pair (V (G), E(G)). By G−1 we denote the graph obtained from G by reversing

the direction of edges, i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}. Let G̃ denote the
undirected graph obtained from G by ignoring the direction of edges. Actually, it will be
more convenient for us to treat G̃ as a digraph for which the set of its edges is symmetric.
Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all graph
theory books, like [12, 14, 21].

Definition 2.7. Let (X, d) be a b-metric space with the coefficient b ≥ 1 and let G =
(V (G), E(G)) be a graph. A mapping f : X → X is called a Banach G-contraction or
simply G-contraction if there exists α ∈ (0, 1b ) such that

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X with (x, y) ∈ E(G).

Any Banach contraction is a G0-contraction, where the graph G0 is defined by E(G0) =
X × X. But it is valuable to note that a Banach G-contraction need not be a Banach
contraction (see Remark 3.2).

Remark 2.2. If f is a G-contraction, then f is both a G−1-contraction and a G̃-contraction.

Definition 2.8. Let (X, d) be a b-metric space with the coefficient b ≥ 1 and let G =
(V (G), E(G)) be a graph. A mapping f : X → X is called a generalized LG-contraction
if there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(x, y))) ≥ 1

for all x, y ∈ X with (x, y) ∈ E(G) and d(fx, fy) > 0.

3. Main Result

In this section, we assume that (X, d) is a b-metric space with the coefficient b ≥ 1 and
G = (V (G), E(G)) is a reflexive digraph which has no parallel edges. Let f, g : X → X
be such that f(X) ⊆ g(X). Let x0 ∈ X be arbitrary. Since f(X) ⊆ g(X), we can find an
element x1 ∈ X satisfying fx0 = gx1. Continuing in this way, we can construct a sequence
(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · .

Definition 3.1. Let (X, d) be a b-metric space endowed with a graph G and f, g : X → X
be such that f(X) ⊆ g(X). We define Cgf the set of all elements x0 of X such that

(gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and for every sequence (gxn) such that gxn =
fxn−1.

Taking g = I, the identity map on X, Cgf becomes Cf which is the collection of all

elements x of X such that (fnx, fmx) ∈ E(G̃) for m, n = 0, 1, 2, · · · .

Before presenting our main result, we state a property of the graph G, call it property
(∗).
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Property (∗): If (gxk) is a sequence in X such that gxk → x and (gxk, gxk+1) ∈ E(G̃)

for all k ≥ 1, then there exists a subsequence (gxki) of (gxk) such that (gxki , x) ∈ E(G̃)
for all i ≥ 1.

Taking g = I, the above property reduces to property (∗)́:

Property (∗)́: If (xk) is a sequence in X such that xk → x and (xk, xk+1) ∈ E(G̃) for

all k ≥ 1, then there exists a subsequence (xki) of (xk) such that (xki , x) ∈ E(G̃) for all
i ≥ 1.

Theorem 3.1. Let (X, d) be a b-metric space endowed with a graph G and let f, g : X →
X be mappings with g is one to one. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(gx, gy))) ≥ 1 (1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and d(fx, fy) > 0. Suppose also that f(X) ⊆ g(X),
g(X) is a complete subspace of X and the graph G has the property (∗). Then f and g
have a point of coincidence in g(X) if Cgf ̸= ∅.
Moreover, f and g have a unique point of coincidence in g(X) if the graph G has the
following property:
(∗∗) If x, y are points of coincidence of f and g in g(X), then (x, y) ∈ E(G̃).
Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed
point in g(X).

Proof. We first mention that if g is one to one and d(fx, fy) > 0, then it must be the case
that d(gx, gy) > 0. Assume that Cgf ̸= ∅. We choose an x0 ∈ Cgf and keep it fixed. Since
f(X) ⊆ g(X), we can construct a sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · ·
and (gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · .
We note that if gxn = gxn−1 for some n ∈ N, then gxn = fxn−1 = gxn−1 which implies
that gxn is a point of coincidence of f and g. So, we assume that gxn ̸= gxn−1 for every
n ∈ N.

We now prove that
lim
n→∞

d(gxn−1, gxn) = 0. (2)

Since (gxn−1, gxn) ∈ E(G̃) for all n ∈ N and d(fxn−1, fxn) > 0, it follows from condi-
tions (1) and (ξ2) that

1 ≤ ξ(θ(bd(gxn, gxn+1)), θ(d(gxn−1, gxn)))

<
θ(d(gxn−1, gxn))

θ(bd(gxn, gxn+1))
,

which gives that
θ(bd(gxn, gxn+1)) < θ(d(gxn−1, gxn)).

As θ is nondecreasing, we have for all n ∈ N,
d(gxn, gxn+1) ≤ bd(gxn, gxn+1) < d(gxn−1, gxn). (3)

Therefore, (d(gxn−1, gxn)) is a decreasing sequence of positive real numbers and so there
exists r ≥ 0 such that lim

n→∞
d(gxn−1, gxn) = r.

From condition (3), it follows that

lim
n→∞

bd(gxn, gxn+1) = r.
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We shall show that r = 0. Assume that r > 0. Then by using condition (θ2), we get

lim
n→∞

θ(d(gxn−1, gxn)) > 1

and

lim
n→∞

θ(bd(gxn, gxn+1)) > 1.

Let tn = θ(bd(gxn, gxn+1)) and sn = θ(d(gxn−1, gxn)) for all n ∈ N. Then, tn < sn for
all n ∈ N and lim

n→∞
tn = lim

n→∞
sn > 1. From (ξ3), we obtain

1 ≤ lim sup
n→∞

ξ(tn, sn) < 1,

which is a contradiction. Consequently, it follows that lim
n→∞

d(gxn−1, gxn) = 0 and so

lim
n→∞

θ(d(gxn−1, gxn)) = 1.

We now show that the sequence (gxn) is bounded.
If possible, suppose that the sequence (gxn) is not bounded. Then there exists a subse-
quence (gxni) of (gxn) such that n1 = 1 and for each natural number i, ni+1 is the smallest
integer satisfying

d(gxni+1 , gxni) > 1

and

d(gxm, gxni) ≤ 1, for ni ≤ m ≤ ni+1 − 1.

Then, we compute that

1 < d(gxni+1 , gxni)

≤ bd(gxni+1 , gxni+1−1) + bd(gxni+1−1, gxni)

≤ bd(gxni+1 , gxni+1−1) + b.

Taking limit as i → +∞ and using condition (2), we have

1 ≤ lim inf
n→∞

d(gxni+1 , gxni) ≤ lim sup
n→∞

d(gxni+1 , gxni) ≤ b. (4)

As d(gxni+1 , gxni) > 1 ⇒ d(fxni+1−1, fxni−1) > 1 and g is one to one, we have
d(gxni+1−1, gxni−1) > 0. Using conditions (1) and (ξ2), we get

1 ≤ ξ(θ(bd(gxni+1 , gxni)), θ(d(gxni+1−1, gxni−1)))

<
θ(d(gxni+1−1, gxni−1))

θ(bd(gxni+1 , gxni))
.

This implies that

θ(bd(gxni+1 , gxni)) < θ(d(gxni+1−1, gxni−1)).

Using condition (θ1), we get

bd(gxni+1 , gxni) < d(gxni+1−1, gxni−1).

Now,

bd(gxni+1 , gxni) < d(gxni+1−1, gxni−1)

≤ bd(gxni+1−1, gxni) + bd(gxni , gxni−1)

≤ b+ bd(gxni , gxni−1).

Taking limit as i → ∞ and using condition (4), we obtain that

lim
i→∞

d(gxni+1 , gxni) = 1
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and

lim
i→∞

d(gxni+1−1, gxni−1) = b.

Let ti = θ(bd(gxni+1 , gxni)) and si = θ(d(gxni+1−1, gxni−1)). Then ti < si for all i ∈ N.
As θ is continuous, we have lim

i→∞
ti = lim

i→∞
si > 1. It follows from condition (ξ3) that

1 ≤ lim sup
i→∞

ξ(ti, si) < 1,

which is a contradiction and hence the sequence (gxn) is bounded.

We now show that the sequence (gxn) is Cauchy.

Put

αn = sup {d(gxi, gxj) > 0 : i, j ≥ n}, n ∈ N.
Sequence (gxn) being bounded, αn < ∞ for every n ∈ N. Since (αn) is a decreasing

sequence of positive real numbers, there exists α ≥ 0 such that

lim
n→∞

αn = α. (5)

Assume that α > 0. Then it follows from the definition of αn that for every natural
number k, there exist nk,mk ∈ N such that mk > nk ≥ k, d(gxmk

, gxnk
) > 0 and

αk −
1

k
< d(gxmk

, gxnk
) ≤ αk.

Taking limit as k → ∞, we have

lim
k→∞

d(gxmk
, gxnk

) = α > 0. (6)

Since g is one to one, for every k ∈ N,

d(gxmk
, gxnk

) > 0 ⇒ d(fxmk−1, fxnk−1) > 0 ⇒ d(gxmk−1, gxnk−1) > 0.

Also, it follows from (1), (ξ2) and the definition of αn that

1 ≤ ξ(θ(bd(gxmk
, gxnk

)), θ(d(gxmk−1, gxnk−1)))

<
θ(d(gxmk−1, gxnk−1))

θ(bd(gxmk
, gxnk

))
,

which gives that

θ(bd(gxmk
, gxnk

)) < θ(d(gxmk−1, gxnk−1)).

Hence,

bd(gxmk
, gxnk

) < d(gxmk−1, gxnk−1) ≤ αk−1.

Letting k → ∞ and using conditions (5) and (6), we obtain that

bα ≤ lim inf
k→∞

d(gxmk−1, gxnk−1) ≤ lim sup
k→∞

d(gxmk−1, gxnk−1) ≤ α. (7)

If b > 1, then it follows from condition (7) that α = 0.

If b = 1, then lim
k→∞

d(gxmk−1, gxnk−1) = α > 0.

Let tk = θ(d(gxmk
, gxnk

)) and sk = θ(d(gxmk−1, gxnk−1)). Then tk < sk for every
k ∈ N and lim

k→∞
tk = lim

k→∞
sk > 1. Using (ξ3), we get

1 ≤ lim sup
k→∞

ξ(tk, sk) < 1,
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which is a contradiction and hence we have α = 0, i.e., lim
n→∞

αn = 0. Therefore, (gxn)

is a Cauchy sequence in g(X). As g(X) is complete, there exists an u ∈ g(X) such that
gxn → u = gv for some v ∈ X.

As x0 ∈ Cgf , it follows that (gxn, gxn+1) ∈ E(G̃) for all n ≥ 0. By property (∗), there
exists a subsequence (gxni) of (gxn) such that (gxni , gv) ∈ E(G̃) for all i ≥ 1.

Let S = {pi : pi = d(fxni , fv) > 0, i ∈ N}. For pi ∈ S, we have

1 ≤ ξ(θ(bpi), θ(d(gxni , gv)))

<
θ(d(gxni , gv))

θ(bd(fxni , fv))
,

which implies that

θ(bd(fxni , fv)) < θ(d(gxni , gv)).

As θ is nondecreasing, we have

bd(fxni , fv) < d(gxni , gv).

If pi ̸∈ S, then

0 = pi = d(fxni , fv) ≤ d(gxni , gv).

Thus,

bd(fxni , fv) ≤ d(gxni , gv) for all i ∈ N.
Now,

d(fv, gv) ≤ bd(fv, fxni) + bd(fxni , gv)

≤ d(gxni , gv) + bd(gxni+1, gv).

Taking limit as i → ∞, we have d(fv, gv) = 0 and hence, fv = gv = u. Therefore, u is
a point of coincidence of f and g.

For uniqueness, we assume that there exists u∗ in g(X) such that fx = gx = u∗ for

some x ∈ X and u ̸= u∗. By property (∗∗), we have (u, u∗) ∈ E(G̃). Then,

1 ≤ ξ(θ(bd(fv, fx)), θ(d(gv, gx))) = ξ(θ(bd(u, u∗)), θ(d(u, u∗))) <
θ(d(u, u∗))

θ(bd(u, u∗))
.

This gives that θ(bd(u, u∗)) < θ(d(u, u∗)) and so bd(u, u∗) < d(u, u∗), a contradiction.
This proves that u = u∗. Therefore, f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.1, f and g have a unique
common fixed point in g(X). □

We give some examples to illustrate our main result.

Example 3.1. Let X = R and define d : X × X → R+ by d(x, y) =| x − y |4 for all
x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient b = 8. Let G be a
digraph such that V (G) = X and E(G) = ∆ ∪ {(0, 1

n) : n = 1, 2, 3, · · · }.
Let f, g : X → X be defined by

fx =


x
5 , if x ̸= 2

5 ,

1, if x = 2
5
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and gx = 3x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

Let ξ : [1,∞) × [1,∞) → R be defined by ξ(t, s) = s
1
3

t for all t, s ≥ 1 and θ : (0,∞) →
(1,∞) be defined by θ(t) = et for all t > 0.

If x = 0, y = 1
3n , then gx = 0, gy = 1

n and so (gx, gy) ∈ E(G̃).

For x = 0, y = 1
3n , we have

d(fx, fy) = d(0, 1
15n) =

1
154n4 > 0, d(gx, gy) = d(0, 1

n) =
1
n4

and so (θ(d(gx, gy)))
1
3 = e

1
3n4 , θ(bd(fx, fy)) = e

8
154n4 .

Since 1
3n4 > 8

154n4 ⇒ e
1

3n4 > e
8

154n4 , we have

ξ(θ(bd(fx, fy)), θ(d(gx, gy))) =
(θ(d(gx, gy)))

1
3

θ(bd(fx, fy))

=
e

1
3n4

e
8

154n4

> 1.

Therefore,
ξ(θ(bd(fx, fy)), θ(d(gx, gy))) > 1

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and d(fx, fy) > 0.

It is easy to verify that 0 ∈ Cgf . Also, any sequence (gxn) with the property (gxn, gxn+1) ∈
E(G̃) must be either a constant sequence or a sequence of the following form

gxn = 0, if n is odd

=
1

n
, if n is even

where the words ‘odd’ and ‘even’ are interchangeable. Consequently it follows that prop-
erty (∗) holds true. Furthermore, f and g are weakly compatible. Thus, we have all the
conditions of Theorem 3.1 and 0 is the unique common fixed point of f and g in g(X).

The following remark ensures that the weak compatibility condition in Theorem 3.1 can
not be relaxed.

Remark 3.1. In Example 3.1, if we take gx = 3x− 14 for all x ∈ X instead of gx = 3x,
then 5 ∈ Cgf and f(5) = g(5) = 1 but g(f(5)) ̸= f(g(5)), i.e., f and g are not weakly
compatible. However, all other conditions of Theorem 3.1 are fulfilled. We observe that 1
is the unique point of coincidence of f and g without being any common fixed point.

Remark 3.2. In Example 3.1, f is a Banach G-contraction with constant k = 1
125 but it

is not a Banach contraction. In fact, for x = 0, y = 2
5 , we have

d(fx, fy) = d(0, 1)

= 1

=
625

16
.
16

625
> k d(x, y),

for any k ∈ (0, 1b ). This implies that f is not a Banach contraction.
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The next example supports that the property (∗) is necessary in Theorem 3.1.

Example 3.2. Let X = [0,∞) and define d : X × X → R+ by d(x, y) =| x − y |3 for
all x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient b = 4. Let
G be a digraph such that V (G) = X and E(G) = ∆∪{(x, y) : (x, y) ∈ (0, 1]×(0, 1], x ≤ y}.

Let f, g : X → X be defined by

fx =


x
4 , if x ̸= 0,

1, if x = 0

and gx = x
2 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

Let ξ : [1,∞) × [1,∞) → R be defined by ξ(t, s) = s
3
4

t for all t, s ≥ 1 and θ : (0,∞) →
(1,∞) be defined by θ(t) = et for all t > 0.

For x, y ∈ X with (gx, gy) ∈ E(G̃) and d(fx, fy) > 0, we have bd(fx, fy) = 1
2d(gx, gy).

Since 3
4d(gx, gy) >

1
2d(gx, gy) ⇒ e

3
4
d(gx,gy) > e

1
2
d(gx,gy), we obtain

ξ(θ(bd(fx, fy)), θ(d(gx, gy))) =
(θ(d(gx, gy)))

3
4

θ(4d(fx, fy))

=
e

3
4
d(gx,gy)

e
1
2
d(gx,gy)

> 1.

We now show that the property (∗) does not hold true. For xn = 2
n , gxn = 1

n and hence

gxn → 0. Also, (gxn, gxn+1) ∈ E(G̃) for all n ∈ N. But there exists no subsequence (gxni)

of (gxn) such that (gxni , 0) ∈ E(G̃). As a result, we get no point of coincidence of f and
g in g(X).

4. Some Consequences of the Main Result

Theorem 4.1. Let (X, d) be a complete b-metric space endowed with a graph G and let
f : X → X be a mapping. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(x, y))) ≥ 1

for all x, y ∈ X with (x, y) ∈ E(G̃) and d(fx, fy) > 0. Suppose also that the triple

(X, d,G) has the property (∗)́. Then f has a fixed point in X if Cf ̸= ∅. Moreover, f has
a unique fixed point in X if the graph G has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).

Proof. The proof follows from Theorem 3.1 by taking g = I, the identity map on X. □

Theorem 4.2. Let (X, d) be a b-metric space and let f, g : X → X be mappings with g
is one to one. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(gx, gy))) ≥ 1

for all x, y ∈ X and d(fx, fy) > 0. If f(X) ⊆ g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in g(X).
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Proof. The proof can be obtained from Theorem 3.1 by considering G = G0, where G0 is
the complete graph (X,X ×X). □

Theorem 4.3. Let (X, d) be a complete b-metric space and let f : X → X be a mapping.
Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(x, y))) ≥ 1

for all x, y ∈ X and d(fx, fy) > 0. Then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking g = I, G = G0. □

Theorem 4.4. Let (X, d) be a b-metric space and let f, g : X → X be mappings with g
is one to one. Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

θ(bd(fx, fy)) ≤ (θ(d(gx, gy)))k

for all x, y ∈ X and d(fx, fy) > 0. If f(X) ⊆ g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by consideringG = G0 and ξ = ξb. □

Theorem 4.5. Let (X, d) be a complete b-metric space and let f : X → X be a mapping.
Suppose that there exists θ ∈ Θ such that

θ(bd(fx, fy)) ≤ θ(d(x, y))

ϕ(θ(d(x, y)))

for all x, y ∈ X and d(fx, fy) > 0, where ϕ : [1,∞) → [1,∞) is a nondecreasing and
lower semicontinuous function such that ϕ−1({1}) = 1. Then f has a unique fixed point
in X.

Proof. The proof follows from Theorem 3.1 by taking G = G0, g = I and ξ = ξw. □

The following theorem gives fixed point of Banach G-contraction mappings in b-metric
spaces.

Theorem 4.6. Let (X, d) be a complete b-metric space endowed with a graph G and the
mapping f : X → X be such that

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X with (x, y) ∈ E(G̃), where α ∈ (0, 1b ) is a constant. Suppose the triple

(X, d,G) has the property (∗)́. Then f has a fixed point in X if Cf ̸= ∅. Moreover, f has

a unique fixed point in X if the graph G has the property (∗ ∗ )́.

Proof. The proof follows from Theorem 3.1 by taking g = I, ξ = ξb and θ(t) = et for all
t > 0. □

The following is the b-metric version of Banach contraction theorem.

Theorem 4.7. Let (X, d) be a complete b-metric space and let f : X → X be a mapping
satisfying

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X, where α ∈ (0, 1b ) is a constant. Then f has a unique fixed point in X.

Proof. The conclusion of the theorem follows from Theorem 3.1 by taking G = G0, g =
I, ξ = ξb and θ(t) = et for all t > 0 □
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Remark 4.1. Theorem 4.7 shows that our main result is a generalization of the Banach
contraction theorem.

Theorem 4.8. Let (X, d) be a complete b-metric space endowed with a partial ordering
⪯ and let f : X → X be a mapping. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(x, y))) ≥ 1

for all x, y ∈ X with x ⪯ y or, y ⪯ x and d(fx, fy) > 0. Suppose also that the triple
(X, d,⪯) has the following property:

If (xn) is a sequence in X such that xn → x and xn, xn+1 are comparable for all n ≥ 1,
then there exists a subsequence (xni) of (xn) such that xni , x are comparable for all i ≥ 1.
If there exists x0 ∈ X such that fnx0, f

mx0 are comparable for m, n = 0, 1, 2, · · · , then f
has a fixed point in X. Moreover, f has a unique fixed point in X if the following property
holds:

If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and G = G2, where
the graph G2 is defined by E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}. □

Theorem 4.9. Let (X, d) be a metric space and let f, g : X → X be mappings with g is
one to one. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(d(fx, fy)), θ(d(gx, gy))) ≥ 1

for all x, y ∈ X and d(fx, fy) > 0. If f(X) ⊆ g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering G = G0 and b = 1. □

Remark 4.2. It is worth mentioning that we can obtain several important fixed point
results in metric and b-metric spaces by suitable choices of ξ and θ.

5. Conclusions

In this work, we obtained some new coincidence point and common fixed point results
combining digraphs, L-simulation and θ-functions in b-metric spaces. As a consequence
of this study, we have been able to establish some important and well known fixed point
results in metric and b-metric spaces.
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