
TWMS J. App. and Eng. Math. V.15, N.6, 2025, pp. 1448-1459

REGULARIZED GAP FUNCTIONS FOR p-STRONGLY MONOTONE

VARIATIONAL-HEMIVARIATIONAL INEQUALITIES AND

APPLICATIONS TO GLOBAL ERROR BOUNDS

V. M. TAM1,∗, N. D. CUONG2, N. N. HIEN3, D. H. HIEU2, §

Abstract. The paper studies regularized gap functions for a general class of elliptic
variational–hemivariational inequalities by employing the sum rule of Clarke’s general-
ized directional derivatives. We first devote regularized gap functions for this class of
inequalities based on the forms introduced by Yamashita and Fukushima. Global error
bounds for the variational–hemivariational inequality then are formulated in terms of
regularized gap functions under strongly monotone assumptions of a general order p > 1
on the given data. The established results are meaningful generalizations to correspond-
ing ones in the literature.

Keywords: variational–hemivariational inequality, regularized gap function, global error
bound, strong monotonicity of order p.
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1. Introduction

The gap function is well known as a valuable tool for solving variational inequalities
because it can transform a variational inequality into an associated minimization problem
(see Auslender [1]). However, in general the Auslender’s gap function is non-differentiable.
This implies a disadvantage in using iterative methods to solve associated minimization
problems. To overcome this limitation, Fukushima [3] originally proposed a new gap
function for variational inequalities called the regularized gap function. Yamashita and
Fukushima [21] developed global error bound results for variational inequalities in terms
of regularized gap functions of the Fukushima and Moreau-Yosida types. Error bound
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provides an upper estimation of the distance between an arbitrary feasible point and the
solution set of a certain problem. It is a powerful tool for convergence analysis of iterative
methods for solving of variational inequality problems. Thus, regularized gap functions and
error bounds have attracted considerable attentions due to their importances in examining
various kinds of variational inequalities and equilibrium problems, see e.g., [9, 10, 11, 14]
and the references therein.

On the other hand, the theory of hemivariational inequalities is a natural extension of
variational inequalities introduced by Panagiotopoulos for investigating various problems
in mechanics by employing Clarke generalized gradients for locally Lipschitz functions
involving nonconvex and nonsmooth energy potentials, see e.g., [17, 18]. Besides, hemi-
variational inequalities have been generalized to variational–hemivariational inequalities in
both convex and nonconvex potentials. These inequalities have been applied in mechanics,
engineering, especially in nonsmooth analysis and extensively studied in various directions.
Recently, Hung et al. [8] developed the regularized gap function and error bound results to
a class of variational–hemivariational inequalities of elliptic types. This approach has been
further investigated for various kinds of variational–hemivariational inequalities, see e.g.,
[4, 12, 13, 19]. Very recently, Tam and Chen [20] investigated the D-gap function based
on the regularized gap function of the Fukushima type for variational–hemivariational in-
equalities employing the sum rule of Clarke’s generalized directional derivatives. However,
Tam and Chen [20] only used strongly monotone assumptions of order 2 to obtain error
bound results for such variational–hemivariational inequalities. Besides, regularized gap
functions of the Moreau-Yosida type have not been considered in [20]. Han and Nashed [6]
formulated well-posedness results for variational–hemivariational inequalities with strongly
monotone assumptions of a general order p > 1 instead of using the order 2 in the majority
of existing references.

Motivated by these works, in this paper, we consider a general class of elliptic vari-
ational–hemivariational inequalities by employing the sum of Clarke’s generalized direc-
tional derivatives. Then we propose regularized gap functions in the forms of both the
Fukushima type and the Moreau-Yosida type. Based on using the strongly monotone
assumptions of a general order p > 1 in [6], we establish global error bounds for such a
variational–hemivariational inequality via regularized gap functions.

The rest of this paper is structured as follows. Section 2 presents some basic definitions
and properties that will be used throughout the paper. We also introduce a generalized
variational-hemivariational inequality and provide its solution existence based on some
imposed hypotheses on the initial data. In Section 3, we study regularized gap functions
for this problem. Applications to establishing global error bounds for such a problem by
virtue of regularized gap functions are devoted in Section 4. Finally, Section 5 gives some
conclusions of this paper.

2. Preliminaries

Let W be a normed space with its topological dual W ∗. The norm on W and the duality
pairing of W and W ∗ are denoted by ∥ · ∥W and ⟨·, ·⟩W , respectively. For normed spaces
W and V , L(W,V ) denotes the space of all linear continuous operators from W to V . We
now recall some primary definitions that will be used in the sequel (see e.g., [2, 16]).

Definition 2.1. A function H : W → R := R ∪ {+∞} is said to be

(a): proper, if H ̸≡ +∞;
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(b): convex, if H(sw + (1 − s)v) ≤ sH(w) + (1 − s)H(v) for all w, v ∈ W and
s ∈ [0, 1];

(c): lower semicontinuous at w0 ∈ W , if for any sequence {wn} ⊂ W such that
wn → w0, it holds H(w0) ≤ lim infH(wn);

(d): upper semicontinuous at w0 ∈ W , if for any sequence {wn} ⊂ W such that
wn → w0, it holds lim supH(wn) ≤ H(w0);

(e): lower semicontinuous (resp., upper semicontinuous) on W , if H is lower semi-
continuous (resp., upper semicontinuous) at every w0 ∈ W .

Definition 2.2. A function H : W → R is said to be locally Lipschitz, if for every w ∈ W ,
there exist a neighbourhood N of w and a constant lw > 0 such that

|H(w1)−H(w2)| ≤ lw∥w1 − w2∥W for all w1, w2 ∈ N .

For a locally Lipschitz function H : W → R, we denote by H0(w; v) the Clarke gen-
eralized directional derivative of H at the point w ∈ W in the direction v ∈ W defined
by

H0(w; v) = lim sup
u→w, s→0+

H(u+ sv)−H(u)

s
.

The generalized gradient of H at w ∈ W , denoted by ∂H(w), is a subset of W ∗ given by

∂H(w) =
{
ζ∗ ∈ W ∗ | H0(w; v) ≥ ⟨ζ∗, v⟩W for all v ∈ W

}
.

The following lemma provides some nice properties of the Clarke generalized directional
derivatives.

Lemma 2.1. (see [2, Proposition 2.1.1]) Let W be a Banach space, and H : W → R be a
locally Lipschitz function. The following assertions hold.

(i): For each w ∈ W , the function W ∋ v 7→ H0(w; v) ∈ R is finite, positively
homogeneous, subadditive, and Lipschitz continuous.

(ii): The function W ×W ∋ (w, v) 7→ H0(w; v) ∈ R is upper semicontinuous.
(iii): For every w, v ∈ W , it holds

H0(w; v) = max {⟨ζ, v⟩W | ζ ∈ ∂H(w)}.

For each i ∈ {1, . . . , k}, let V be a Hilbert space, VG and VHi be Banach spaces, C ⊂ V
and CG ⊂ VG. In addition, let F : V → V ∗, Φ: E → CG, Ψi : V → VHi be operators,
G : CG × CG → R, Hi : VHi → R be functions, ai > 0 for all i ∈ {1, . . . , k} and φ ∈ V ∗.
We now consider the following generalized variational-hemivariational inequality.

Problem 2.1. Find u ∈ C such that

⟨F (u), v − u⟩V +G(Φu,Φv)−G(Φu,Φu)

+
k∑

i=1

aiH
0
i (Ψiu; Ψiv −Ψiu) ≥ ⟨φ, v − u⟩V ∀v ∈ C.

For motivating the study Problem 2.1, we give some problems investigated in the liter-
ature as its special cases.

(a): When ai = 1 for all i ∈ {1, . . . , k}, Problem 2.1 reduces to the abstract elliptic
variational-hemivariational inequality introduced by Tam-Chen [20]:
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Problem 2.2. Find u ∈ C such that

⟨F (u), v − u⟩V +G(Φu,Φv)−G(Φu,Φu)

+
k∑

i=1

H0
i (Ψiu; Ψiv −Ψiu) ≥ ⟨φ, v − u⟩V ∀v ∈ C.

(b): When k = 1, a1 = 1, H1 = H and Ψ1 = Ψ, Problem 2.1 reduces to the following
problem:

Problem 2.3. Find u ∈ C such that

⟨F (u), v − u⟩V +G(Φu,Φv)−G(Φu,Φu) +H0(Ψu; Ψv −Ψu) ≥ ⟨φ, v − u⟩V ∀v ∈ C.

investigated by Han et al. [7].
(c): When k = 2, a1 = a2 = 1, G ≡ 0, Problem 2.1 is equivalent to the following form
introduced by Han et al. [5].

Problem 2.4. Find u ∈ C such that

⟨F (u), v − u⟩V +H0
1 (Ψ1u; Ψ1v −Ψ1u) +H0

2 (Ψ2u; Ψ2v −Ψ2u) ≥ ⟨φ, v − u⟩V ∀v ∈ C.

Now, we provide the following assumptions on the data of Problem 2.1 with p > 1.

A(F ) : For the operator F : V → V ∗,

(a): F is continuous;
(b): F is strongly monotone of order p, i.e., there exists mF > 0 such that

⟨F (v1)− F (v2), v1 − v2⟩V ≥ mF ∥v1 − v2∥pV , ∀v1, v2 ∈ V.

A(G) : For the function G : CG × CG → R,
(a): for each u ∈ CG, G(u, ·) : CG → R is convex and continuous;
(b): there exists mG > 0 such that

G(u1, v2)−G(u1, v1) +G(u2, v1)−G(u2, v2)

≤ mG∥u1 − u2∥p−1
VG

∥v1 − v2∥VG
, ∀u1, u2, v1, v2 ∈ CG.

A(H) : For each i ∈ {1, . . . , k}, for the locally Lipschitz function Hi : VHi → R,
(a): ∥ξ∥V ∗

Hi
≤ c0 + c1∥v∥VHi

, ∀v ∈ VHi , ξ ∈ ∂Hi(v) with some c0, c1 ≥ 0;

(b): there exists mHi ≥ 0 such that

H0
i (v1; v2 − v1) +H0

i (v2; v1 − v2) ≤ mHi∥v1 − v2∥pVHi
, (1)

for all v1, v2 ∈ VHi .

A(C) :

(a): C is a nonempty, closed and convex subset of V ;
(b): CG is a nonempty, closed and convex subset of VG with Φ(C) ⊂ CG.

A(Φ) : The operator Φ: E → CG is linear and compact.

A(Ψ) : For each i ∈ {1, . . . , k}, the operator Ψi : V → VHi is linear and compact.

A(φ) : φ ∈ V ∗.

A(const.) : ai > 0 for all i ∈ {1, . . . , k} and

mF −mG∥Φ∥pL(V,VG) −
k∑

i=1

aimHi∥Ψi∥pL(V,VHi
) > 0.
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The following example illustrates the strong monotonicity of order p of the operator F .

Example 2.1. Let V = Rn and F : Rn → V ∗ = Rn be defined by

F (v) = 3∥v∥p−2v +
1

2
e,

where p ≥ 2 and e = (1, . . . , 1)⊤ ∈ Rn. Then for any v1, v2 ∈ Rn, we have

⟨F (v1)− F (v2), v1 − v2⟩V = 3
(
∥v1∥p−2v1 − ∥v2∥p−2v2

)
· (v1 − v2)

≥ 3

2p−2p
∥v1 − v2∥p

=
3

2p−2p
∥v1 − v2∥pV ,

where we used the inequality(
∥x∥p−2x− ∥y∥p−2y

)
· (x− y) ≥ 1

2p−2p
∥x− y∥p

for p ≥ 2 and for all x, y ∈ Rn (see [15, Lemma 3]).

Thus, F is strongly monotone of order p with mF =
3

2p−2p
, p ≥ 2.

To end this section, we provide the existence and uniqueness result for Problem 2.1
based on slightly modifying the arguments of [6, Theorem 4.3] employing the properties

of linear and compact operators Φ, Ψi and the term
∑k

i=1 aiH
0
i (·; ·), for all i ∈ {1, . . . , k}.

Theorem 2.1. Suppose that the assumptions A(F ), A(G), A(H), A(C), A(Φ), A(Ψ),
A(φ) and A(const.) hold, then Problem 2.1 has a unique solution.

3. Regularized gap functions

In this section, we investigate regularized gap functions in the forms of the Fukushima
and Moreau-Yosida types for Problem 2.1.

Definition 3.1. A real-valued function Γ: C → R is said to be a gap function for Prob-
lem 2.1, if it satisfies the following conditions:

(a): Γ(u) ≥ 0 for all u ∈ C;
(b): u∗ ∈ C is such that Γ(u∗) = 0 if and only if u∗ is a solution to Problem 2.1.

Let κ > 0 be a fixed parameter. We now consider the function Df
κ : C → R defined by

Df
κ(u) = sup

v∈C

(
⟨F (u)− φ, u− v⟩V −G(Φu,Φv) +G(Φu,Φu)

−
k∑

i=1

aiH
0
i (Ψiu; Ψiv −Ψiu)−

κ

p
∥u− v∥pV

)
for all u ∈ C.

The following proposition shows that Df
κ is a gap function for Problem 2.1.

Theorem 3.1. Suppose that the conditions of Theorem 2.1 are satisfied. Then, the func-

tion Df
κ is a gap function for Problem 2.1.
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Proof. We are going to verify two conditions of Definition 3.1.

(a) Let κ > 0. In view of the definition of Df
κ, it holds for any u ∈ C that

Df
κ(u) ≥ ⟨F (u)− φ, u− u⟩V −G(Φu,Φu) +G(Φu,Φu)

−
k∑

i=1

aiH
0
i (Ψiu; Ψiu−Ψiu)−

κ

p
∥u− u∥pV

= −
k∑

i=1

aiH
0
i (Ψiu; 0VΨi

) = 0.

Thus, Df
κ(u) ≥ 0 for all u ∈ C.

(b) Assume that u∗ ∈ C satisfying Df
κ(u∗) = 0, that is,

sup
v∈C

(
⟨F (u∗)− φ, u∗ − v⟩V −G(Φu∗,Φv) +G(Φu∗,Φu∗)

−
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiv −Ψiu
∗)− κ

p
∥u∗ − v∥pV

)
= 0.

Thus,

⟨F (u∗)− φ, v − u∗⟩V +G(Φu∗,Φv)−G(Φu∗,Φu∗)

+
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiv −Ψiu
∗) ≥ −κ

p
∥u∗ − v∥pV

for all v ∈ C.
For any z ∈ C and µ ∈ (0, 1), we substitute v = vµ := (1 − µ)u∗ + µz ∈ C into the

above inequality to obtain

µ⟨F (u∗)− φ, z − u∗⟩V + µG(Φu∗,Φz)− µG(Φu∗,Φu∗) + µ

(
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiz −Ψiu
∗)

)

≥ ⟨F (u∗)− φ, vµ − u∗⟩V +G(Φu∗,Φvµ)−G(Φu∗,Φu∗) +
k∑

i=1

aiH
0
i (Ψiu

∗; Ψivµ −Ψiu
∗)

≥ −κ

p
∥u∗ − vµ∥pV = −κµp

p
∥u∗ − z∥pV ,

where the properties of operators Φ ∈ L(V, VG) and Ψi ∈ L(V, VHi), the convexity of
z 7→ G(Φu∗,Φz), positive homogeneity of v 7→ H0

i (Ψiu
∗; Ψiv −Ψiu

∗) for all i ∈ {1, . . . , k}
have been used in the above inequalities. Hence,

⟨F (u∗)− φ, z − u∗⟩V +G(Φu∗,Φz)−G(Φu∗,Φu∗)

+

k∑
i=1

aiH
0
i (Ψiu

∗; Ψiz −Ψiu
∗) ≥ −κµp−1

p
∥u∗ − z∥pV

for all z ∈ C. Letting µ → 0+, one obtain

⟨F (u∗), z − u∗⟩V +G(Φu∗,Φz)−G(Φu∗,Φu∗)

+
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiz −Ψiu
∗) ≥ ⟨φ, z − u∗⟩V
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for all z ∈ C. Thus, u∗ is also a solution to Problem 2.1.

Conversely, suppose that u∗ ∈ C is a solution of Problem 2.1, namely,

⟨F (u∗)− φ, z − u∗⟩V +G(Φu∗,Φz)−G(Φu∗,Φu∗) +

k∑
i=1

aiH
0
i (Ψiu

∗; Ψiz −Ψiu
∗) ≥ 0

for all v ∈ C. This implies

sup
v∈C

(
⟨F (u∗)− φ, u∗ − v⟩V −G(Φu∗,Φv) +G(Φu∗,Φu∗)

−
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiv −Ψiu
∗)− κ

p
∥u∗ − v∥pV

)
≤ 0,

and so Df
κ(u∗) ≤ 0. However, Df

κ(u) ≥ 0 for all u ∈ C (by (a)). This implies that

Df
κ(u∗) = 0. This completes the proof. □

We now prove that the regularized gap function Df
κ is lower semicontinuous on C.

Lemma 3.1. Assume that the conditions of Theorem 2.1 are satisfied. If, in addition,

G : CG × CG → R is continuous, then, for each κ > 0, the function Df
κ is lower semicon-

tinuous on C.

Proof. Consider the function D̂κ : C × C → R defined by

D̂κ(u, v) = ⟨F (u)− φ, u− v⟩V −G(Φu,Φv) +G(Φu,Φu)

−
k∑

i=1

aiH
0
i (Ψiu; Ψiv −Ψiu)−

κ

p
∥u− v∥pV .

Assumption A(F )(a) implies the continuity of the function u 7→ ⟨F (u), u⟩V . Combining

with the lower semicontinuity of (u, v) 7→ −
∑k

i=1 aiH
0
i (Ψiu; Ψiv−Ψiu) and the continuity

of (u, v) 7→ G(Φu,Φv) and u 7→ ∥u∥pV , we obtain that u 7→ D̂f
κ(u, v) is lower semicontinuous

for all v ∈ C.
By the definition of Df

κ, we have

Df
κ(u) = sup

v∈C
D̂κ(u, v) for all u ∈ C.

Let {un} ⊂ C be such that un → u0 as n → ∞. Then,

lim inf
n→∞

Df
κ(un) = lim inf

n→∞
sup
v∈K

D̂κ(un, v)

≥ lim inf
n→∞

D̂κ(un, z) ≥ D̂κ(u0, z)

for all z ∈ C. Passing to supremum with z ∈ C for the above inequality, it gives

lim inf
n→∞

Df
κ(un) ≥ sup

z∈C
D̂κ(u0, z) = Df

κ(u0),

so, the function Df
κ is lower semicontinuous. This completes the proof. □

Let κ, ρ > 0 be two parameters. We now consider the following function MDf
κ,ρ

defined by

MDf
κ,ρ

(u) = inf
z∈C

{
Df

κ(z) + ρ∥u− z∥pV
}
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for all u ∈ C.

Next, we will show that the function MDf
κ,ρ

is a gap function for Problem 2.1. Then,

MDf
κ,ρ

is called the Moreau-Yosida regularized gap function for Problem 2.1.

Theorem 3.2. Suppose that the hypotheses of Lemma 3.1 are satisfied. Then, for all κ,
ρ > 0, the function MDf

κ,ρ
is a gap function for Problem 2.1.

Proof. (a) For any κ, ρ > 0 fixed, since Df
κ is a gap function for Problem 2.1, Df

κ(u) ≥ 0
for all u ∈ C. Thus, MDf

κ,ρ
(u) ≥ 0 for all u ∈ C.

(b) Let u∗ ∈ C be a solution to Problem 2.1. Theorem 3.1 indicates that Df
κ(u∗) = 0.

Then, we have

MDf
κ,ρ

(u∗) = inf
z∈C

{
Df

κ(z) + ρ∥u∗ − z∥pV
}

≤ Df
κ(u

∗) + ρ∥u∗ − u∗∥pV = 0.

Combining the above estimation with the fact thatMDf
κ,ρ

(u∗) ≥ 0, one obtainMDf
κ,ρ

(u∗) =

0.
Conversely, let u∗ ∈ C be such that MDf

κ,ρ
(u∗) = 0, i.e.,

inf
z∈C

{
Df

κ(z) + ρ∥u∗ − z∥pV
}
= 0.

Then, there exists a minimizing sequence {zn} ⊂ C such that

0 ≤ Df
κ(zn) + ρ∥u∗ − zn∥pV <

1

n
. (2)

Hence, (2) leads to Df
κ(zn) → 0 and ∥u∗−zn∥V → 0, as n → ∞. So zn → u∗, as n → +∞.

Thanks to Lemma 3.1 and the nonnegativity of Df
κ, we arrive at

0 ≤ Df
κ(u

∗) ≤ lim inf
n→+∞

Df
κ(zn) = 0,

that is, Df
κ(u∗) = 0. Using the properties of the gap function Df

κ, we conclude that u∗ is
a solution to Problem 2.1. The proof is complete. □

Remark 3.1. (i) When p = 2 and ai = 1 for all i ∈ {1, . . . , k}, our regularized gap function

Df
κ reduces to the corresponding regularized gap function considered in Tam-Chen [20].

Hence, Theorem 3.1 is an extension of [20, Theorem 3.5]. However, the method of proof

in Theorem 3.1 for the regularized gap function Df
κ is different from the corresponding

result in [20, Theorem 3.5] without using the formulation of the optimality condition.
(ii) Furthermore, for Problem 2.1, the Moreau-Yosida regularized gap function MDf

κ,ρ

has not been studied in previous literature. Thus, our result in Theorem 3.2 is new even
in the case of p = 2 and ai = 1 for all i ∈ {1, . . . , k}.

4. Applications to global error bounds

Using the regularized gap functions Df
κ and MDf

κ,ρ
established in Section 3, this section

devotes to global error bounds for Problem 2.1 under assumptions of general order p > 1
on the data of Problem 2.1.



1456 TWMS J. APP. ENG. MATH. V.15, N.6, 2025

Theorem 4.1. Let u∗ ∈ C be the unique solution to Problem 2.1. Suppose that the
hypotheses A(F ), A(G), A(H), A(C), A(Φ), A(Ψ) and A(φ) hold. Then, for each
u ∈ C, for any κ > 0 satisfying

mF −mG∥Φ∥pL(V,VG) −
k∑

i=1

aimHi∥Ψi∥pL(V,VHi
) −

κ

p
> 0,

where ai > 0 for all i ∈ {1, . . . , k}, we have

∥∥u− u∗
∥∥
V
≤

 Df
κ(u)

mF −mG∥Φ∥pL(V,VG) −
∑k

i=1 aimHi∥Ψi∥pL(V,VHi
) −

κ

p


1
p

. (3)

Proof. Let u∗ ∈ C be the unique solution to Problem 2.1. For any u ∈ C fixed, by the

definition of Df
κ, we have

Df
κ(u) ≥ ⟨F (u)− φ, u− u∗⟩V −G(Φu,Φu∗) +G(Φu,Φu)

−
k∑

i=1

aiH
0
i (Ψiu; Ψiu

∗ −Ψiu)−
κ

p
∥u− u∗∥pV . (4)

By assumption A(F )(b), we get

⟨F (u)− φ, u− u∗⟩V − ⟨F (u∗)− φ, u− u∗⟩V
= ⟨F (u)− F (u∗)− φ, u− u∗⟩V
≥ mF ∥u− u∗∥pV . (5)

Thanks to the conditions A(H)(b), A(Ψ) and ai > 0 for all i ∈ {1, . . . , k}, we have

ai
[
H0

i (Ψiu; Ψiu
∗ −Ψiu) +H0

i (Ψiu
∗; Ψiu−Ψiu

∗)
]

≤ aimHi∥Ψiu
∗ −Ψiu∥pVHi

≤ aimHi∥Ψi∥pL(V,VHi
)∥u− u∗∥pV .

This implies that

−
k∑

i=1

aiH
0
i (Ψiu; Ψiu

∗ −Ψiu)−
k∑

i=1

aiH
0
i (Ψiu

∗; Ψiu−Ψiu
∗)

≥ −
k∑

i=1

aimHi∥Ψi∥pL(V,VHi
)∥u− u∗∥pV . (6)

It follows from the conditions A(G)(b) and A(Φ) that

− [G(Φu,Φu∗)−G(Φu,Φu) +G(Φu∗,Φu∗)−G(Φu∗,Φu)]

≥ −mG∥Φu∗ − Φu∥pVG

≥ −mG∥Φ∥pL(V,VG)∥u− u∗∥pV . (7)
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Moreover, since u∗ is a solution to Problem 2.1, we have

⟨F (u∗)− φ, u− u∗⟩V +G(Φu∗,Φu)−G(Φu∗,Φu∗)

+

k∑
i=1

aiH
0
i (Ψiu

∗; Ψiu−Ψiu
∗) ≥ 0. (8)

Combining relations (5)–(8), it follows that

⟨F (u)− φ, u− u∗⟩V −G(Φu,Φu∗) +G(Φu,Φu)−
k∑

i=1

aiH
0
i (Ψiu; Ψiu

∗ −Ψiu)

≥

(
mF −mG∥Φ∥pL(V,VG) −

k∑
i=1

aimHi∥Ψi∥pL(V,VHi
)

)
∥u− u∗∥pV . (9)

From (4) and (9), one has

Df
κ(u) ≥

(
mF −mG∥Φ∥pL(V,VG) −

k∑
i=1

aimHi∥Ψi∥pL(V,VHi
) −

κ

p

)∥∥u− u∗
∥∥p
V
. (10)

which implies

∥∥u− u∗
∥∥p
V
≤

 Df
κ(u)

mF −mG∥Φ∥pL(V,VG) −
∑k

i=1 aimHi∥Ψi∥pL(V,VHi
) −

κ

p


1
p

.

Thus, inequality (3) is valid. The proof is complete. □

Theorem 4.2. Let u∗ ∈ C be the unique solution to Problem 2.1, and κ > 0 be such that

mF −mG∥Φ∥pL(V,VG) −
k∑

i=1

aimHi∥Ψi∥pL(V,VHi
) −

κ

p
> 0,

where ai > 0 for all i ∈ {1, . . . , k}. Assume that the conditions of Theorem 3.2 hold.
Then, for each u ∈ C and all ρ > 0, one has

∥u− u∗∥V ≤

 2p−1MDf
κ,ρ

(u)

min

{
mF −mG∥Φ∥pL(V,VG) −

∑k
i=1 aimHi∥Ψi∥pL(V,VHi

) −
κ

p
, ρ

}


1
p

. (11)

Proof. Let u∗ ∈ C be the unique solution to Problem 2.1. For any u ∈ C fixed, it follows
from the definition of MDf

κ,ρ
and inequality (10) that

MDf
κ,ρ

(u)

= infz∈C

{
Df

κ(z) + ρ∥u− z∥pV
}

≥ inf
z∈C

{(
mF −mG∥Φ∥pL(V,VG) −

k∑
i=1

aimHi∥Ψi∥pL(V,VHi
) −

κ

p

)∥∥z − u∗
∥∥p
V
+ ρ∥u− z∥pV

}

≥ min

{
mF −mG∥Φ∥pL(V,VG) −

∑k
i=1 aimHi∥Ψi∥pL(V,VHi

) −
κ

p
, ρ

}
×

inf
z∈C

{
∥z − u∗∥pV + ∥u− z∥pV

}
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Applying the following inequality

ap + bp ≥ 1

2p−1
(a+ b)p, ∀a, b ≥ 0, p ≥ 1

leads to

∥z − u∗∥pV + ∥u− z∥pV ≥ 1

2p−1
(∥z − u∗∥V + ∥u− z∥V )p ≥

1

2p−1
∥u− u∗∥pV .

Hence, we have

MDf
κ,ρ

(u) ≥ 1

2p−1
min

{
mF −mG∥Φ∥pL(V,VG) −

k∑
i=1

aimHi∥Ψi∥pL(V,VHi
) −

κ

p
, ρ

}
∥u− u∗∥pV ,

and so

∥u− u∗∥V ≤

 2p−1MDf
κ,ρ

(u)

min

{
mF −mG∥Φ∥pL(V,VG) −

∑k
i=1 aimHi∥Ψi∥pL(V,VHi

) −
κ

p
, ρ

}


1
p

for all u ∈ C. The proof is complete. □

Remark 4.1. (i) In view of Remark 3.1(i), Theorem 4.1 extends the corresponding error
bound established in [20, Theorem 4.3] under the assumption of general order p > 1 on
the data of Problem 2.1.

(ii) Thanks to Remark 3.1(ii), the error bound results for Problem 2.1 in Theorem 4.2
with respect to the Moreau-Yosida regularized gap function MDf

κ,ρ
is new.

5. Conclusions

The paper extends regularized gap functions and error bounds to a class of p-strongly
monotone variational–hemivariational inequalities by employing the sum rule of Clarke’s
generalized directional derivatives (Problem 2.1). The novelty of these results include the
construction of regularized gap functions for Problem 2.1 in the forms of the Fukushima
and Moreau-Yosida types (Theorems 3.1 and 3.2). Furthermore, our error bound results
for Problem 2.1 are established under strongly monotone assumptions of a general order
p > 1 and regularized gap functions (Theorems 4.1 and 4.2).

Acknowledgement. The authors are grateful to the anonymous referees for their valu-
able remarks which improved the presentation of the paper.
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[8] Hung, N. V., Migórski, S., Tam, V. M. and Zeng, S. D., (2020), Gap functions and error bounds for
variational-hemivariational inequalities. Acta. Appl. Math., 169, 691–709.

[9] Hung, N. V., Novo, V. and Tam, V. M., (2022), Error bound analysis for vector equilibrium problems
with partial order provided by a polyhedral cone. J Glob Optim., 82, 139–159.

[10] Hung, N. V. and Tam, V. M., (2021), Error bound analysis of the D-gap functions for a class of
elliptic variational inequalities with applications to frictional contact mechanics. Z Angew Math
Phys., 72:Art, 173.

[11] Hung, N. V., Tam, V. M., Tuan, N. H. and O’Regan, D., (2020), Regularized gap functions and error
bounds for generalized mixed weak vector quasi variational inequality problems in fuzzy environments.
Fuzzy Sets Syst., 400, 162–176.

[12] Hung, N. V., Tam, V. M. and Pitea, A., (2020), Global error bounds for mixed Quasi-Hemivariational
inequality problems on Hadamard manifolds, Optimization, 69, 2033–2052.
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