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EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL

qr-DIFFERENCE EQUATION OF IMPLICIT FORM WITH NONLOCAL

BOUNDARY CONDITION

P. KACHARI1, J. BORAH2∗, B. HAZARIKA3

Abstract. This study examines the conditions needed for the existence of solutions
to an impulsive fractional qr-difference equation with the implicit form. The fractional
derivative we analyze in the problem is of the Caputo type, which involves a q-shifting
operator of the form aϕq(u) = qu+(1− q)a. Here, nonlocal conditions are the boundary
conditions we take into account. Regarding the existence of solutions for the given prob-
lem, the result is obtained by means of Krasnoselskii’s fixed point theorem. In addition,
circumstances required for the Ulam-Hyers and Generalized Ulam-Hyers stability of the
impulsive problem are explored. Finally, we provide an example to demonstrate our
findings.
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1. Introduction

Fractional differential calculus has garnered significant attention from scholars in recent
times, primarily owing to its proven utility across several domains ( [1–3]). The existence
and uniqueness of solutions for fractional differential equations have been the subject of
considerable research in various academic domains, see ( [4–6]) and the references therein.
The q-difference equation was initiated in the twentieth century ( [7], [8]) and has got
significant attention in the recent years. The origin of the fractional q-difference calculus
can be found in the works by Al-Salam [9] and Agarwal [10]. Afterwards, plenty of
study has already been done on the existence and uniqueness of solutions to fractional
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q-difference equations for initial value and boundary value problems ( [11–17]).
Tariboon et al. [21] developed a concept in fractional q calculus in terms of a shifting
operator aϕq(u) = qu+ (1− q)a and the terms q-integral and q-derivative were redefined.
In addition, the Riemann-Liouville q-integral as well as q-derivative were defined, and the
existence of solutions to the impulsive fractional q differential equation of first and second
order was discovered. Depending upon the q-shifting operator Ahmad et al. [22] proposed
the expression for the Caputo fractional q-derivative and found the conditions for existence
of the solution of the following impulsive problem with anti-periodic boundary condition:

(ctrD
σr
qr x)(t) = F (t, x(t)) t ∈ Jr ⊆ [0, T ], t ̸= tr

x(t+r ) = x(tr) +Rr(tr−1I
ρr−1
qr−1 x(tr)) r = 1, 2, . . . , n

trDqrx(t
+
r ) =tr−1 Dqr−1x(tr) +R∗

r(tr−1I
νr−1
qr−1 x(tr)) r = 1, 2, . . . , n

x(0) = −x(T ), (0Dq0x)(0) = (tnDqnx)(T ),

where 0 = t0 < t1 < t2 < . . . < tn < tn+1 = T , 1 < σr ≤ 2, 0 < qr < 1, 0 < ρr, νr < 1 and
J0 = [0, t1], Jr = (tr, tr+1] for r = 1,2,. . .,n.
Ahmad et al. [23] obtained the existence result of fractional q-difference equation with
Riemann- Liouville fractional derivative involving nonlocal boundary condition of the fol-
lowing problem: 

(trD
σr
qr x)(t) = F (t, x(t)) t ∈ Jr ⊂ [0, T ], t ̸= tr

(trI
σr
qr x)(t

+
r ) = x(tr) +Rr(x(tr))

at0(I
1−α0
q0 x)(0) = bx(T ) +

∑n
l=0 cl(tlI

γl
ql x(tl+1)),

where 0 = t0 < t1 < t2 < . . . < tn < tn+1 = T , 0 < σr, γr ≤ 1, 0 < qr < 1 and J0 = [0, t1],
Jr = (tr, tr+1] for r = 1,2,. . .,n. Also, existence result for nonlinear implusive q-difference
equation can be find on Yu et al. [24], Jang et al. [25], Agarwal et al. [26] etc.
In recent years, the Ulam-Hyers stability anaysis of nonlinear q-fractional differential equa-
tion gets a lot of attention from the researchers. Ulam-Hyers stability can be defined as
an exact solution near the approximate solution of the differential equation with minimal
error. For the recent work on Ulam-Hyers stability on fractional q-difference equation
one can see ( [27–29]) and reference therein. Also, several research works in the field of
implicit fractional difference equations are currently being conducted ( [19, 20]). Abbas
et al. [30] investigate conditions for existence, uniqueness and Ulam-Hyers-Rassias stability
of solution of the initial value problem

(cDσ
q x)(t) = F (t, x(t), (cDσ

q x)(t)), t ∈ [0, T ]

x(0) = x0.

Motivated by the above results, we work on the following problem
(ctrD

σr
qr x)(t) = F (t, x(t), (ctrD

σr
qr x)(t)), t ∈ Jr ⊂ J = [0, T ], t ̸= tr

x(t+r ) = x(tr) + ρr(x(tr)), r = 1, 2, . . . , n.

ax(0) + bx(T ) =
∑n

i=0 cix(ηi), η0 ∈ [t0, t1], ηr ∈ (tr, tr+1] r = 1, 2, . . . , n,

(1)

where 0 = t0 < t1 < t2 < . . . < tn < tn+1 = T , J0 = [0, t1] and Jr = (tr, tr+1] for all
r=1,2,. . .,n.
c
trD

σr
qr is the Caputo qr-fractional derivative with αr order, a, b, c0, c1, . . . , cm are real con-

stants and n ∈ N, 0 < σr ≤ 1 and 0 < qr < 1 for r = 0, 1, 2, . . . , n, F : J ×R×R → R and
ρr : R → R r = 1, 2, . . . , n.
We try to find the conditions for existence of solution of the problem and also try to find
conditions for Ulam-Hyers and Generalized Ulam-Hyers stability of the problem.
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The research paper is structured as follows: In section 2, we covered some fundamental
definitions, characteristics, and lemmas. The criteria for the existence of the solution of
the problem (1) are covered in the next section. In section 4, conditions for Ulam-Hyers
and Generalized Ulam-Hyers stability are derived. In section 5, a example is provided to
verify the outcomes.

2. Preliminaries

We begin this section by reviewing some fundamental q-calculus properties [21].
The q-shifting operator define as aϕq(u) = qu+ (1− q)a, satisfy the following relations

(1) aϕ
0
q(u) = u, aϕ

(n)
q (u) =a ϕn−1

q (aϕq(u)) for n ∈ N;
(2) a(u− v)

(0)
q = 1, a(u− v)

(p)
q =

∏p−1
i=0 (u−a ϕ

i
q(v)), p ∈ N ∪ {∞};

(3) a(u− v)
(α)
q = u(α)

∏∞
i=0

1−a/uϕ
i
q(v/u)

1−a/uϕ
i+α
q (v/u)

, α ∈ R, n ̸= 0.

In the interval [a,b], the qr-derivative of a function f is defined as

(aDqrf)(t) =
f(t)− f(aϕqr(t))

(1− qr)(t− a)
, t ̸= a and (aDqrf)(a) = limt→a(aDqrf)(t).

The higher order qr-derivative is defined as

(aD
0
qrf)(t) = f(t) and (aD

n
qrf)(t) = aDqr

n−1(aDqrf)(t), n ∈ N.

For two functions, f and g, on the interval [a,b], the qr-derivative of their product and
division is

aDqr(fg)(t) = f(t)aDqrg(t) + g(aϕqr(t))aDqrf(t)

= g(t)aDqrf(t) + f(aϕqr(t))aDqrg(t)

and

aDqr(
f

g
)(t) =

g(t)aDqrf(t) + f(t)aDqrg(t)

g(t)g(aϕqr(t))
,

where g(t)g(aϕqr(t)) ̸= 0.
A function f on the interval [a, b] has a qr-integral that is defined as

(aIqrf)(t) =

∫ t

a
f(s)adqrs = (t− a)(1− qr)

∞∑
n=0

f(aϕ
i
qr(t))q

n
r , t ∈ [a, b].

The higher order qr-integration is defined as

(aI
0
qrf)(t) = f(t) and (aI

n
qrf)(t) = aI

n−1
qr (aIqrf(t)) for n ∈ N.

For the interval [a,b], the qr-integration by parts formula is,∫ b

a
f(s)aDqrg(s)adqrs = (fg)(t)|ba −

∫ b

a
g(aϕqr(s))aDqrf(s)adqrs.

These operators, aIqr and aDqr , are covered by the calculus fundamental theorem, which
is,

(aDqraIqrf)(t) = f(t),

furthermore, if f is continuous at x = a, we get

(aIqraDqrf)(t) = f(t)− f(a).

Now we recall the definition of Riemann-Liouville qr-integral, qr-derivative and Caputo
fractional qr-derivative and the properties satisfied by these operators [22].
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Definition 2.1. Given a function f defined on [a, b] and σ ≥ 0. The qr Riemann Liouville
ingtegral of fractional order σ is defined as

(aI
σ
qrf)(t) =

∫ t

a

a(t− aϕqr(s))
(σ−1)
qr

Γqr(σ)
f(s)adqrs and (aI

0
qrf)(t) = f(t) t ∈ [a, b].

Definition 2.2. Consider a function f defined on [a, b] with σ ≥ 0. The definition of the
order σ of Riemann Liouville fractional qr-derivative is

(aD
σ
qrf)(t) = (aD

[σ]
qraI

[σ]−σ
qr f)(t) and (aD

0
qrf)(t) = f(t) t ∈ [a, b]

provided that the lowest integer larger than or equal to σ is [σ].

Definition 2.3. Consider a function f defined on [a, b] with σ ≥ 0. The definition of the
order σ of Caputo fractional qr-derivative is

(caD
σ
qrf)(t) = (aI

[σ]−σ
qr (aD

[σ]
qr f))(t)

provided that the lowest integer larger than or equal to σ is [σ].

Lemma 2.1. Given a function f defined on [a,b], let σ, ν ≥ 0. Then
1. aI

ν
qr(aI

σ
qrf)(t) = (aI

σ+ν
qr f)(t) ;

2. aD
σ
qr(aI

σ
qrf)(t) = f(t) .

Lemma 2.2. Assume that n ∈ N and σ > 0. Then, the equality stated below is true:

aI
σ
qr(aD

n
qrf)(t) = aD

n
qr(aI

σ
qrf)(t)−

n−1∑
k=0

(t− a)σ−n+k

Γqr(σ + k − n+ 1)
(aD

k
qrf)(a).

Lemma 2.3. Let σ ∈ R+ \ N and n ∈ N. Then, the equality stated below is true:

aI
σ
qr(

c
aD

σ
qrf)(t) = f(t)−

[σ]−1∑
k=0

(t− a)k

Γqr(k + 1)
(aD

k
qrf)(a).

The operator aI
σ
qr and aD

σ
qr , satisfy the following two equation:

aD
σ
qr(t− a)ν =

Γqr(ν + 1)

Γqr(ν − σ + 1)
(t− a)ν−σ.

aI
σ
qr(t− a)ν =

Γqr(ν + 1)

Γqr(ν + σ + 1)
(t− a)ν+σ.

We define PC(J,R)={x : J → R | x is a continuous map everywhere, with the exception
of a certain tr, where x(t+r ), x(t

−
r ) exist and x(t−r ) = x(tr) for each r=1,2,. . .,n.}. Define

∥x∥∞= supt∈J |x(t)|, then (PC(J,R),∥.∥∞) is a Banach space.

Theorem 2.1 (Krasnoselskii’s fixed point theorem). Let M be a subset of a Banach space
X that is closed, bounded, convex, and nonempty. Assume that P and Q are two operators.
Then,
(a) Pt+Qs ∈ M whenever t, s ∈ M
(b) P is compact and continuous map
(c) Q is a contraction mapping
then there exist u ∈ M such that u = Pu+Qu.

Let for y ∈ PC(J,R) and ϵ > 0, consider the following inequalities,{
|(ctrD

σr
qr y)(t)− f(t, y(t), (ctrD

σr
qr y)(t))| ≤ ϵ

|y(t+r )− y(tr)− ρr(y(tr))| ≤ ϵ.
(2)

where t ∈ [t0, t1] or t ∈ (tr, tr+1] for r = 1, 2, . . . , n.
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Definition 2.4. If there is a real number C > 0 such that for every ϵ > 0 and every
solution y ∈ PC(J,R) of inequality (2), there exists a unique solution x ∈ PC(J,R) of the
problem (1) such that, for t ∈ J it satisfy

|y(t)− x(t)| ≤ Cϵ.

then the problem (1) is said to be Ulam-Hyers stable.

Definition 2.5. If there is a real function c ∈ C(R+,R+) with c(0)=0 such that for every
ϵ > 0 and every solution y ∈ PC(J,R) of inequality (2), there exists a unique solution x ∈
PC(J,R) of the problem (1) such that, for t ∈ J it satisfy

|y(t)− x(t)| ≤ c(ϵ).

then the problem (1) is said to be Generalized Ulam-Hyers stable.

Remark: By definition it is obvious that definition (2.4) implies definition (2.5).

3. Existence of solutions

The integral form of the equation (1) and the conditions needed for the existence of the
problem’s solution will be determined in this section.

Theorem 3.1. Existence of solution for impulsive fractional qr-difference equation of
implicit form with nonlocal boundary condition If F ∈ AC (J × R × R, R), then a
solution of (1) is x ∈ PC (J,R) if and only if for t ∈ [t0, t1] or t ∈ (tr, tr+1], r= ,1,2,. . .,n
,

x(t) =
n∑

j=1

dj(tj−1I
σj−1
qj−1 G)(tj) +

n∑
j=1

djρj(x(tj)) +
n∑

j=0

cj
A
(tjI

σj
qj G)(ηj)

− b

A
(tnI

σn
qn G)(T ) +

r−1∑
j=0

(tjI
σj
qj G)(tj+1) +

r∑
j=1

ρj(x(tj)) + (trI
σr
qr G)(t) (3)

where G(t) = F (t, x(t), G(t)) , A = a+b-
∑n

j=0 cj and dj =
∑n

i=j ci−b

A for all j = 0,1,2, . . .,
n.

Proof. In the interval [t0, t1], let x(t) satisfy the equation (1) then, consider G(t) =
(ct0D

q0
σ0x)(t) integrating both side of the equation (1), we get

x(t) = x(0) + (t0I
σ0
q0 G)(t)

and G(t) = F (t, x(t), G(t)).
At t = t1, we get

x(t1) = x(0) + (t0I
σ0
q0 G)(t1).

Using the equation (1), we get

x(t+1 ) = x(0) + (t0I
σ0
q0 G)(t1) + ρ1(x(t1)).

Similarly, in the next interval (t1, t2], we have,

x(t) = x(t+1 ) + (t1I
σ1
q1 G)(t).

Putting the value of x(t+1 ) in the above equation we get,

x(t) = x(0) + (t0I
σ0
q0 G)(t1) + ρ1(x(t1)) + (t1I

σ1
q1 G)(t).
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then we have,

x(t+2 ) = x(0) +

1∑
i=0

(tiI
σi
qi G)(ti+1) +

2∑
i=1

ρi(x(ti)).

So, for t ∈ (t2, t3], we have

x(t) = x(0) +

1∑
i=0

(tiI
σi
qi G)(ti+1) +

2∑
i=1

ρi(x(ti)) + (t2I
σ2
q2 G)(t).

For t ∈ (tr, tr+1], the integral from will be,

x(t) = x(0) +
r−1∑
i=0

(tiI
σi
qi G)(ti+1) +

r∑
i=1

ρi(x(ti)) + (trI
σr
qr G)(t) (4)

where G(t) = F (t, x(t), G(t)). So, for t = T ,

x(T ) = x(0) +
n−1∑
i=0

(tiI
σi
qi G)(ti+1) +

n∑
i=1

ρi(x(ti)) + (tnI
σn
qn G)(T ).

Putting the value of x(η0), x(η1), . . ., x(ηn) in the equation (1), we have,

ax(0) + bx(0) + b

n−1∑
i=0

(tiI
σi
qi G)(ti+1) + b

n∑
i=1

ρi(x(ti)) + b(tnI
σn
qn G)(T )

= (
n∑

i=0

ci)x(0) +
n∑

j=1

(
n∑

i=j

ci)(tj−1I
σj−1
qj−1 G)(tj) +

n∑
j=1

(
n∑

i=j

ci)ρj(x(tj))

+

n∑
j=0

cj(tjI
σj
qj G)(ηj)

⇒ x(0) =

n∑
j=1

dj(tj−1I
σj−1
qj−1 G)(tj) +

n∑
j=1

djρj(x(tj)) +

n∑
j=0

cj
A
(tjI

σj
qj G)(ηj)

− b

A
(tnI

σn
qn G)(T ).

Putting the value of x(0) in the equation (4), we get the integral form (3).
The converse part of the theorem is followed by direct computation. □

We consider the following assumptions:
(A1) F is a continuous function.
(A2) There exist m, p, d ∈ C(J,R+) such that,

|F (t, x, y)| ≤ d(t) + p(t)|x|+m(t)|y|

and p∗ = maxt∈J |p(t)|, d∗ = maxt∈J |d(t)|, m∗ = maxt∈J |m(t)|.
(A3) There exist a constant M ′ > 0 such that for t, s ∈ J ,

|ρr(t)− ρr(s)| ≤ M ′|t− s|

and ρr(0) = 0 for r = 1,2,3,. . .,n.
(A4)

(

n∑
i=0

|di|+ n)M ′ < 1.
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(A5) Let

Λ =
n∑

j=1

|dj |
(tj − tj−1)

σj−1

Γqj (σj−1 + 1)
+

n∑
j=0

|cj |
|A|

(tj+1 − tj)
σj

Γqj (σj + 1)
+

|b|
|A|

(T − tn)
σn

Γqn(σn + 1)

+

n−1∑
j=0

(tj+1 − tj)
σj

Γqj (σj + 1)
+ λ.

where λ = max { (tr+1−tr)σr

Γqr (σr+1) } for all r = 0,1,2,. . . , n. Then,

p∗Λ < {1− (
n∑

i=1

|di|+ n)M ′}(1−m∗).

(A6)There exist constant N,Q > 0 such that,

|F (t, x1, y1)− F (t, x2, y2)| ≤ N |x1 − x2|+Q|y1 − y2|.

(A7)

Λ
N

1−Q
+ (

n∑
i=1

|di|+ n)M ′ < 1.

Theorem 3.2. If the equation (1) satisfies the assumptions (A1)-(A6), then the interval
[0, T ] contains the solution to the equation (1).

Proof. Let the operator J defined from PC(J,R) to PC(J,R) such that,

(J x)(t) = (Sx)(t) + (Tx)(t)

where S, T are two operator from from PC(J,R) to PC(J,R) which are defined as

(Sx)(t) =

n∑
j=1

djρj(x(tj)) +

r∑
j=1

ρj(x(tj))

(Tx)(t) =

n∑
j=1

dj(tj−1I
σj−1
qj−1 G)(tj) +

n∑
j=0

cj
A
(tjI

σj
qj G)(ηj)−

b

A
(tnI

σn
qn G)(T )

+
r−1∑
j=0

(tjI
σj
qj G)(tj+1) + (trI

σr
qr G)(t)

where G(t) = F (t, x(t), G(t)) for t ∈ [t0, t1] or t ∈ (tr, tr+1] for all r = 1,2,. . .,n.
Step 1: S is a contraction map.
Let x, y ∈ PC(J,R), t ∈ [t0, t1] or t ∈ (tr, tr+1] for r=1,2,. . .,n. Then we get,

|(Sx)(t)− (Sy)(t)| ≤
n∑

j=1

|dj ||ρj(x(tj))− ρj(y(tj))|+
r∑

j=1

|ρj(x(tj))− ρj(y(tj))|

≤ (

n∑
j=1

|dj |+ n)M ′∥x− y∥∞.

Using the assumption (A4) we get, S is a contraction map.
Step 2: T is a compact map.
(i) T map bounded set to bounded set.
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Consider a bounded set BR which defined as BR = {x ∈ PC(J,R) : ∥x∥∞ ≤ R}. Let,
u ∈ BR we have,

|Tu(t)| ≤
n∑

j=1

|dj |(tj−1I
σj−1
qj−1 |G(tj)|) +

n∑
j=0

|cj |
|A|

(tjI
σj
qj |G(ηj)|) +

|b|
|A|

(tnI
σn
qn |G(T )|)

+
r−1∑
j=0

(tjI
σj
qj |G(tj)|) + (trI

σr
qr |G(t)|).

By using the assumption (A2) we have,

|F (t, x(t), G(t))| ≤ d(t) + p(t)∥x∥∞ +m(t)∥G(t)∥∞

∥G(t)∥∞ ≤ p∗∥x∥∞ + d∗

1−m∗ .

Using the above inequality we get,

|(Tx)(t)| ≤
n∑

j=1

|dj |(
p∗∥x∥∞ + d∗

1−m∗ )
(tj − tj−1)

σj−1

Γqj−1(σj−1 + 1)

+
n∑

j=0

|cj |
|A|

(
p∗∥x∥∞ + d∗

1−m∗ )
(tj+1 − tj)

σj

Γqj (σj + 1)

+
|b|
|A|

(
p∗∥x∥∞ + d∗

1−m∗ )
(T − tn)

σn

Γqn(σn + 1)

+

r−1∑
j=0

(
p∗∥x∥∞ + d∗

1−m∗ )
(tj+1 − tj)

σj

Γqj (σj + 1)

+ λ(
p∗∥x∥∞ + d∗

1−m∗ )

which implies that, |(Tx)(t)| ≤ Λ(p
∗R+d∗

1−m∗ ), So, T is a bounded map.

(ii) T is equicontinuous map.
Let x ∈ PC(J,R) and τ1, τ2 ∈ [t0, t1] or (tr, tr+1] for r =1,2,. . .,n. Also τ1 ≤ τ2, then

|(Tx)(τ2)− (Tx)(τ1)| ≤
1

Γqr(σr)
(

∫ τ2

τ1

{tr(τ2 − trϕqr(s))
(σr−1)
qr |G(s)|}trdqrs

+

∫ τ1

tr

{tr(τ2 − trϕqr(s))
(σr−1)
qr − tr(τ1 − trϕqr(s))

(σr−1)
qr }|G(s)|trdqrs)

≤ p∗∥x∥∞ + d∗

1−m∗ (
(τ2 − tr)

(σr) − (τ1 − tr)
(σr)

Γqr(σr)
)

as τ1 → τ2 then, we have (Tx)(τ1) → (Tx)(τ2). So, T is a equicontinuous map.
Using Arzela-Ascoli’s Theorem, we can determine that T is a compact map since it is
bounded and equicontinuous.
Step 3: T is a continuous map.
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Let xm, x ∈ PC(J,R) for m ∈ N and xm → x in PC(J,R) as m → ∞. So, we have,

∥(Txm)(t)− (Tx)(t)∥ ≤
n∑

j=1

|dj |(tj−1I
σj−1
qj−1 |Gm −G|)(tj) +

n∑
j=0

|cj |
|A|

(tjI
σj
qj |Gm −G|)(ηj)

+
|b|
|A|

(tnI
σn
qn |Gm −G|)(T ) +

r−1∑
j=0

(tjI
σj
qj |Gm −G|)(tj+1)

+ (trI
σr
qr |Gm −G|)(t)

where Gm(t) = F (t, xm(t), Gm(t)), G(t) = F (t, x(t), G(t)) and Gm, G ∈ C(J,R).
|Gm(t)−G(t)| = |F (t, xm(t), Gm(t))− F (t, x(t), G(t))|

≤ N |xm(t)− x(t)|+Q|Gm(t)−G(t)|.
So, we get,

∥Gm −G∥∞ ≤ N

1−Q
∥xm − x∥∞.

Using the above inequality we have,

∥Txm − Tx∥∞ ≤ NΛ

1−Q
∥xm − x∥∞.

So, as xm → x we have Txm → Tx.
So, T is a continuous map.
Step 4: If x, y ∈ BR then Sx+ Ty ∈ BR where R such that,

d∗Λ

(1−m∗)(1−
∑n

j=1 |dj |M ′ − nM ′)− p∗Λ
≤ R.

We have,

|(Sx+ Ty)(t)| ≤
n∑

j=1

|dj |M ′|x(tj)|+
r∑

j=1

M ′|x(tj)|+ Λ(
p∗∥y∥∞ + d∗

1−m∗ )

≤ R(
n∑

j=1

|dj |+ n)M ′ + Λ(
p∗R+ d∗

1−m∗ )

≤ R.

So, Sx+ Ty ∈ BR.
So, by Krasnoselskii’s fixed point theorem, there exist a solution x ∈ PC(J,R) of the
equation (1). □

4. Ulam-Hyers Stability

Suitable conditions for Ulam-Hyers as well as Generalized Ulam-Hyers stability of the
equation (1) is obtained in this section which is depicted through the following theorem.

Theorem 4.1. If the problem (1) satisfies assumptions (A3), (A6), and (A7), then the
problem is Ulam-Hyers stable, and as a result, it is also Generalized Ulam-Hyers stable.

Proof. Consider x be a solution of the equation (1).
Let ϵ > 0 and y be a solution of the following inequality{

|(ctrD
σr
qr y)(t)− F (t, y(t), (ctrD

σr
qr y)(t))| < ϵ, t ∈ Jr ⊂ J = [0, T ], t ̸= tr

|y(t+r )− y(tr)− ρr(y(tr))| < ϵ r = 1, 2, . . . , n.
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Then, there exist θ : [0, T ] → R+, θr ∈ R+ such that |θ(t)| < ϵ and |θr| < ϵ and it satisfy{
(ctrD

σr
qr y)(t) = F (t, y(t), (ctrD

σr
qr y)(t)) + θ(t), t ∈ Jr ⊂ J = [0, T ], t ̸= tr

y(t+r ) = y(tr) + ρr(y(tr)) + θr r = 1, 2, . . . , n.

Then using theorem 3.1, the solution of the above problem is given by,

y(t) =

n∑
j=1

dj(tj−1I
σj−1
qj−1 H)(t) +

n∑
j=1

djρj(y(tj)) +

n∑
j=0

cj
A
(tjI

σj
qj H)(ηj)

− b

A
(tnI

σn
qn H)(T ) +

r−1∑
j=0

(tjI
σj
qj H)(tj+1) +

r∑
j=1

ρj(y(tj)) + (trI
σr
qr H)(t)

+

n∑
j=1

dj(tj−1I
σj−1
qj−1 θ)(tj) +

n∑
j=1

θjdj +

n∑
j=0

cj
A
(tjI

σj
qj θ)(ηj)

− b

A
(tnI

σn
qn θ)(T ) +

r−1∑
j=0

(tjI
σj
qj θ)(tj+1) +

r∑
j=1

θj + (trI
σr
qr θ)(t)

where H(t) = F (t, y(t), H(t)) and t ∈ (tr, tr+1] for all r = 1, 2, . . . , n. Now

|y(t)− x(t)| ≤
n∑

j=1

|dj |(tj−1I
σj−1
qj−1 |H −G|)(t) +

n∑
j=1

|dj |M ′|y(tj)− x(tj)|

+
n∑

j=0

|cj |
|A|

(tjI
σj
qj |H −G|)(ηj) +

|b|
|A|

(tnI
σn
qn |H −G|)(T )

+

r−1∑
j=0

(tjI
σj
qj |H −G|)(tj+1)

+

r∑
j=1

M ′|y(tj)− x(tj)|+ (tkI
σr
qr |H −G|)(t) + ϵ(Λ +

n∑
j=1

|dj |+ n)

⇒ ∥y − x∥∞ ≤ ΛN

1−Q
∥y − x∥∞ + (

n∑
j=1

|dj |M ′ + nM ′)∥y − x∥∞

+ (Λ +
n∑

j=1

|dj |+ n)ϵ

⇒ ∥y − x∥∞ ≤ Cϵ

where

C =
(Λ +

∑n
j=1 |dj |+ n)

1− Λ N
1−Q −

∑n
j=1 |dj |M ′ − nM ′ .

So, the equation (1) is a Ulam-Hyers stable which also implies that the equation is also
Generalized Ulam-Hyers stable. □

5. Example

We will provide an example in this part to show our results.
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Example 5.1. The impulsive fractional differential equation with implicit form below has
a nonlocal boundary condition.

(ctrD
r2+49

r2+50
r+1
r+2

x)(t) = t+ t
2x(t) +

t
50sin((

c
trD

r2+49

r2+50
r+1
r+2

x)(t)), t ∈ J = [0, 1], t /∈ {1
4 ,

1
2 ,

3
4}

x(t+r ) = x(tr) +
(x(tr))r

240 , tr =
r
4

100x(0) + x(1) = 1
4x(η0) +

1
4x(η1) +

1
4x(η2) +

1
4x(η3), η0 ∈ [t0, t1], ηr ∈ (tr, tr+1],

(5)

comparing (5) with the problem (1) we have σr =
r2+49
r2+50

, qr =
r+1
r+2 , tr =

r
4 for r = 0,1,2,3.

a = 100, b = 1, c0 = 1
4 , c1 = 1

4 , c2 = 1
4 , c3 = 1

4 , F (t, x, y) = t + t
2x + t

50sin(y) and

ρr(t) =
tr

240 r = 1, 2, 3. So F is a continuous function and satisfy the (A1) assumption.
Again,

|F (t, x, y)| ≤ |t|+ | t
2
||x|+ | t

50
||sin(y)|

≤ t+
t

2
|x|+ t

50
|y|.

So, assumption (A2) is satisfied where d(t) = t, p(t) = t/2, m(t) = t/50 and d∗ = 1,
p∗ = 1/2, m∗ = 1/50.
Since for k =1,2,3, ρr(t) satisfied ρk(0) = 0 and the Lipschitz condition with Lipschitz
constant K = 1

240 ,
1

120 ,
1
80 respectively, so we choose M ′ = 1

80 . Now using the value of

M ′, a, b, c0, c1, c2, c3 we get that (
∑3

i=0 |di| + 3)M ′ = 0.0377 < 1 which implies that
assumption (A4) is also satisfied.
Using the property of q-gamma function i.e., if 0 < q < 1 and 1 < t ≤ 2, then Γ(t) ≤ Γq(t),
we get,

Λ ≤
3∑

j=1

|dj |
(tj − tj−1)

σj−1

Γ(σj−1 + 1)
+

3∑
j=0

|cj |
|A|

(tj+1 − tj)
αj

Γ(σj + 1)

+
|b|
|A|

(T − tn)
σn

Γ(σn + 1)
+

2∑
j=0

(tj+1 − tj)
σj

Γ(σj + 1)
+ λ

= 1.0449,

which implies, p∗Λ ≤ 0.52245 < 0.9431 = {1 − (
∑3

i=1 |di| + 3)M ′}(1 − m∗). Again for
x1, x2, y1, y2 ∈ R and t ∈ [0, 1] we have,

|F (t, x1, y1)− F (t, x2, y2)| ≤
t

2
|x1 − x2|+

t

50
|sin(y1)− sin(y2)|

≤ 1

2
|x1 − x2|+

1

50
|y1 − y2|.

So, N = 1
2 and Q = 1

50 . Since (5) satisfy the assumption (A1), (A2), (A3), (A4), (A5),
(A6), so there exist a solution of the problem (5) in [0,1].
Also,

Λ
N

1−Q
+ (

3∑
i=1

|di|+ 3)M ′ ≤ 0.52245× 50

49
+ 0.0377 = 0.5708 ≤ 1,

which implies that the problem (5) satisfy the assumption (A7). So the solution is Ulam-
Hyers stable as well as Generalized Ulam-Hyers stable.
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6. Conclusion

The conditions necessary for the existence of solutions to the impulsive fractional dif-
ferential equation given in equation (1) are obtained in this study. We also derive the
necessary conditions for the Ulam-Hyer stability and the Generalized Ulam-Hyer stability
of the problem. we illustrate our results with a example.
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