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COINCIDENCE POINTS IN »-METRIC SPACES VIA L-SIMULATION
FUNCTIONS AND DIGRAPHS

S. K. MOHANTA™™, §

ABSTRACT. The study of fixed point theory combining digraphs and £-simulation func-
tions is a new development in the domain of contractive type single valued theory. In this
paper, we introduce the notion of a generalized LG- contraction by using L£-simulation
functions and digraphs. We discuss the existence and uniqueness of points of coincidence
and common fixed points for a pair of self-mappings satisfying such contractions in b-
metric spaces. Our result will extend and unify several comparable results in the existing
literature including the well known Banach contraction theorem in metric spaces. Finally,
we give some non-trivial examples to illustrate and justify the validity of our main result.

Keywords: L-simulation function, £G-contraction, point of coincidence, common fixed
point.
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1. INTRODUCTION

Fixed point theory is an important branch of mathematics due to its applications in
different fields of mathematics and applied sciences. The Banach contraction theorem
[7] is one of the fundamental results that helps many researchers working in this field.
This fundamental result has been generalized by several mathematicians in many direc-
tions(see [8, 17, 20, 25, 26, 27]). Bakhtin [6] introduced b-metric spaces as a generalization
of metric spaces by modifying the usual triangle inequality and proved the famous Banach
contraction theorem in this framework. In 2014, Jleli and Samet [22] gave a generaliza-
tion of the Banach contraction theorem in generalized metric spaces by using the notion
of §-contractions. After that, Ahmad et al.[3] modified the notion of §-contractions and
extended the result of Jleli and Samet [22] to metric spaces.

Jungck [23] introduced the concept of weak compatibility. Several authors have obtained
common fixed points by using this notion. In recent investigations, the study of fixed point
theory combining a graph is a new development which takes a vital role in many aspects.
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In [18], Echenique studied fixed point theory by using graphs and then Espinola and Kirk
[19] applied fixed point results in graph theory. In [24], Khojasteh et al. introduced L-
contractions by using the concept of simulation functions and unified some existing metric
fixed point results. Motivated by the idea given in [24] and some recent works on metric
spaces with a graph (see [4, 5, 9, 10, 11]), we reformulated some important coincidence
point and common fixed point results in b-metric spaces endowed with a graph by using
L-simulation functions.

2. SOME BaAsic CONCEPTS

This section begins with some basic notations, definitions and necessary results in b-
metric spaces that will be needed in the sequel.

Definition 2.1. [16] Let X be a nonempty set and b > 1 be a given real number. A
function d : X x X — R is said to be a b-metric on X if the following conditions hold:
(i) d(z,y) =0 if and only if x = y;
(ii) d(x,y) = d(y,x) for all z,y € X;
(iii) d(x,y) <b(d(x,z) +d(z,y)) for all z,y,z € X.
The pair (X,d) is called a b-metric space.

It is worth noting that the class of b-metric spaces is effectively larger than that of the
ordinary metric spaces.

The following example supports the above remark.

Example 2.1. [26] Let X = {—1,0,1}. Defined: X x X — R" by d(z,y) = d(y,z) for
al z,y € X, d(x,z) =0,z € X and d(—1,0) = 3, d(—1,1) = d(0,1) = 1. Then (X,d)
is a b-metric space, but not a metric space since the triangle inequality is not satisfied.
Indeed, we have that

d(-1,1)+d(1,0) =1+1=2<3=4d(-1,0).
It is easy to verify that b = %

Example 2.2. [28] Let (X,d) be a metric space and p(z,y) = (d(z,y))P, where p > 1 is
a real number. Then p is a b-metric with b = 2P~1,

Definition 2.2. [13] Let (X, d) be a b-metric space, x € X and (x,,) be a sequence in X.
Then
(i) (zn) converges to x if and only if lim d(zy,x) = 0. We denote this by lim z, =z
or T, — x(n — o0).
(i) (xyn) s Cauchy if and only if lim d(x,,zmy) = 0.
n,M—00
(i) (X,d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.1. [13] In a b-metric space (X,d), the following assertions hold:

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

Theorem 2.1. [2] Let (X,d) be a b-metric space and suppose that (z,,) and (y,) converge
to x,y € X, respectively. Then, we have

1
ﬁd(az,y) < lilginf d(xp, yn) < limsup d(z,,y,) < b%d(z,y).

n—oo
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In particular, if x =y, then lim d(zy,,y,) = 0.
n—oo

Moreover, for each z € X, we have

1
gd(:p,z) < liminf d(z,, z) < limsup d(z,, z) < bd(z, 2).

n—00 n—00

Definition 2.3. [1] Let T and S be self mappings of a set X. If y = Tax = Sz for some x
in X, then x is called a coincidence point of T and S and y is called a point of coincidence

of T and S.

Definition 2.4. [23] The mappings T,S : X — X are weakly compatible, if for every
x € X, the following holds:

T(Sx) = S(T'x) whenever Sx = Tx.

Proposition 2.1. [1] Let S and T be weakly compatible selfmaps of a nonempty set X. If
S and T have a unique point of coincidence y = Sx = Tx, then y is the unique common
fixed point of S and T .

Definition 2.5. [15] Let £ be the family of all mappings & : [1,00) x [1,00) — R such that
(£1) €(1,1) =1;
(£2) &(t,s) < § forallt, s >1;
(&3) for any two sequences (ty), (sn) C (1,00) with t, < s, for alln € N,

lim ¢, = lim s, > 1= limsup &(tp, sn) < 1.
n—o0

n—oo n—00

We say that & € L is an L-simulation function. It is to be noted that &(t,t) < 1 for all
t>1.

Example 2.3. [15] Let &, {w, € : [1,00) x [1,00) — R be functions defined as follows,
respectively:
(1) &(t,s) = % forallt, s > 1, where k € (0,1).
(ii) &w(t,s) = % for allt, s > 1, where ¢ : [1,00) — [1,00) is a nondecreasing and
lower semicontinuous function such that ¢~ 1({1}) = 1.
(i)
L, if (S7t) = (17 1)7

E(t,s) = 5 if s <,

st

B
for all s, t > 1, where X € (0,1).

Then gbv é-wv é- €L

Definition 2.6. [3] Let © be the set of all functions 0 : (0,00) — (1,00) such that

(01) 0 is nondecreasing;
(02) for all (t,) C (0,00),

lim 0(t,) =1 <= lim t, =07";
n—oo

n—oo

otherwise,

(03) 0 is continuous on (0, 00).

Example 2.4. [3] Let 0 : (0,00) — (1,00) be defined as 6(t) = €' for all t > 0. Then
0 eco.



1438 TWMS J. APP. ENG. MATH. V.15, N.6, 2025

We next review some basic notions in graph theory.

Let (X,d) be a b-metric space. We assign a reflexive digraph G with the vertex set
V(G) = X and the set E(G) of its edges contains no parallel edges. So we can identify G
with the pair (V(G), E(GQ)). By G~! we denote the graph obtained from G by reversing
the direction of edges, i.e., E(G™') = {(z,y) € X x X : (y,x) € E(G)}. Let G denote the
undirected graph obtained from G by ignoring the direction of edges. Actually, it will be
more convenient for us to treat G as a digraph for which the set of its edges is symmetric.
Under this convention,

E(G)=E(G)UE(G™).

Our graph theory notations and terminology are standard and can be found in all graph

theory books, like [12, 14, 21].

Definition 2.7. Let (X,d) be a b-metric space with the coefficient b > 1 and let G =
(V(G), E(G)) be a graph. A mapping f : X — X is called a Banach G-contraction or
simply G-contraction if there ezists o € (0, 1) such that

d(fz, fy) < ad(z,y)
for all x, y € X with (z,y) € E(G).

Any Banach contraction is a Go-contraction, where the graph Gy is defined by E(Gp) =
X x X. But it is valuable to note that a Banach G-contraction need not be a Banach
contraction (see Remark 3.2).

Remark 2.2. If f is a G-contraction, then f is both a G~t-contraction and a G-contraction.

Definition 2.8. Let (X,d) be a b-metric space with the coefficient b > 1 and let G =
(V(G), E(G)) be a graph. A mapping f : X — X is called a generalized LG-contraction
if there exist £ € L and 6 € © such that

(0(bd(fz, fy)),0(d(z,y))) > 1
for all x, y € X with (z,y) € E(G) and d(fz, fy) > 0.

3. MAIN RESuULT

In this section, we assume that (X, d) is a b-metric space with the coefficient b > 1 and
G = (V(G), E(G)) is a reflexive digraph which has no parallel edges. Let f,g: X — X
be such that f(X) C g(X). Let 29 € X be arbitrary. Since f(X) C g(X), we can find an
element 1 € X satisfying fzg = gz;. Continuing in this way, we can construct a sequence
(9zy) such that gz, = frp—1, n=1,2,3,---.

Definition 3.1. Let (X, d) be a b-metric space endowed with a graph G and f, g : X — X
be such that f(X) C g(X). We define Cyy the set of all elements xo of X such that

(92n,97m) € E(G) for m,n =0,1,2, --- and for every sequence (gx,) such that gz, =
Jon_1.

Taking g = I, the identity map on X, Cy; becomes C; which is the collection of all

elements x of X such that (f"z, f™z) € E(G) for m,n=0,1,2, ---.

Before presenting our main result, we state a property of the graph G, call it property

().
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~—

Property (x): If (gz) is a sequence in X such that gz — x and (gzk, gzri1) € E((:?
for all k& > 1, then there exists a subsequence (gzy,) of (gxy) such that (gxy,,x) € E(G)
for all 7+ > 1.

’

Taking g = I, the above property reduces to property (x):

Property (*) If (xf) is a sequence in X such that z; — x and (xg, xp4+1) € E(é) for
all £ > 1, then there exists a subsequence (z,;) of (zx) such that (zy,,z) € E(G) for all
1> 1.

Theorem 3.1. Let (X, d) be a b-metric space endowed with a graph G and let f, g : X —
X be mappings with g is one to one. Suppose that there exist £ € L and 0 € © such that
£O(bd(fz, fy)),0(d(gz, gy))) = 1 (1)

forall z, y € X with (gz, gy) € E(G) and d(fx, fy) > 0. Suppose also that f(X) C g(X),
9(X) is a complete subspace of X and the graph G has the property (). Then f and g
have a point of coincidence in g(X) if Cyp # 0.

Moreover, f and g have a unique point of coincidence in g(X) if the graph G has the
following property: .

(%) If x, y are points of coincidence of f and g in g(X), then (z,y) € E(G).
Furthermore, if f and g are weakly compatible, then f and g have a unique common fized
point in g(X).

Proof. We first mention that if ¢ is one to one and d(fx, fy) > 0, then it must be the case
that d(gz, gy) > 0. Assume that Cyr # (). We choose an xg € Cyy and keep it fixed. Since
f(X) C g(X), we can construct a sequence (gx,) such that gz, = fa,—1, n=1,2,3, -
and (g, gzm) € E(G) for m,n=0,1,2, ---.

We note that if gx, = gx,—1 for some n € N, then gz, = fx,_1 = gxr,—1 which implies
that gz, is a point of coincidence of f and g. So, we assume that gz, # gx,—1 for every
n € N.

We now prove that
nh—golo d(gxn—la gmn) = 0. (2)
Since (gzn_1,9%,) € E(G) for all n € N and d(f,_1, fr,) > 0, it follows from condi-
tions (1) and (£2) that
1 < £0(bd(gzn, grnt1)), 0(d(9Tn-1, gzn)))
e(d(gwn—lygxn))
e(bd(g$n7g$n+1)) ’

which gives that
Q(bd(gxn,g:xn+1)) < e(d(gl'nfl,gl'n))'
As 0 is nondecreasing, we have for all n € N,
d(g2n, gTni1) < bd(grn, gTni1) < d(grn—1,92n). (3)

Therefore, (d(gzn—1,92y)) is a decreasing sequence of positive real numbers and so there

exists r > 0 such that lim d(gx,—1,9z,) =7.
n—oo

From condition (3), it follows that

lim bd(gzp, gTnt1) =1

n—oo
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We shall show that » = 0. Assume that » > 0. Then by using condition (62), we get
lim 6(d(gxn—1,9%n)) > 1
n—o0

and
Ii_>m 0(bd(gzn, gTn+1)) > 1.

Let t, = 0(bd(g2xpn, gxn+1)) and s, = 0(d(gxn—1,gxy,)) for all n € N. Then, ¢, < s, for

all n € Nand lim ¢, = lim s, > 1. From (£3), we obtain
n—o0 n—o0

1 <limsup&(tn, sn) < 1,

n—oo

which is a contradiction. Consequently, it follows that lim d(gx,—1,g9x,) = 0 and so
n—oo

lim 6(d(gxn—1,9z,)) = 1.

n—oo

We now show that the sequence (gx,) is bounded.
If possible, suppose that the sequence (gz,) is not bounded. Then there exists a subse-
quence (gxy,) of (gz,) such that n; = 1 and for each natural number 4, n;4; is the smallest
integer satisfying

d(gxniﬂ,gmm) >1
and
d(9xm, gn;) < 1, for ny <m <niq — 1.
Then, we compute that
I < d(gxni+1vgxni)

bd(gTn,, 1, 9Tn;yy—1) + bA(gTn,yy—1, 9Tn,)
bd(gmniﬂ,g:cniﬂ_l) +b.

Taking limit as ¢ — 400 and using condition (2), we have

<
<

1 <liminfd(grn,,,, 92n,) < limsup d(g2n, ,, 92n,;) < b. (4)
oo

n— n—00
As d(gzn;,,, 9Tn;) > 1 = d(frp,,—1, frn,—1) > 1 and g is one to one, we have
d(92n;,1—1,9%n;—1) > 0. Using conditions (1) and (£2), we get
1 < g(e(bd(gxni_;,_pgx?h;))?e(d(gxni_;,_l—hgxni—l)))
H(d(gxnz‘+1—1vgxm—1))
0(bd(gan,, ., 9n,;))

<

This implies that
9(bd(gl’ni+1 ) gmm)) < e(d(gl‘npﬂfla gxnifl)»
Using condition (61), we get
bd(.qxni+17gmm) < d(gxni+1—lagxni—1)-
Now,
< d(gwni_;_l—lagxni—l)
< bd(gxnprlflv ga:ni) + bd(gxniagl'nifl)
< b+ bd(gxn,;, gTn,—1)-

Taking limit as ¢ — oo and using condition (4), we obtain that

bd(gwni+l , 9T, )

lim d(gxni+17gxni) =1
i—00
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and
lim d(92n,,,—1,9%n,—1) = b.
1—r 00
Let t; = 0(bd(92n,,,, 97n;)) and s; = 0(d(gzn,,, 1, 9Tn;—1)). Then t; < s; for all i € N.

As 6 is continuous, we have lim ¢; = lim s; > 1. It follows from condition (£3) that
1—00 1—00

1 < limsupé&(t;, s;) < 1,

1—00

which is a contradiction and hence the sequence (gz;,) is bounded.
We now show that the sequence (gx,) is Cauchy.

Put
o, =sup {d(gzi,gzj) >0:1i, j >n}, neN.
Sequence (gzy) being bounded, «,, < oo for every n € N. Since («,) is a decreasing
sequence of positive real numbers, there exists o > 0 such that

HILIQO an = a. (5)

Assume that o > 0. Then it follows from the definition of «,, that for every natural
number k, there exist ng, mi € N such that my > ng > k, d(gxm, , gn,) > 0 and

1
S < d(gxm,, 9Tn,) < ai.

Taking limit as £k — oo, we have
lim d(gzm,,gzn,) = o > 0. (6)
k—oo
Since g is one to one, for every k € N,
d(gl'mkagxnk) >0= d(fxmkfla fxnkfl) >0= d(gxmkflyg-rnkfl) > 0.
Also, it follows from (1), (£2) and the definition of «, that
1 < &(0(bd(9m,, g2n,, ), 0(d(9Zm,—1, 9Tn,—1)))

e(bd(gxmk?gxnk))

<

which gives that

0(bd(gzmy, gn, ) < 0(d(9Tmy—1, 9T, —1))-
Hence,

bd(gxmk-’gxnk) < d(gxmk—lvgl'nk—l) < Q1.
Letting k — oo and using conditions (5) and (6), we obtain that

ba < liminf d(gxm,—1, 9%n,—1) < imsup d(gxm, —1, 9Tn,—1) < . (7)
k—o0 k—o0

If b > 1, then it follows from condition (7) that oo = 0.
If b= 1, then klim d(9xmy—1,9Tn,—1) = a > 0.
— 00
Let t = 0(d(g9xm,,9%n,)) and sy = 6(d(9@m,—1,9%n,—1)). Then t, < si for every
k€ N and lim t; = lim s > 1. Using (£3), we get
k—ro0 k—ro0

1 <limsup&(tg, si) < 1,

k—o0
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which is a contradiction and hence we have a = 0, i.e., li_>m ayn = 0. Therefore, (gz,)
n o

is a Cauchy sequence in g(X). As g(X) is complete, there exists an u € g(X) such that
gy, — u = gv for some v € X.

As xg € Cyy, it follows that (gan, gzni1) € E(G) for all n > 0. By property (x), there

exists a subsequence (gx,,) of (gx,) such that (gz,,, gv) € E(G) for all ¢ > 1.

Let S = {pi : pi = d(fzy,, fv) >0, i € N}. For p; € S, we have
1 < &(0(bpi), 0(d(gzn,, gv)))
0(d(gzn,, gv))
0(bd(fan,, fv))’
which implies that
As 0 is nondecreasing, we have
bd(fxn,, fv) < d(gan,, gv).
If p; ¢ S, then
0 =p; = d(fzn,, fv) < d(gzn,, gv).

Thus,
bd(fxn,, fv) < d(gzn,,gv) for all i € N.
Now,
d(fv,gv) < bd(fv, fen,) + bd(frn,, gv)
< d(gxn,;, gv) + bd(gzn,+1, gv).

Taking limit as ¢ — oo, we have d(fv, gv) = 0 and hence, fv = gv = u. Therefore, u is
a point of coincidence of f and g.

For uniqueness, we assume that there exists u* in g(X) such that fz = gz = u* for

some z € X and u # u*. By property (**), we have (u,u*) € E(G). Then,
1< €00 o, 1), 090, 92) = €0, 7). 6w u)) < o)

This gives that 6(bd(u,u*)) < 6(d(u,u*)) and so bd(u,u*) < d(u,u*), a contradiction.
This proves that u = u*. Therefore, f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.1, f and ¢ have a unique
common fixed point in g(X). O

We give some examples to illustrate our main result.

Example 3.1. Let X = R and defined : X x X — RT by d(z,y) =| x —y |* for all
xz,y € X. Then (X,d) is a complete b-metric space with the coefficient b =8. Let G be a
digraph such that V(G) = X and E(G) = AU{(0,2):n=1,2,3,---}.

Let f, g : X = X be defined by

L, ifa# g,

1, ifx:%

fa=
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and gx = 3z for all x € X. Obviously, f(X) C g(X) = X.

-

Let & : [1,00) x [1,00) = R be defined by £(t,s) = 2= for allt, s > 1 and 6 : (0,00) —
(1,00) be defined by 0(t) = e for all t > 0.

Ifr=0, y= 3n, then gx =0, gy = g and so (gz, gy) € E(G).

Forxz =0, y—Sn,wehave
d(fz, fy) = d(0, 15n)=154n4>0 d(gz, gy) = d(0, %)Z*

and so (0(d(gz, gy)))s = e, O(bd(fz, fy)) = 1

Since W > 154n4 = esi > 61548n4 , we have
1
(0(d(gz, gy)))?
§0d(fz, fy)),0(d(gz,9y)) = 7
(B(b(f. ). Od(g. ) = Gt
T
- s
e 154n4
> 1
Therefore,

§(0(bd(fz, fy)),0(d(gz, gy))) > 1
for all z, y € X with (gz, gy) € E(G) and d(fz, fy) > 0.

It is easy to verify that 0 € Cyy. Also, any sequence (g, ) with the property (gxn, gTni1) €

E(G) must be either a constant sequence or a sequence of the following form
grn, = 0, if nis odd
= —, if nis even
n

where the words ‘odd’ and ‘even’ are interchangeable. Consequently it follows that prop-
erty (x) holds true. Furthermore, f and g are weakly compatible. Thus, we have all the
conditions of Theorem 3.1 and 0 is the unique common fized point of f and g in g(X).

The following remark ensures that the weak compatibility condition in Theorem 3.1 can
not be relaxed.

Remark 3.1. In Example 3.1, if we take gxr = 3x — 14 for all x € X instead of gxr = 3z,
then 5 € Cyp and f(5) = g(5) = 1 but g(f(5)) # f(g(5)), i-e., f and g are not weakly
compatible. However, all other conditions of Theorem 3.1 are fulfilled. We observe that 1
1s the unique point of coincidence of f and g without being any common fized point.

Remark 3.2. In Example 3.1, f is a Banach G-contraction with constant k = ﬁ but it
is not a Banach contraction. In fact, for t =0, y = %, we have
d(fa.fy) = d(0,1)
- 1
625 16
16 7625
> kd(z,y),

for any k € (0, %) This implies that f is not a Banach contraction.
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The next example supports that the property (*) is necessary in Theorem 3.1.
Example 3.2. Let X = [0,00) and define d : X x X — R by d(z,y) =| z —y | for
all z,y € X. Then (X,d) is a complete b-metric space with the coefficient b = 4. Let
G be a digraph such that V(G) = X and E(G) = AU{(z,y) : (z,y) € (0,1]x(0,1], z < y}.

Let f, g : X — X be defined by

1 fz#0,
1, ife=0
and gx = § for all x € X. Obviously, f(X) C g(X) = X.

fo=

3
Let & : [1,00) x [1,00) — R be defined by £(t,s) = %= for allt, s > 1 and 6 : (0,00) —
(1,00) be defined by O(t) = e for all t > 0.

Forz, y € X with (gz, gy) € E(G) and d(fz, fy) > 0, we have bd(fx, fy) = (g:ﬂ qy).

Since %d(gx,gy) > %d(gx,gy) etdloz.gy) > ¢3d (92:99) e obtain

§0(bd(fx, fy)), 0(d(gx, gy))) = m

d(gﬂc 9y)

3
1

e3Ugz.9y)
> 1.

We now show that the property (x) does not hold true. For x,, = %, gTy, = % and hence
gy, — 0. Also, (9xn, gTn+1) € (é) for alln € N. But there exists no subsequence (g, )
of (gxn) such that (gzn,,0) € E(G)

g in g(X).

. As a result, we get no point of coincidence of f and

4. SOME CONSEQUENCES OF THE MAIN RESULT

Theorem 4.1. Let (X,d) be a complete b-metric space endowed with a graph G and let
f: X — X be a mapping. Suppose that there exist £ € L and 0 € © such that

§(0(bd(fx, fy)),0(d(z,y))) > 1

for all z,y € X with (z,y) € E(G) and d(fz, fy) > 0. Suppose also that the triple
(X,d,G) has the property (*) Then f has a fized point in X if Cy # 0. Moreover, f has
a unique fived point in X if the graph G has the following property:

(% *) If x, y are fized points of f in X, then (x,y) € E(G).

Proof. The proof follows from Theorem 3.1 by taking g = I, the identity map on X. [

Theorem 4.2. Let (X,d) be a b-metric space and let f, g : X — X be mappings with g
is one to one. Suppose that there exist £ € L and 0 € © such that

§(0(bd(fz, fy)),0(d(gz, gy))) > 1

forallz, y € X and d(fx, fy) > 0. If f(X) C g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fized point in g(X).
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Proof. The proof can be obtained from Theorem 3.1 by considering G = G, where Gy is
the complete graph (X, X x X). O

Theorem 4.3. Let (X,d) be a complete b-metric space and let f: X — X be a mapping.
Suppose that there exist £ € L and 0 € © such that

§0(bd(fz, fy)),0(d(z,y))) = 1
forall x,y € X and d(fz, fy) > 0. Then f has a unique fixed point in X.
Proof. The proof follows from Theorem 3.1 by taking ¢ =1, G = Gy. U

Theorem 4.4. Let (X,d) be a b-metric space and let f, g : X — X be mappings with g
is one to one. Suppose that there exist 6 € © and k € (0,1) such that

0(bd(fx, fy)) < (8(d(gz, gy)))*

forall x, y € X and d(fx, fy) > 0. If f(X) C g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fized point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering G = Gp and £ = &,. [

Theorem 4.5. Let (X,d) be a complete b-metric space and let f : X — X be a mapping.
Suppose that there exists 6 € © such that
0(d(z,y))
)

O(bd(fz, fy)) < W

)
for all z,y € X and d(fz, fy) > 0, where ¢ : [
lower semicontinuous function such that ¢—({1}
in X.

Proof. The proof follows from Theorem 3.1 by taking G = Go, g = I and £ = &,,. 0

1,00) — [1,00) is a nondecreasing and
) = 1. Then f has a unique fized point

The following theorem gives fixed point of Banach G-contraction mappings in b-metric
spaces.

Theorem 4.6. Let (X,d) be a complete b-metric space endowed with a graph G and the
mapping f: X — X be such that

d(fz, fy) < ad(z,y)
for all z, y € X with (x,y) € E(G), where o € (0, %) is a constant. Suppose the triple
(X,d,G) has the property (*) Then f has a fized point in X if Cy # 0. Moreover, f has
a unique fixed point in X if the graph G has the property (* x ).
Proof. The proof follows from Theorem 3.1 by taking g = I, £ = &, and 0(t) = ¢! for all
t>0. O

The following is the b-metric version of Banach contraction theorem.

Theorem 4.7. Let (X,d) be a complete b-metric space and let f : X — X be a mapping
satisfying

d(fx, fy) < ad(z,y)
for all x, y € X, where o € (0, %) is a constant. Then [ has a unique fived point in X.

Proof. The conclusion of the theorem follows from Theorem 3.1 by taking G = Gg, g =
I, ¢E=¢ and O(t) = el forallt >0 g
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Remark 4.1. Theorem 4.7 shows that our main result is a generalization of the Banach
contraction theorem.

Theorem 4.8. Let (X,d) be a complete b-metric space endowed with a partial ordering
=< and let f: X — X be a mapping. Suppose that there exist £ € L and 0 € © such that

§(0(bd(f, fy)), 0(d(x,y))) = 1

forall xz,y € X with x Xy or, y = = and d(fx, fy) > 0. Suppose also that the triple
(X,d, =) has the following property:

If () is a sequence in X such that x, — x and T, Tn+1 are comparable for alln > 1,
then there exists a subsequence () of (xn) such that x,,, x are comparable for all i > 1.
If there exists xg € X such that f"xq, fTxg are comparable for m, n =0,1,2, ---, then f
has a fized point in X. Moreover, f has a unique fized point in X if the following property
holds:

If x, y are fized points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and G = Ga, where
the graph Gy is defined by E(G2) = {(z,y) € X x X 1z <y or y 2 z}. O

Theorem 4.9. Let (X,d) be a metric space and let f, g : X — X be mappings with g is
one to one. Suppose that there exist £ € L and 6 € © such that

§(0(d(fx, fy)),0(d(gz,g9y))) > 1

forall x, y € X and d(fx, fy) > 0. If f(X) C g(X) and g(X) is a complete subspace of
X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are
weakly compatible, then f and g have a unique common fized point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering G = Ggand b=1. [

Remark 4.2. It is worth mentioning that we can obtain several important fized point
results in metric and b-metric spaces by suitable choices of & and 6.

5. CONCLUSIONS

In this work, we obtained some new coincidence point and common fixed point results
combining digraphs, £-simulation and #-functions in b-metric spaces. As a consequence
of this study, we have been able to establish some important and well known fixed point
results in metric and b-metric spaces.
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