COINCIDENCE POINTS IN *b*-METRIC SPACES VIA \mathcal{L} -SIMULATION FUNCTIONS AND DIGRAPHS

S. K. MOHANTA^{1*}, §

ABSTRACT. The study of fixed point theory combining digraphs and \mathcal{L} -simulation functions is a new development in the domain of contractive type single valued theory. In this paper, we introduce the notion of a generalized $\mathcal{L}G$ - contraction by using \mathcal{L} -simulation functions and digraphs. We discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying such contractions in *b*metric spaces. Our result will extend and unify several comparable results in the existing literature including the well known Banach contraction theorem in metric spaces. Finally, we give some non-trivial examples to illustrate and justify the validity of our main result.

Keywords: \mathcal{L} -simulation function, $\mathcal{L}G$ -contraction, point of coincidence, common fixed point.

AMS Subject Classification: 54H25, 47H10.

1. INTRODUCTION

Fixed point theory is an important branch of mathematics due to its applications in different fields of mathematics and applied sciences. The Banach contraction theorem [7] is one of the fundamental results that helps many researchers working in this field. This fundamental result has been generalized by several mathematicians in many directions(see [8, 17, 20, 25, 26, 27]). Bakhtin [6] introduced *b*-metric spaces as a generalization of metric spaces by modifying the usual triangle inequality and proved the famous Banach contraction theorem in this framework. In 2014, Jleli and Samet [22] gave a generalization of the Banach contraction theorem in generalized metric spaces by using the notion of θ -contractions. After that, Ahmad et al.[3] modified the notion of θ -contractions and extended the result of Jleli and Samet [22] to metric spaces.

Jungck [23] introduced the concept of weak compatibility. Several authors have obtained common fixed points by using this notion. In recent investigations, the study of fixed point theory combining a graph is a new development which takes a vital role in many aspects.

¹ Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India.

e-mail: smwbes@yahoo.in; ORCID: https://orcid.org/0000-0002-8603-5380. * Corresponding author.

[§] Manuscript received: March 01, 2024; accepted: June 16, 2024.

TWMS Journal of Applied and Engineering Mathematics, Vol.15, No.6; © Işık University, Department of Mathematics, 2025; all rights reserved.

In [18], Echenique studied fixed point theory by using graphs and then Espinola and Kirk [19] applied fixed point results in graph theory. In [24], Khojasteh et al. introduced \mathcal{L} contractions by using the concept of simulation functions and unified some existing metric fixed point results. Motivated by the idea given in [24] and some recent works on metric spaces with a graph (see [4, 5, 9, 10, 11]), we reformulated some important coincidence point and common fixed point results in b-metric spaces endowed with a graph by using \mathcal{L} -simulation functions.

2. Some Basic Concepts

This section begins with some basic notations, definitions and necessary results in bmetric spaces that will be needed in the sequel.

Definition 2.1. [16] Let X be a nonempty set and $b \ge 1$ be a given real number. A function $d: X \times X \to \mathbb{R}^+$ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x) for all $x, y \in X$;

(iii) $d(x,y) \leq b (d(x,z) + d(z,y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.

It is worth noting that the class of b-metric spaces is effectively larger than that of the ordinary metric spaces.

The following example supports the above remark.

Example 2.1. [26] Let $X = \{-1, 0, 1\}$. Define $d : X \times X \to \mathbb{R}^+$ by d(x, y) = d(y, x) for all $x, y \in X$, d(x, x) = 0, $x \in X$ and d(-1, 0) = 3, d(-1, 1) = d(0, 1) = 1. Then (X, d)is a b-metric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that

$$d(-1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(-1, 0).$$

It is easy to verify that $b = \frac{3}{2}$.

Example 2.2. [28] Let (X, d) be a metric space and $\rho(x, y) = (d(x, y))^p$, where p > 1 is a real number. Then ρ is a b-metric with $b = 2^{p-1}$.

Definition 2.2. [13] Let (X, d) be a b-metric space, $x \in X$ and (x_n) be a sequence in X. Then

(i) (x_n) converges to x if and only if $\lim_{n \to \infty} d(x_n, x) = 0$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x(n \to \infty)$. (ii) (x_n) is Cauchy if and only if $\lim_{n,m\to\infty} d(x_n, x_m) = 0$.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.1. [13] In a b-metric space (X, d), the following assertions hold:

- (i) A convergent sequence has a unique limit.
- (ii) Each convergent sequence is Cauchy.
- (iii) In general, a b-metric is not continuous.

Theorem 2.1. [2] Let (X, d) be a b-metric space and suppose that (x_n) and (y_n) converge to $x, y \in X$, respectively. Then, we have

$$\frac{1}{b^2}d(x,y) \le \liminf_{n \to \infty} d(x_n, y_n) \le \limsup_{n \to \infty} d(x_n, y_n) \le b^2 d(x, y).$$

1436

In particular, if x = y, then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Moreover, for each $z \in X$, we have

$$\frac{1}{b}d(x,z) \le \liminf_{n \to \infty} d(x_n,z) \le \limsup_{n \to \infty} d(x_n,z) \le bd(x,z).$$

Definition 2.3. [1] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X, then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.4. [23] The mappings $T, S: X \to X$ are weakly compatible, if for every $x \in X$, the following holds:

$$T(Sx) = S(Tx)$$
 whenever $Sx = Tx$.

Proposition 2.1. [1] Let S and T be weakly compatible selfmaps of a nonempty set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of S and T.

Definition 2.5. [15] Let \mathcal{L} be the family of all mappings $\xi : [1, \infty) \times [1, \infty) \to \mathbb{R}$ such that

- $(\xi 1) \ \xi(1,1) = 1;$
- $(\xi 2) \ \xi(t,s) < \frac{s}{t} \ for \ all \ t, \ s > 1;$

(§3) for any two sequences $(t_n), (s_n) \subseteq (1, \infty)$ with $t_n \leq s_n$ for all $n \in \mathbb{N}$,

$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 1 \Rightarrow \limsup_{n \to \infty} \xi(t_n, s_n) < 1$$

We say that $\xi \in \mathcal{L}$ is an \mathcal{L} -simulation function. It is to be noted that $\xi(t,t) < 1$ for all t > 1.

Example 2.3. [15] Let $\xi_b, \xi_w, \xi : [1, \infty) \times [1, \infty) \to \mathbb{R}$ be functions defined as follows, respectively:

- (i) $\xi_b(t,s) = \frac{s^k}{t}$ for all $t, s \ge 1$, where $k \in (0,1)$. (ii) $\xi_w(t,s) = \frac{s}{t\phi(s)}$ for all $t, s \ge 1$, where $\phi : [1,\infty) \to [1,\infty)$ is a nondecreasing and lower semicontinuous function such that $\phi^{-1}(\{1\}) = 1$.

(iii)

$$\xi(t,s) = \begin{cases} 1, \ if (s,t) = (1,1) \\ \frac{s}{2t}, \ if s < t, \\ \frac{s^{\lambda}}{t}, \ otherwise, \end{cases}$$
 for all $s, t \ge 1$, where $\lambda \in (0,1)$.

Then $\xi_b, \xi_w, \xi \in \mathcal{L}$.

Definition 2.6. [3] Let Θ be the set of all functions $\theta : (0, \infty) \to (1, \infty)$ such that

 $(\theta 1) \ \theta$ is nondecreasing;

($\theta 2$) for all $(t_n) \subseteq (0, \infty)$,

$$\lim_{n \to \infty} \theta(t_n) = 1 \iff \lim_{n \to \infty} t_n = 0^+;$$

(θ 3) θ is continuous on $(0, \infty)$.

Example 2.4. [3] Let θ : $(0,\infty) \to (1,\infty)$ be defined as $\theta(t) = e^t$ for all t > 0. Then $\theta \in \Theta$.

We next review some basic notions in graph theory.

Let (X, d) be a *b*-metric space. We assign a reflexive digraph G with the vertex set V(G) = X and the set E(G) of its edges contains no parallel edges. So we can identify G with the pair (V(G), E(G)). By G^{-1} we denote the graph obtained from G by reversing the direction of edges, i.e., $E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}$. Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a digraph for which the set of its edges is symmetric. Under this convention,

$$E(\tilde{G}) = E(G) \cup E(G^{-1}).$$

Our graph theory notations and terminology are standard and can be found in all graph theory books, like [12, 14, 21].

Definition 2.7. Let (X, d) be a b-metric space with the coefficient $b \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called a Banach G-contraction or simply G-contraction if there exists $\alpha \in (0, \frac{1}{b})$ such that

$$d(fx, fy) \le \alpha \, d(x, y)$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

Any Banach contraction is a G_0 -contraction, where the graph G_0 is defined by $E(G_0) = X \times X$. But it is valuable to note that a Banach G-contraction need not be a Banach contraction (see Remark 3.2).

Remark 2.2. If f is a G-contraction, then f is both a G^{-1} -contraction and a \tilde{G} -contraction.

Definition 2.8. Let (X, d) be a b-metric space with the coefficient $b \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called a generalized $\mathcal{L}G$ -contraction if there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx, fy)), \theta(d(x, y))) \ge 1$$

for all $x, y \in X$ with $(x, y) \in E(G)$ and d(fx, fy) > 0.

3. Main Result

In this section, we assume that (X, d) is a *b*-metric space with the coefficient $b \ge 1$ and G = (V(G), E(G)) is a reflexive digraph which has no parallel edges. Let $f, g : X \to X$ be such that $f(X) \subseteq g(X)$. Let $x_0 \in X$ be arbitrary. Since $f(X) \subseteq g(X)$, we can find an element $x_1 \in X$ satisfying $fx_0 = gx_1$. Continuing in this way, we can construct a sequence (gx_n) such that $gx_n = fx_{n-1}, n = 1, 2, 3, \cdots$.

Definition 3.1. Let (X, d) be a b-metric space endowed with a graph G and $f, g: X \to X$ be such that $f(X) \subseteq g(X)$. We define C_{gf} the set of all elements x_0 of X such that $(gx_n, gx_m) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \cdots$ and for every sequence (gx_n) such that $gx_n = fx_{n-1}$.

Taking g = I, the identity map on X, C_{gf} becomes C_f which is the collection of all elements x of X such that $(f^n x, f^m x) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \cdots$.

Before presenting our main result, we state a property of the graph G, call it property (*).

1438

Property (*): If (gx_k) is a sequence in X such that $gx_k \to x$ and $(gx_k, gx_{k+1}) \in E(G)$ for all $k \ge 1$, then there exists a subsequence (gx_{k_i}) of (gx_k) such that $(gx_{k_i}, x) \in E(\tilde{G})$ for all $i \ge 1$.

Taking g = I, the above property reduces to property (*):

Property (*): If (x_k) is a sequence in X such that $x_k \to x$ and $(x_k, x_{k+1}) \in E(\tilde{G})$ for all $k \ge 1$, then there exists a subsequence (x_{k_i}) of (x_k) such that $(x_{k_i}, x) \in E(\tilde{G})$ for all $i \ge 1$.

Theorem 3.1. Let (X, d) be a b-metric space endowed with a graph G and let $f, g: X \to X$ be mappings with g is one to one. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx, fy)), \theta(d(gx, gy))) \ge 1 \tag{1}$$

for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$ and d(fx, fy) > 0. Suppose also that $f(X) \subseteq g(X)$, g(X) is a complete subspace of X and the graph G has the property (*). Then f and g have a point of coincidence in g(X) if $C_{gf} \neq \emptyset$.

Moreover, f and g have a unique point of coincidence in g(X) if the graph G has the following property:

(**) If x, y are points of coincidence of f and g in g(X), then $(x, y) \in E(G)$.

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. We first mention that if g is one to one and d(fx, fy) > 0, then it must be the case that d(gx, gy) > 0. Assume that $C_{gf} \neq \emptyset$. We choose an $x_0 \in C_{gf}$ and keep it fixed. Since $f(X) \subseteq g(X)$, we can construct a sequence (gx_n) such that $gx_n = fx_{n-1}$, $n = 1, 2, 3, \cdots$ and $(gx_n, gx_m) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \cdots$.

We note that if $gx_n = gx_{n-1}$ for some $n \in \mathbb{N}$, then $gx_n = fx_{n-1} = gx_{n-1}$ which implies that gx_n is a point of coincidence of f and g. So, we assume that $gx_n \neq gx_{n-1}$ for every $n \in \mathbb{N}$.

We now prove that

$$\lim_{n \to \infty} d(gx_{n-1}, gx_n) = 0.$$
⁽²⁾

Since $(gx_{n-1}, gx_n) \in E(G)$ for all $n \in \mathbb{N}$ and $d(fx_{n-1}, fx_n) > 0$, it follows from conditions (1) and ($\xi 2$) that

$$1 \leq \xi(\theta(bd(gx_n, gx_{n+1})), \theta(d(gx_{n-1}, gx_n))) \\ < \frac{\theta(d(gx_{n-1}, gx_n))}{\theta(bd(gx_n, gx_{n+1}))},$$

which gives that

 $\theta(bd(gx_n, gx_{n+1})) < \theta(d(gx_{n-1}, gx_n)).$

As θ is nondecreasing, we have for all $n \in \mathbb{N}$,

$$d(gx_n, gx_{n+1}) \le bd(gx_n, gx_{n+1}) < d(gx_{n-1}, gx_n).$$
(3)

Therefore, $(d(gx_{n-1}, gx_n))$ is a decreasing sequence of positive real numbers and so there exists $r \ge 0$ such that $\lim_{n \to \infty} d(gx_{n-1}, gx_n) = r$.

From condition (3), it follows that

$$\lim_{n \to \infty} bd(gx_n, gx_{n+1}) = r$$

We shall show that r = 0. Assume that r > 0. Then by using condition ($\theta 2$), we get

$$\lim_{n \to \infty} \theta(d(gx_{n-1}, gx_n)) > 1$$

and

$$\lim_{n \to \infty} \theta(bd(gx_n, gx_{n+1})) > 1.$$

Let $t_n = \theta(bd(gx_n, gx_{n+1}))$ and $s_n = \theta(d(gx_{n-1}, gx_n))$ for all $n \in \mathbb{N}$. Then, $t_n < s_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 1$. From ($\xi 3$), we obtain

$$1 \le \limsup_{n \to \infty} \xi(t_n, s_n) < 1,$$

which is a contradiction. Consequently, it follows that $\lim_{n \to \infty} d(gx_{n-1}, gx_n) = 0$ and so $\lim_{n \to \infty} \theta(d(gx_{n-1}, gx_n)) = 1.$

We now show that the sequence (gx_n) is bounded.

If possible, suppose that the sequence (gx_n) is not bounded. Then there exists a subsequence (gx_{n_i}) of (gx_n) such that $n_1 = 1$ and for each natural number i, n_{i+1} is the smallest integer satisfying

$$d(gx_{n_{i+1}}, gx_{n_i}) > 1$$

and

$$d(gx_m, gx_{n_i}) \le 1$$
, for $n_i \le m \le n_{i+1} - 1$

Then, we compute that

$$\begin{array}{rcl} 1 & < & d(gx_{n_{i+1}}, gx_{n_i}) \\ & \leq & bd(gx_{n_{i+1}}, gx_{n_{i+1}-1}) + bd(gx_{n_{i+1}-1}, gx_{n_i}) \\ & \leq & bd(gx_{n_{i+1}}, gx_{n_{i+1}-1}) + b. \end{array}$$

Taking limit as $i \to +\infty$ and using condition (2), we have

$$1 \le \liminf_{n \to \infty} d(gx_{n_{i+1}}, gx_{n_i}) \le \limsup_{n \to \infty} d(gx_{n_{i+1}}, gx_{n_i}) \le b.$$
(4)

As $d(gx_{n_{i+1}}, gx_{n_i}) > 1 \Rightarrow d(fx_{n_{i+1}-1}, fx_{n_i-1}) > 1$ and g is one to one, we have $d(gx_{n_{i+1}-1}, gx_{n_i-1}) > 0$. Using conditions (1) and ($\xi 2$), we get

$$1 \leq \xi(\theta(bd(gx_{n_{i+1}}, gx_{n_i})), \theta(d(gx_{n_{i+1}-1}, gx_{n_i-1}))) \\ < \frac{\theta(d(gx_{n_{i+1}-1}, gx_{n_i-1}))}{\theta(bd(gx_{n_{i+1}}, gx_{n_i}))}.$$

This implies that

$$\theta(bd(gx_{n_{i+1}}, gx_{n_i})) < \theta(d(gx_{n_{i+1}-1}, gx_{n_i-1})).$$

Using condition $(\theta 1)$, we get

$$bd(gx_{n_{i+1}}, gx_{n_i}) < d(gx_{n_{i+1}-1}, gx_{n_i-1}).$$

Now,

$$\begin{aligned} bd(gx_{n_{i+1}}, gx_{n_i}) &< d(gx_{n_{i+1}-1}, gx_{n_i-1}) \\ &\leq bd(gx_{n_{i+1}-1}, gx_{n_i}) + bd(gx_{n_i}, gx_{n_i-1}) \\ &\leq b + bd(gx_{n_i}, gx_{n_i-1}). \end{aligned}$$

Taking limit as $i \to \infty$ and using condition (4), we obtain that

$$\lim_{i \to \infty} d(gx_{n_{i+1}}, gx_{n_i}) = 1$$

1440

and

$$\lim_{i \to \infty} d(gx_{n_{i+1}-1}, gx_{n_i-1}) = b$$

Let $t_i = \theta(bd(gx_{n_{i+1}}, gx_{n_i}))$ and $s_i = \theta(d(gx_{n_{i+1}-1}, gx_{n_i-1}))$. Then $t_i < s_i$ for all $i \in \mathbb{N}$. As θ is continuous, we have $\lim_{i \to \infty} t_i = \lim_{i \to \infty} s_i > 1$. It follows from condition (ξ 3) that

$$1 \le \limsup_{i \to \infty} \xi(t_i, s_i) < 1,$$

which is a contradiction and hence the sequence (gx_n) is bounded.

We now show that the sequence (gx_n) is Cauchy.

Put

$$\alpha_n = \sup \left\{ d(gx_i, gx_j) > 0 : i, j \ge n \right\}, \ n \in \mathbb{N}.$$

Sequence (gx_n) being bounded, $\alpha_n < \infty$ for every $n \in \mathbb{N}$. Since (α_n) is a decreasing sequence of positive real numbers, there exists $\alpha \geq 0$ such that

$$\lim_{n \to \infty} \alpha_n = \alpha. \tag{5}$$

Assume that $\alpha > 0$. Then it follows from the definition of α_n that for every natural number k, there exist $n_k, m_k \in \mathbb{N}$ such that $m_k > n_k \ge k$, $d(gx_{m_k}, gx_{n_k}) > 0$ and

$$\alpha_k - \frac{1}{k} < d(gx_{m_k}, gx_{n_k}) \le \alpha_k.$$

Taking limit as $k \to \infty$, we have

$$\lim_{k \to \infty} d(gx_{m_k}, gx_{n_k}) = \alpha > 0.$$
(6)

Since g is one to one, for every $k \in \mathbb{N}$,

$$d(gx_{m_k},gx_{n_k}) > 0 \Rightarrow d(fx_{m_k-1},fx_{n_k-1}) > 0 \Rightarrow d(gx_{m_k-1},gx_{n_k-1}) > 0.$$

Also, it follows from (1), ($\xi 2$) and the definition of α_n that

$$1 \leq \xi(\theta(bd(gx_{m_k}, gx_{n_k})), \theta(d(gx_{m_k-1}, gx_{n_k-1}))) \\ < \frac{\theta(d(gx_{m_k-1}, gx_{n_k-1}))}{\theta(bd(gx_{m_k}, gx_{n_k}))},$$

which gives that

$$\theta(bd(gx_{m_k},gx_{n_k})) < \theta(d(gx_{m_k-1},gx_{n_k-1})).$$

Hence,

$$d(gx_{m_k}, gx_{n_k}) < d(gx_{m_k-1}, gx_{n_k-1}) \le \alpha_{k-1}$$

Letting $k \to \infty$ and using conditions (5) and (6), we obtain that

$$b\alpha \le \liminf_{k \to \infty} d(gx_{m_k-1}, gx_{n_k-1}) \le \limsup_{k \to \infty} d(gx_{m_k-1}, gx_{n_k-1}) \le \alpha.$$
(7)

If b > 1, then it follows from condition (7) that $\alpha = 0$.

If b = 1, then $\lim_{k \to \infty} d(gx_{m_k-1}, gx_{n_k-1}) = \alpha > 0$.

Let $t_k = \theta(d(gx_{m_k}, gx_{n_k}))$ and $s_k = \theta(d(gx_{m_k-1}, gx_{n_k-1}))$. Then $t_k < s_k$ for every $k \in \mathbb{N}$ and $\lim_{k \to \infty} t_k = \lim_{k \to \infty} s_k > 1$. Using (ξ 3), we get

$$1 \le \limsup_{k \to \infty} \xi(t_k, s_k) < 1,$$

which is a contradiction and hence we have $\alpha = 0$, i.e., $\lim_{n \to \infty} \alpha_n = 0$. Therefore, (gx_n) is a Cauchy sequence in g(X). As g(X) is complete, there exists an $u \in g(X)$ such that $gx_n \to u = gv$ for some $v \in X$.

As $x_0 \in C_{gf}$, it follows that $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \ge 0$. By property (*), there exists a subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, gv) \in E(\tilde{G})$ for all $i \ge 1$.

Let
$$S = \{p_i : p_i = d(fx_{n_i}, fv) > 0, i \in \mathbb{N}\}$$
. For $p_i \in S$, we have

$$1 \leq \xi(\theta(bp_i), \theta(d(gx_{n_i}, gv)))$$

$$< \frac{\theta(d(gx_{n_i}, gv))}{\theta(bd(fx_{n_i}, fv))},$$

which implies that

$$\theta(bd(fx_{n_i}, fv)) < \theta(d(gx_{n_i}, gv)).$$

As θ is nondecreasing, we have

$$bd(fx_{n_i}, fv) < d(gx_{n_i}, gv).$$

If $p_i \notin S$, then

$$0 = p_i = d(fx_{n_i}, fv) \le d(gx_{n_i}, gv).$$

Thus,

$$bd(fx_{n_i}, fv) \leq d(gx_{n_i}, gv) \text{ for all } i \in \mathbb{N}.$$

Now,

$$d(fv,gv) \leq bd(fv,fx_{n_i}) + bd(fx_{n_i},gv)$$

$$\leq d(gx_{n_i},gv) + bd(gx_{n_i+1},gv).$$

Taking limit as $i \to \infty$, we have d(fv, gv) = 0 and hence, fv = gv = u. Therefore, u is a point of coincidence of f and g.

For uniqueness, we assume that there exists u^* in g(X) such that $fx = gx = u^*$ for some $x \in X$ and $u \neq u^*$. By property (**), we have $(u, u^*) \in E(\tilde{G})$. Then,

$$1 \le \xi(\theta(bd(fv, fx)), \theta(d(gv, gx))) = \xi(\theta(bd(u, u^*)), \theta(d(u, u^*))) < \frac{\theta(d(u, u^*))}{\theta(bd(u, u^*))}.$$

This gives that $\theta(bd(u, u^*)) < \theta(d(u, u^*))$ and so $bd(u, u^*) < d(u, u^*)$, a contradiction. This proves that $u = u^*$. Therefore, f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.1, f and g have a unique common fixed point in g(X).

We give some examples to illustrate our main result.

Example 3.1. Let $X = \mathbb{R}$ and define $d : X \times X \to \mathbb{R}^+$ by $d(x, y) = |x - y|^4$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient b = 8. Let G be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(0, \frac{1}{n}) : n = 1, 2, 3, \cdots\}$.

Let $f, g: X \to X$ be defined by

$$fx = \begin{cases} \frac{x}{5}, & \text{if } x \neq \frac{2}{5}, \\ 1, & \text{if } x = \frac{2}{5} \end{cases}$$

and gx = 3x for all $x \in X$. Obviously, $f(X) \subseteq g(X) = X$.

Let $\xi : [1,\infty) \times [1,\infty) \to \mathbb{R}$ be defined by $\xi(t,s) = \frac{s^{\frac{1}{3}}}{t}$ for all $t, s \ge 1$ and $\theta : (0,\infty) \to (1,\infty)$ be defined by $\theta(t) = e^t$ for all t > 0.

If
$$x = 0$$
, $y = \frac{1}{3n}$, then $gx = 0$, $gy = \frac{1}{n}$ and so $(gx, gy) \in E(\tilde{G})$.

For x = 0, $y = \frac{1}{3n}$, we have $d(fx, fy) = d(0, \frac{1}{15n}) = \frac{1}{15^4 n^4} > 0$, $d(gx, gy) = d(0, \frac{1}{n}) = \frac{1}{n^4}$ and so $(\theta(d(gx, gy)))^{\frac{1}{3}} = e^{\frac{1}{3n^4}}$, $\theta(bd(fx, fy)) = e^{\frac{8}{15^4 n^4}}$.

Since $\frac{1}{3n^4} > \frac{8}{15^4n^4} \Rightarrow e^{\frac{1}{3n^4}} > e^{\frac{8}{15^4n^4}}$, we have

$$\begin{split} \xi(\theta(bd(fx,fy)),\theta(d(gx,gy))) &= \frac{(\theta(d(gx,gy)))^{\frac{1}{3}}}{\theta(bd(fx,fy))} \\ &= \frac{e^{\frac{1}{3n^4}}}{e^{\frac{1}{15^4n^4}}} \\ &> 1. \end{split}$$

Therefore,

$$\xi(\theta(bd(fx, fy)), \theta(d(gx, gy))) > 1$$

for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$ and $d(fx, fy) > 0$.

It is easy to verify that $0 \in C_{gf}$. Also, any sequence (gx_n) with the property $(gx_n, gx_{n+1}) \in E(\tilde{G})$ must be either a constant sequence or a sequence of the following form

$$gx_n = 0, if n is odd$$

 $= \frac{1}{n}, if n is even$

where the words 'odd' and 'even' are interchangeable. Consequently it follows that property (*) holds true. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.1 and 0 is the unique common fixed point of f and g in g(X).

The following remark ensures that the weak compatibility condition in Theorem 3.1 can not be relaxed.

Remark 3.1. In Example 3.1, if we take gx = 3x - 14 for all $x \in X$ instead of gx = 3x, then $5 \in C_{gf}$ and f(5) = g(5) = 1 but $g(f(5)) \neq f(g(5))$, i.e., f and g are not weakly compatible. However, all other conditions of Theorem 3.1 are fulfilled. We observe that 1 is the unique point of coincidence of f and g without being any common fixed point.

Remark 3.2. In Example 3.1, f is a Banach G-contraction with constant $k = \frac{1}{125}$ but it is not a Banach contraction. In fact, for x = 0, $y = \frac{2}{5}$, we have

$$(fx, fy) = d(0, 1) = 1 = \frac{625}{16} \cdot \frac{16}{625} > k d(x, y),$$

for any $k \in (0, \frac{1}{h})$. This implies that f is not a Banach contraction.

d

The next example supports that the property (*) is necessary in Theorem 3.1.

Example 3.2. Let $X = [0, \infty)$ and define $d : X \times X \to \mathbb{R}^+$ by $d(x, y) = |x - y|^3$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient b = 4. Let G be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(x, y) : (x, y) \in (0, 1] \times (0, 1], x \leq y\}$.

Let $f, g: X \to X$ be defined by

$$fx = \begin{cases} \frac{x}{4}, & \text{if } x \neq 0, \\ \\ 1, & \text{if } x = 0 \end{cases}$$

and $gx = \frac{x}{2}$ for all $x \in X$. Obviously, $f(X) \subseteq g(X) = X$.

Let $\xi : [1,\infty) \times [1,\infty) \to \mathbb{R}$ be defined by $\xi(t,s) = \frac{s^{\frac{3}{4}}}{t}$ for all $t, s \ge 1$ and $\theta : (0,\infty) \to (1,\infty)$ be defined by $\theta(t) = e^t$ for all t > 0.

For $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$ and d(fx, fy) > 0, we have $bd(fx, fy) = \frac{1}{2}d(gx, gy)$.

Since $\frac{3}{4}d(gx,gy) > \frac{1}{2}d(gx,gy) \Rightarrow e^{\frac{3}{4}d(gx,gy)} > e^{\frac{1}{2}d(gx,gy)}$, we obtain

$$\begin{aligned} \xi(\theta(bd(fx, fy)), \theta(d(gx, gy))) &= \frac{(\theta(d(gx, gy)))^{\frac{3}{4}}}{\theta(4d(fx, fy))} \\ &= \frac{e^{\frac{3}{4}d(gx, gy)}}{e^{\frac{1}{2}d(gx, gy)}} \\ &> 1. \end{aligned}$$

We now show that the property (*) does not hold true. For $x_n = \frac{2}{n}$, $gx_n = \frac{1}{n}$ and hence $gx_n \to 0$. Also, $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \in \mathbb{N}$. But there exists no subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, 0) \in E(\tilde{G})$. As a result, we get no point of coincidence of f and g in g(X).

4. Some Consequences of the Main Result

Theorem 4.1. Let (X, d) be a complete b-metric space endowed with a graph G and let $f: X \to X$ be a mapping. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx,fy)),\theta(d(x,y))) \ge 1$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$ and d(fx, fy) > 0. Suppose also that the triple (X, d, G) has the property (*). Then f has a fixed point in X if $C_f \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the following property: (**) If x, y are fixed points of f in X, then $(x, y) \in E(\tilde{G})$.

Proof. The proof follows from Theorem 3.1 by taking g = I, the identity map on X.

Theorem 4.2. Let (X, d) be a b-metric space and let $f, g : X \to X$ be mappings with g is one to one. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx, fy)), \theta(d(gx, gy))) \ge 1$$

for all $x, y \in X$ and d(fx, fy) > 0. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering $G = G_0$, where G_0 is the complete graph $(X, X \times X)$.

Theorem 4.3. Let (X, d) be a complete b-metric space and let $f : X \to X$ be a mapping. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx, fy)), \theta(d(x, y))) \ge 1$$

for all $x, y \in X$ and d(fx, fy) > 0. Then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking g = I, $G = G_0$.

Theorem 4.4. Let (X, d) be a b-metric space and let $f, g : X \to X$ be mappings with g is one to one. Suppose that there exist $\theta \in \Theta$ and $k \in (0, 1)$ such that

$$\theta(bd(fx, fy)) \le (\theta(d(gx, gy)))^k$$

for all $x, y \in X$ and d(fx, fy) > 0. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering $G = G_0$ and $\xi = \xi_b$. \Box

Theorem 4.5. Let (X, d) be a complete b-metric space and let $f : X \to X$ be a mapping. Suppose that there exists $\theta \in \Theta$ such that

$$\theta(bd(fx, fy)) \le \frac{\theta(d(x, y))}{\phi(\theta(d(x, y)))}$$

for all $x, y \in X$ and d(fx, fy) > 0, where $\phi : [1, \infty) \to [1, \infty)$ is a nondecreasing and lower semicontinuous function such that $\phi^{-1}(\{1\}) = 1$. Then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking $G = G_0$, g = I and $\xi = \xi_w$.

The following theorem gives fixed point of Banach G-contraction mappings in b-metric spaces.

Theorem 4.6. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f: X \to X$ be such that

$$d(fx, fy) \le \alpha \, d(x, y)$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where $\alpha \in (0, \frac{1}{b})$ is a constant. Suppose the triple (X, d, G) has the property (*). Then f has a fixed point in X if $C_f \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property (*).

Proof. The proof follows from Theorem 3.1 by taking g = I, $\xi = \xi_b$ and $\theta(t) = e^t$ for all t > 0.

The following is the *b*-metric version of Banach contraction theorem.

Theorem 4.7. Let (X, d) be a complete b-metric space and let $f : X \to X$ be a mapping satisfying

$$d(fx, fy) \le \alpha d(x, y)$$

for all $x, y \in X$, where $\alpha \in (0, \frac{1}{b})$ is a constant. Then f has a unique fixed point in X.

Proof. The conclusion of the theorem follows from Theorem 3.1 by taking $G = G_0$, g = I, $\xi = \xi_b$ and $\theta(t) = e^t$ for all t > 0

Remark 4.1. Theorem 4.7 shows that our main result is a generalization of the Banach contraction theorem.

Theorem 4.8. Let (X, d) be a complete b-metric space endowed with a partial ordering \leq and let $f: X \to X$ be a mapping. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(bd(fx, fy)), \theta(d(x, y))) \ge 1$$

for all $x, y \in X$ with $x \leq y$ or, $y \leq x$ and d(fx, fy) > 0. Suppose also that the triple (X, d, \leq) has the following property:

If (x_n) is a sequence in X such that $x_n \to x$ and x_n, x_{n+1} are comparable for all $n \ge 1$, then there exists a subsequence (x_{n_i}) of (x_n) such that x_{n_i}, x are comparable for all $i \ge 1$. If there exists $x_0 \in X$ such that $f^n x_0, f^m x_0$ are comparable for $m, n = 0, 1, 2, \cdots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:

If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and $G = G_2$, where the graph G_2 is defined by $E(G_2) = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}$.

Theorem 4.9. Let (X, d) be a metric space and let $f, g : X \to X$ be mappings with g is one to one. Suppose that there exist $\xi \in \mathcal{L}$ and $\theta \in \Theta$ such that

$$\xi(\theta(d(fx, fy)), \theta(d(gx, gy))) \ge 1$$

for all $x, y \in X$ and d(fx, fy) > 0. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.1 by considering $G = G_0$ and b = 1. \Box

Remark 4.2. It is worth mentioning that we can obtain several important fixed point results in metric and b-metric spaces by suitable choices of ξ and θ .

5. Conclusions

In this work, we obtained some new coincidence point and common fixed point results combining digraphs, \mathcal{L} -simulation and θ -functions in *b*-metric spaces. As a consequence of this study, we have been able to establish some important and well known fixed point results in metric and *b*-metric spaces.

References

- [1] Abbas, M. and Jungck, G., (2008), Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341, pp. 416-420.
- [2] Aghajani, A., Abbas, M. and Roshan, J. R., (2014), Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4, pp. 941-960.
- [3] Ahmad, J., Al-Mazrooei, A. E., Cho, Y. J. and Yang, Y. O., (2017), Fixed point results for generalized θ-contractions, J. Nonlinear Sciences Appl., 10, pp. 2350-2358.
- [4] Aleomraninejad, S., Rezapour, S. and Shahzad, N., (2013), Fixed point results on subgraphs of directed graphs, Mathematical Sciences, 7:41.
- [5] Alfuraidan, M. R. and Khamsi, M. A., (2014), Caristi fixed point theorem in metric spaces with a graph, Abstract and Applied Analysis, Article ID 303484, 5 pages.
- [6] Bakhtin, I. A., (1989), The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30, pp. 26-37.

- [7] Banach, S., (1922), Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, pp. 133-181.
- [8] Basha, SS., (2010), Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31, pp. 569-576.
- [9] Beg, I., Butt, A. R. and Radojevic, S., (2010), The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60, pp. 1214-1219.
- [10] Bojor, F., (2012), Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Constanta, 20, pp. 31-40.
- [11] Bojor, F., (2010), Fixed point of φ -contraction in metric spaces endowed with a graph, Annala of the University of Cralova, Mathematics and Computer Science Series, 37, pp. 85-92.
- [12] Bondy, J. A. and Murty, U. S. R., (1976), Graph theory with applications, American Elsevier Publishing Co., Inc., New York.
- [13] Boriceanu, M., (2009), Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4, pp. 285-301.
- [14] Chartrand, G., Lesniak, L. and Zhang, P., (2011), Graph and digraph, CRC Press, New York, NY, USA.
- [15] Cho, S. H., (2018), Fixed point theorems for *L*-contractions in generalized metric spaces, Abstract and Applied Anal., 2018, Article ID 1327691, 6 pages.
- [16] Czerwik, S., (1993), Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1, pp. 5-11.
- [17] Demma, M., Saadati, R. and Vetro, P., (2016), Fixed point results on b-metric spaces via Picard sequences and b-simulation functions, Iranian Journal of Mathematical Sciences and Informatics, 11, pp. 123-136.
- [18] Echenique, F., (2005), A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33, pp. 215-218.
- [19] Espinola, R. and Kirk, W. A., (2006), Fixed point theorems in *R*-trees with applications to graph theory, Topology Appl., 153, pp. 1046-1055.
- [20] Fan, K., (1969), Extensions of two fixed point theorems of F.E. Browder, Math. Z., 112, pp. 234-240.
- [21] Gross, J. I. and Yellen, J., (1999), Graph theory and its applications, CRC Press, New York, NY, USA.
- [22] Jleli, M. and Samet, B., (2014), A new generalization of the Banach contraction principle, J. Inequalities Appl., 2014, 8 pages.
- [23] Jungck, G., (1996), Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4, pp. 199-215.
- [24] Khojasteh, F., Shukla, S. and Radenovic, S., (2015), A new approach to the study of fixed point theorems via simulations, Filomat, 29, pp. 1189-1194.
- [25] Mohanta, S. K., (2016), Common fixed points in b-metric spaces endowed with a graph, Math. Vesnik, no. 68, pp. 140–154.
- [26] Mohanta, S. K., (2015), Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Mathematici, no. 54, pp. 125-140.
- [27] Mohanta, S. K. and Mohanta, S., (2014), Some fixed point results for mappings in G-metric spaces, Demonstratio Mathematica, 47, pp. 179-191.
- [28] Roshan, J. R., Parvaneh, V., Sedghi, S., Shobkolaei, N. and Shatanawi, W., (2013), Common fixed points of almost generalized (ψ, φ)_s-contractive mappings in ordered b-metric spaces, Fixed Point Theory and Applications, 2013:159, doi:10.1186/1687-1812-2013-159, 23 pages.

Sushanta Kumar Mohanta received his Ph.D. degree in Mathematics from The University of Burdwan, West Bengal, India. He is a Professor of the Department of Mathematics, West Bengal State University, Kolkata. His research interest includes Fixed Point Theory, Operator Theory, Functional Analysis.