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PROBABILISTIC INSIGHTS INTO SPATIO-TEMPORAL GARCH

MODEL WITH LOCATION-DEPENDENT PARAMETERS

A. AOURI1, M. BOUKELOUA2∗, S. KHARFOUCHI3, §

Abstract. Spatial data analysis is a burgeoning field with applications ranging across
ecology, finance and environmental studies, among others. Particularly, the intersection
of space and time in phenomena such as environmental dynamics, energy economics and
urban development necessitates sophisticated modeling techniques. In this paper, we
propose a novel spatio-temporal GARCH model, extending traditional GARCH models
to incorporate spatial dependencies alongside temporal dynamics. Building upon prior
research, we introduce stationarity conditions and explore the asymptotic normality of
the process. We also demonstrate that the process can be effectively approximated by a
stationary process at a fixed location, providing valuable insights into localized behavior.

Keywords: Spatio-temporal GARCH model, stationarity conditions, asymptotic normal-
ity, spatial local stationarity.

AMS Subject Classification: 60G10, 62M30

1. Introduction

Spatial data are currently a dynamic and widely researched area, with their applications
spanning various domains such as ecology, finance and environmental phenomena. In such
cases, the relationship between space and time is captured and data are observed in regular
or irregular geographical areas over time.

This gives rise to the concept of spatio-temporal data, which require the application of
various modeling techniques to accurately predict and forecast these phenomena ([1]). The
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modelling of such spatio-temporal data is a challenging task, requiring the investigation
of more sophisticated models to deal with complex non-linear, non-stationary and non
Gaussian spatio-temporal real data. Pioneering earlier efforts include the works of [14],
[19, 20], [10] and [21], among others. Notably, some of the popular models used in analyzing
spatio-temporal data and understanding the intricate dynamics between space and time
are the univariate spatio-temporal GARCH models.

In temporal data, GARCH models or the Generalized AutoRegressive Conditional Het-
eroskedasticity models are univariate statistical models that have become increasingly
important and popular nowadays due to their simplicity and effectiveness in modeling
temporal dependence. The main character of these models is that the volatility features
change over time. They are used especially in analyzing financial and macroeconomic
data in a very flexible way besides providing good in-sample estimations ([2]). More-
over, they are characterized by their incredible and incontestable popularity results in an
array of alternative volatility models which fits financial data with stylized facts better.
Indeed, the exponential GARCH and the Glosten- Jagannathan-Runkle GARCH mod-
els arise to take into account unconditional shocks in volatility and asymmetry effects.
Integrated GARCH (IGARCH), fractionally IGARCH (FI- GARCH) and their different
variants are long memory extensions of GARCH models that consider long memory and
structural breaks simultaneously. In addition, to take into account an eventual presence of
the structural breaks, [15] introduced regime switching GARCH models that have drawn
considerable attention recently in several fields of science such as Financial, population
dynamics, markets, traffic modeling, speech recognition and river flow analysis ([23], [13],
[3], [31], [22] and [9]).

Looking at the abundant literature in prior studies on the GARCH-type models, it can
be seen that all of these models consider volatility effects only from a temporal point of
view. In this work, we aim to enrich the analysis by adding a dependence over space which
means both time and location are not fixed. Hence, we introduce a novel spatio-temporal
GARCH model by extending temporal dependence to the space framework in the same
way as earlier works such as those of [27] and [4].

Several spatio-temporal extensions of the univariate GARCH models have been pro-
posed to deal with the intricate interplay between space and time. [24] characterized
a spatial ARCH model incorporating heteroscedasticity variance based on neighboring
locations, applicable in spatiotemporal contexts. [28, 29, 30] introduced a process incor-
porating parts of GARCH and exponential GARCH (E-GARCH) processes. In addition,
[16] proposed a novel circular spatio-temporal GARCH model with a translation invari-
ant neighbour system. They gave some stationarity conditions and they investigated the
spatio-temporal structure of the correlation function by an ARMA representation. A fur-
ther work on GARCH models in the space-time domain, with a unified framework, has
been proposed by [25] who combined pure spatial GARCH with the GARCH time series
processes previously proposed. Their approach covered spatial and spatio-temporal mod-
els by considering the temporal dimension as one of the dimensions of the locations in the
indexing set.

All the previous proposed spatio-temporal GARCH models are constructed with spa-
tial stationarity assumption. However, many factors can lead to spatially non-stationarity
such as the multi-directional nature of the space, therefore, in the present study we define
a spatio-temporal GARCH model according to its time dynamics.That is, for particular
observations at a fixed location, they can be considered as a GARCH time series. For ob-
servations at a given time, we have observations over various locations. Such an approach
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has been used in various applications using the location-dependent AR process to model,
for instance, ground ozone and house price data (see [12] and [11] respectively).

This paper is organized as follows: In Section 2, we establish the foundation of our
study by defining the model under consideration. We delve into the intricacies of the
model, examining meticulously its properties and behavior. A key focus of this section is
the exploration of stationarity conditions which is crucial for understanding the dynamics
of the process over time. Additionally, we embark on a comprehensive investigation into
the asymptotic normality of the process, shedding light on its long-term behavior and
stability. In Section 3, we present a pivotal finding, where we extend the method used
by [26] for varying-time GARCH models to demonstrate that the spatiotemporal process
can be effectively approximated by a stationary process at a specific location s0. This
approximation not only simplifies the analysis, but also provides valuable insights into the
localized behavior of the process and helps to better understand its underlying mechanisms.

In all the sequel , ∥.∥∞ denotes the sup-norm of a vector, so that, for any m×m matrix
E = [eij ] , ∥E∥∞ = max1≤i≤m

∑m
j=1 | eij |. If A, E and D are matrices such that E is

diagonal with all diagonal elements equal in modulus to ρ(A) (the spectral radius of A)
and ρ(D) ≤ ρ(E), the p × p matrix A is said to be spectral radius diagonalizable if it is

similar to the matrix

[
E 0
0 D

]
. Then, there exists; for A, a p × p nonsingular matrix

P such that ∥P−1AP∥∞ = ρ0 where ρ0 = ρ(A). Moreover, Cd = C
(
[0, 1]2,Rd

)
denotes

the collection of all continuous functions f : [0, 1]2 → Rd , equipped with the metric
dCd

(f, g) = supt∈[0,1]2 | f(t)− g(t) |, for f, g ∈ Cd.

2. Model Definition and Properties

2.1. Model Definition. Let s = (x, y) ∈ [0, 1]2 be spatial coordinates. The proposed
STGARCH(p,q) process {Xt(s) , s ∈ [0, 1]2} is given by{

Xt(s) = σt(s)ϵt(s)

σ2
t (s) = ω0(s) +

∑q
i=1 αi(s)X

2
t−i(s) +

∑p
j=1 βj(s)σ

2
t−j(s) ,

(1)

where Xt(s), σt(s) and ϵt(s) are respectively the modelled process, the volatility process
and the residual process, and ω0(s), αi(s), i = 1, . . . , q and βj(s), j = 1, . . . , p are nonpara-
metric functions. In (1) the innovations ϵt(s) are :
- Independent over time and spatially, strictly stationary.
- Strictly stationary and ergodic over time, with E(ϵt(s)) = 0 and var(ϵt(s)) = 1.
- Independent of σt(s).
We notice that for the process {Xt(s) , s ∈ [0, 1]2} solving the equation (1) the process
σ2
t (s) can be considered as a sub-diagonal STBL(p,0,1,q) process having the following

representation

σ2
t (s) = ω0(s) +

q∑
i=1

αi(s)η
2
t+1−i(s)σ

2
t−i(s) +

p∑
j=1

βj(s)σ
2
t−j(s) , (2)

where ηt(s) = ϵt−1(s). It is hence a special case of the location-dependent bilinear
process defined by Equation (1.1) in [17]. We can apply Theorems 2 and 3 of [17] to obtain
the time stationarity at each point in the spatial domain, For the proposed STGARCH(p,q)
as well as a Central Limit Theorem (CTL). To use these results, we need to define the
following matrices,
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σ2
t (s) =

 σ2
t (s)
...

σ2
t−p+1(s)


p×1

, C(s) =


ω0(s)
0
...
0


p×1

,

B(s) =


β1(s) β2(s) · · · βp(s)
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1


p×p

.

Without loss of generality we suppose that q < p and that Aj(s), j = 1, . . . , q are p× p
matrices with all components equal zero except the component in the first row and jth
column being equal to αj(s), for instance,

A2(s) =


0 α2(s) . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . . . . 0


p×p

.

So, the bilinear representation in Equation (2) can be written in the following equivalent
matrix form

σ2
t (s) = C(s) +B(s)σ2

t−1(s) +

q∑
j=1

Aj(s)ϵ
2
t−j(s)σ

2
t−1(s). (3)

2.2. Stationarity. Now, we can apply Theorem 2 of [17] to obtain sufficient conditions
for time stationarity, at each point in the spatial domain, for the STGARCH(p,q) process
defined by Equation (1).

Theorem 2.2.1. Let {Xt(s), s ∈ [0, 1]2} be as defined in the Equation (1), and let
C(s), Aj(s) and B(s) be the matrix coefficients of Equation (3). Assume that B(s) is a
spectral radius diagonalizable matrix with ∥P−1(s)B(s)P (s)∥∞ = ρ0(s), and set δj(s) =
∥P−1(s)Aj(s)P (s)∥∞.
Assume further that

sup
s

E log

(
ρ0(s) +

q∑
j=1

δj(s) | ϵ2t−j |
)

< 0.

Then, for all fixed s, there exists a unique strictly stationary (over time) process Xt(s)
satisfying (1), such that σ2

t (s) is given by the first component of σ2
t (s) which have the

following specification

σ2
t (s) = C(s) +

∞∑
r=1

r−1∏
k=0

B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

C(s), (4)

with the infinite series being almost surely convergent.

Now, let’s provide an example to illustrate this theorem
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Exemple 2.2.1. Consider the STGARCH (1, 1) process{
Xt(s) = σt(s)ϵt(s) , s = (x, y) ∈ [0, 1]2

σ2
t (s) = ω(s) + a(s)X2

t−1(s) + c(s)σ2
t−1(s) ,

where a : [0, 1]2 → [−1, 1], c : [0, 1]2 → [−1, 1] and

a(x, y) = a1 sinx cos y,
c(x, y) = a2(5− x) cos y,

and the innovations {ϵt(s)} are independent over time and spatially, strictly stationary
and ergodic over time, with E [ϵt(s)] = 0 and var [ϵt(s)] = 1. In this case σ2

t (s) = σ2
t (s),

B(s) = c(s), C(s) = ω(s) and A1(s) = a(s). It is clear that A(s) is a spectral radius
diagonalizable 1×1 matrix with ρ0(s) =| c(s) | and δ1(s) =| a(s) |. The sufficient condition
for the existence of a strictly stationary (over time) process σ2

t (s) is

sup
s

E log(| c(s) | + | a(s) || ϵ21(s) |) < 0,

which becomes

| a2 | +5 | a1 |< 1.

Moreover, the solution is given by

σ2
t (s) = ω(s) + ω(s)

∞∑
r=1

r−1∏
k=0

[a(s) + c(s) ϵ2t−1−k(s)].

2.3. Central limit theorem (CLT). In the following, we investigate the asymptotic
normality of the sample mean derived from our process. In the sequel, we shall assume
that:

• (H1) ϵt(s) is an i.i.d sequence with E (ϵt(s)) = 0, E
(
ϵt(s)

2
)
= 1, and E

(
ϵt(s)

4
)
is

finite. Moreover we set E (ϵt(s)
r) = µr(s), for r = 3, 4.

• (H2) ω0(s), {αi(s); i = 1, . . . , p} and {βi(s); i = 1, . . . , q} are continuous functions.

• (H3) sups ρ(B(s)⊗A(s)) = ρ1 < 1 and sups ρ(G(s)) = ρ2 < 1 , where

G(s) = B(s)⊗B(s) +

q∑
j=1

Aj(s)⊗Aj(s).

First we put

℘T,n =
n∑

t=1

T∑
u=1

σ2
t (su)− µ

(nT )
1
2

,

(H1) and (H3) allow us to apply the Chanda Central Limit Theorem ([8]) associated

with bilinear time series on Σn(s) =
∑n

t=1
σ2
t (s)−µ

(n)
1
2

, while we use (H2) to have Σn(.) ∈ C1

Theorem 2.3.1. Assume that the conditions (H1), (H2) and (H3) hold, then

L (℘T,n) → N
(
0, η2

)
,

as n, T → ∞, where

η2 = lim
T→∞

1

T

T∑
u=1

[
lim

m→∞

{
Eσ4

1,m (su) + 2
m∑
v=1

∣∣σ2
1,m (su)σ

2
1+v,m (su)

∣∣}] .
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3. The Approximated Spatially Stationary STGARCH(p,q) Process

In this section, we explore additional probabilistic aspects of our process. So, we demon-
strate that the spatially nonstationary process Xt(s) can be effectively approximated by
a spatially stationary process Xt,s0(s). First, we note that the STGARCH(p,q) process
defined in (1) admits the following presentation

Xt(s) = At(s)Xt−1(s) + bt(s), (5)

where

Xt(s)
T =

(
σ2
t (s), . . . , σ

2
t−q+1(s), X

2
t−1(s), . . . , X

2
t−p+1(s)

)
,

bt(s)
T = (ω0(s), 0, . . . , 0) ∈ Rp+q−2,

At(s) =


ℑt(s) βq(s) α(s) αp(s)
Iq−1 0 0 0
ϵ2t−1(s) 0 0 0

0 0 Ip−2 0

 ,∈ R(p+q−1)×(p+q−1).

ℑt(s) =
(
β1(s) + α1(s)ϵ

2
t−1(s), β2(s), . . . , βq−1(s)

)
, α(s) = (α2(s), . . . , αp−1(s)) and

ϵ2t−1(s) =
(
ϵ2t−1(s), 0, . . . , 0

)
∈ Rq−1 .

By iterating (5), we arrive at a result

Xt(s) =
∞∑
k=0

k−1∏
l=0

At−l(s)bt−k(s). (6)

In the sequel, we need the following assumptions

Assumptions 2. The STGARCH(p,q) process satisfies the representation (5), and for
all s ∈ [0, 1]2 the random matricesAt(s) and the vector bt(s) satisfy the next assumptions:

• For each v ∈ {1, . . . , V } where V ∈ N, there is a sequence of a random matrix
A(v), that are identically distributed, positive and such that

sup
s

| At(s) |≤ At(v), for all s ∈
[
v − 1

V
,
v

V

)2

.

In addition E(∥At(v)∥λ∞) < ∞ and for some λ < 0 , the Lyapunov exponent of
those matrices is less than λ .

• There is a stationary sequence bt such as

sup
s

| bt(s) |< bt.

• For some λ′ > 0; E(∥At∥λ
′

∞) < ∞ and E(∥bt∥λ
′

∞) < ∞.
• For all s , v ∈ [0, 1]2

| At(s)−At(s
′) |≤ C | s− s′ | At, and E[At] < ∞.

| Ȧt(s)− Ȧt(s
′) ≤ C | s− s′ |2 At, with sup

s
| Ȧt(s) |≤ CAt(v).

| bt(s)− bt(s
′) |≤ C | s− s′ | bt.

| ḃt(s)− ḃt(s
′) |≤ C | s− s′ |2 bt, with sup

s
| ḃt(s) |≤ Cbt.

This is a kind of Holder continuity of order (1 + 2) for random matrices. This as-
sumption allows us to use Taylor expansion for approximating the spatio-temporal
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GARCH model, aligning with the methodology that [26] employed for varying-
time GARCH models.
To simplify matters, we assume that for k ≥ 1,

∏−k
j=0Aj = I where I is the identity

matrix.

In the following theorem, we aim to demonstrate that the spatially nonstationary process
X2

t (s) could be approximated by a spatially stationary process X2
t,s0(s) in a fixed location

s0, where{
Xt,s0(s) = σt,s0(s)ϵt(s)

σ2
t,s0(s) = ω0(s0) +

∑q
i=1 αi(s0)X

2
t−i,s0

(s) +
∑p

j=1 βj(s0)σ
2
t−j,s0

(s),

Theorem 3.1. Let X2
t (s) be a STGARCH(p,q) model that satisfies the representation

(1), (6). We define Wt as follows

Wt =
∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l(v)bt−k.

If Assumptions 2 hold and if for some λ′ > 0,

sup
s

E | X2
t (s) |λ

′
< ∞, sup

s
E | Wt |λ

′
< ∞,

Then, we have

|X2
t (s)−X2

t,s0(s)| ≤ ∥s− s0∥∞Nt,

Nt = C

∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l(v)(At−kWt−k−1 + bt−k).

Nt is stationary process in both space and time.

The fact that Nt is a stationary process in both space and time is supported by a non-
stationary extension of [6] (Theorem 1) and [5] (Theorem 2.5), combined with the almost
sure convergence of Nt.
To refine the previous approximation, we begin by introducing the concept of a deriva-
tive spatial process. This derivative spatial process corresponds to the derivative of the
spatially stationary process Xt,s0(s) with respect to s0 and it is given by :

Ẋt(s) = Ȧt(s)Xt−1(s) +At(s)Ẋt−1(s) + ḃt(s). (7)

Let

Xt,2,s0(s)
T =

(∂Xt,s0(s)

∂x0
,Xt,s0(s)

)
, bt,2(s0)

T =
(
∂x0bt(s0),bt(s0)

)
.

Let also

bt,2 =

(
Cbt

T

bt
T

)
At,2(v) =

(
At(v) CAt(v)
0 At(v)

)
and At,2 =

(
At CAt

0 At

)
.

We suppose that At,2(s) and At,2(v) have negative Lyapunov exponent.
Since, | At,2(s) | < At,2(v) and sups | bt,2(s) |< bt,2, we can rewrite (7) as follows:(

∂Xt(s)
∂s

Xt(s)

)
= At,2(s)

(
∂Xt−1(s)

∂s
Xt−1(s)

)
+

(
∂sbt(s)
bt(s)

)
, (8)
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where

At,2(s) =

(
At(s) ∂sAt(s)
0 At(s)

)
.

The primary purpose of defining the process outlined in equation (8) is to enable the
estimation of the derivative process, in additionXt,2(s) satisfies all the previous conditions.
By adding week assumptions on the moments of Xt,2(s) we can apply directly Theorem
3.1 . Define

Wt,2 =

∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l,2(v)bt−k,2.

Corollary 3.1. If all the pervious assumptions hold and if for some λ′ > 0,

sup
s

E | Xt,2(s) |λ
′
< ∞ and sup

s
E | Yt,2 |λ

′
< ∞,

then,

|Xt,2 −Xt,2,s0(s)| ≤ ∥s− s0∥∞Nt,2,

and || Nt ||≤|| Nt,2 ||, with

Nt,2 = C

∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l,2(v)(At−k,2Wt−k−1,2 + bt−k,2).

Nt,2 is a stationary process in both space and time.

By utilizing equation (7), we have

Ẋt(s) = Ȧt(s)
(
At−1(s)Xt−2(s) + bt−1(s)

)
+At(s)

(
Ȧt−1(s)Xt−2(s) +At−1(s)Ẋt−2(s) + ḃt−1(s)

)
+ ḃt(s),

By iteration, we conclude that

Ẋt(s) =
∞∑
k=0

k−1∑
v=0

v−1∏
j=0

At−j(s)

 Ȧt−v(s)

 k−1∏
j=v+1

At−j(s)

bt−k(s)

+
∞∑
k=0

k−1∏
j=0

At−j(s)

 ḃt−k(s).

Now by corollary 3.1 and since that all the paths of X2
t (s) are almost surely Lipchitzian

with order (1 + 2), we can write the following Taylor expansion of X2
t (s) around s0

X2
t (s) = X2

t (s0) + (s− s0) Ẋt,s0(s) +Op

(
||s− s0| |2

)
. (9)

One notable characteristic, easily verifiable, is that the partial derivatives of Xt,s0(s)

concerning s0 generally yield Ẋt,s0(s). We employ this insight below, illustrating that the
spatially nonstationary process Xt(s) can be approximated by a linear combination of two
spatially stationary processes.

Theorem 3.2. We suppose that X2
t (s) satisfies model (1) and Assumption 2, we have∣∣∣X2

t (s)−X2
t,s0(s)− (s− s0) Ẋ

2
t,s0(s)

∣∣∣ ≤ ∥s− s0∥2∞Nt.
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We observe that Theorem 3.2 . is a representation of a spatially nonstationary process
in terms of spatially stationary processes. Moreover, if s is in the proximity of s0, then
X2

t (s) can be approximated by X2
t,s0(s) + (s− s0)Ẋ

2
t,s0(s).

Let us introduce the process {X̃2
t,s0(s)}t. Considering s0 as a fixed location, we assume

that the process {X̃2
t,u0

(u)}t conforms to the provided representation:

X̃t,s0(s) = Ãt,s0(s)X̃t−1,s0(s) + b̃t,s0(s),

where X̃t,s0(s)
T = (X̃t,s0(s), . . . , X̃t−p+1,s0(s)). The modified matrix Ãs0(s) is like At(s)

but with each αj(s) and βj(s) substituted by αj(s0) + (s − s0)α̇j(s0) and βj(s0) + (s −
s0)β̇j(s0) respectively.

Additionally, b̃t,s0(s)
T = (ω0(s0) + (s− s0)ω̇0(s0), 0, . . . , 0) . Consequently, it can be shown

that the solution to X̃t,s0(s) is almost surely given by

X̃t,s0(s) =

∞∑
k=0

k−1∏
l=0

Ãt−l,s0(s)b̃t−k,s0(s).

In the upcoming theorem, we demonstrate that X2
t (s) can also be represented closely by

X̃t,s0(s)
2.

Theorem 3.3. We suppose that X2
t (s) satisfies model (1) and Assumption 2. Assume that

sups | Ãt(s) |≤ Ãt(v) where the Lyapunov exponent of Ãt(v) is less than certain λ̃ < 0

and that sups | b̃t(s) |< b̃t. Moreover , we assume that for some λ̃′ > 0

E(∥Ãt∥λ̃
′

∞) < ∞ and E(∥b̃t∥λ̃
′

∞) < ∞.

Then,
|X2

t (s)− X̃2
t,s0(s)| ≤ ∥s− s0∥∞Ñt,

where

Ñt = C
∞∑
k=0

V∑
v=1

k−1∏
l=0

Ãt−l(v)(Ãt−kW̃t−k−1 + b̃t−k).

Ñt is a stationary process in both space and time.

Corollary 3.2. We suppose that X2
t (s) satisfies model (1) and all the conditions of The-

orem 3.3 . We have
|σ2

t (s)− σ̃2
t,s0(s)| ≤ ∥s− s0∥∞Ñt,1,

where

Ñt,1 = C

∞∑
k=0

V∑
v=1

k−1∏
l=0

Ãt−l(v)
(
Ãt−kW̃t−k−1 + b̃t−k

) 1

ϵt(s)
.

Ñt,1 is a stationary process in both space and time.

4. Conclusion

In this article, we introduced a novel spatio-temporal GARCH model that extends
traditional univariate GARCH models to account for both spatial and temporal depen-
dencies. By capturing the intricate dynamics between space and time, this model offers
a more comprehensive framework for analyzing complex spatio-temporal data. Building
on the foundational works of [26, 27] and others, we examined stationarity conditions
and asymptotic normality. We also demonstrated how the spatio-temporal process can be
approximated by a stationary process at a fixed location, simplifying the analysis. This
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work lays a solid foundation for future research and applications in several areas such as
finance and environmental science.
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Appendix A. This appendix includes supplementary material that supports the main
text. Specifically, it presents two results, which are crucial for the proof of Theorem 2.3.1.
These results are available in [18] and [7] (Problem 6.16, p. 216).

Theorem A-1. Suppose that Yn ⇒ Y∞, ( where ⇒ denotes the weak convergence )
as elements of Cd. Then, for any continuous functional Ψ on Cd, Ψ(Yn) converges in
distribution to Ψ(Y∞).

Lemma A-1. Suppose That Yn ∼ N(µn, vn) where µn → µ, vn → v and 0 < v < ∞, so
Yn ⇒ Y , where Y ∼ N(µ, v).

Appendix B. In this appendix, we give the proofs of our results.

Proof of Theorem 2.2.1. We suppose that there exists a strictly stationary process
σ2
t (s), satisfying (3), given by

σ2
t (s) = C(s) +B(s)σ2

t−1(s) +

q∑
j=1

Aj(s)ϵ
2
t−j(s)σ

2
t−1(s).

By iterating, the previous equation we get for all n ≥ 1

σ2
t (s) = C(s) +

( n∑
r=1

r−1∏
k=0

B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
C(s)

+
n∏

k=0

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
σ2
t−n−1(s).

Put Ht,n(s) =
∏n

k=0

(
B(s) +

∑q
j=1Aj(s)ϵ

2
t−j−k(s)

)
σ2
t−n−1(s). And let ξ be an arbitrary

p× 1 real numbers vector, we have

| ξ′Ht,n(s) |≤ N∥P (s)∥∞
n∏

k=0

∥∥∥∥P−1(s)

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
P (s)

∥∥∥∥
∞
∥P−1(s)∥,

where N = ∥ξ′∥∞ is a finite positive constant independent of n. As a result

| ξ′Ht,n(s) |≤ N

n∏
k=0

(
ρ0(s) +

q∑
j=1

δj(s) | ϵ2t−j−k(s) |
)
,

and
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lim
1

n
log | ξ′Ht,n(s) |≤ lim

1

n
logN + lim

1

n

n∑
k=0

log

(
ρ0(s) +

q∑
j=1

δj(s) | ϵ2t−j−k(s) |
)
.

By the strong law of large numbers

lim
1

n
log | ξ′Ht,n(s) |≤ E log

(
ρ0(s) +

q∑
j=1

δj(s) | ϵ2t−j−k(s) |
)

≤ sup
s

E log

(
ρ0(s) +

q∑
j=1

δj(s) | ϵ2t−j−k(s) |
)
, a.s.

which implies that Ht,n(s) → 0 a.s. as n → ∞.
Since σ2

t (s) is strictly stationary then, for all n ≥ 1, σ2
t−n−1(s) have the same distribution.

In addition Ht,n(s) → 0 a.s. implies that

n∏
k=0

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
σ2
t−m−1(s) → 0 ,

in probability as n → ∞ . Hence

σ2
t (s) = C(s) +

( ∞∑
r=1

r−1∏
k=0

B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
C(s).

Conversely, we suppose that σ2
t (s) satisfies (4). We must first prove that for all fixed t ∈ Z

and s ∈ [0, 1]2 the following series of random vectors converges almost surely

∞∑
r=1

r−1∏
k=0

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
C(s).

We put

Zrt(s) =

r−1∏
k=0

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
C(s).

So,

| Zrt(s) |≤ N

r−1∏
k=0

∥∥∥∥P−1(s)

(
B(s) +

q∑
j=1

Aj(s)ϵ
2
t−j−k(s)

)
P (s)

∥∥∥∥
∞
,

and

1

r
log | Zrt(s) |≤

1

r
N +

1

r

r∑
k=1

log

(
ρ0(s) +

q∑
j=1

δj(s)ϵ
2
t−j−k(s)

)
.

Since,

1

r

r∑
k=1

log

(
ρ0(s) +

q∑
j=1

δj(s)ϵ
2
t−j−k(s)

)
,

tends to

E log

(
ρ0(s) +

q∑
j=1

δj(s)ϵ
2
t−j−k(s)

)
a.s.,
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when r → ∞,

we conclude that for every t and s, lim sup | Zrt(s) |
1
r< 1 a.s, which implies that∑

r≥1 Zrt(s) converges absolutely almost surely. As a result σ2
t (s) is strictly stationary,

ergodic and satisfies (3). □

Proof of Theorem 2.3.1. We consider the following sum

Σn(s) =

n∑
t=1

σ2
t (s)− µ

(n)
1
2

.

By the Central Limits Theorem ( Chanda 1989), we have for all fixed s ∈ [0, 1]2,
L(Σn(su)) → N(0, η2(su)) as n → ∞, where

η2(su) = lim
m→∞

{
Eσ4

1,m (su) + 2

m∑
v=1

∣∣σ2
1,m (su)σ

2
1+v,m (su)

∣∣} .

Let Θ a continuous function whereas :

Θ : {[0, 1]2}T → R.
For each fixed s1 . . . sT ∈ [0, 1]2 and for all g ∈ C1, we define Ψ(g) = Θ(g(s1) . . . g(sT )) =
1
T 1

2

∑T
i=1 g(si), Ψ(g) is a continuous functional .

By (H2) and (4) we deduce that Σn(.) ∈ C1. Moreover, we have for u = 1, . . . , T, Σn(su) ⇒
Σ∞(su), where Σ∞(su) ∼ N(0, η2(su)), then, by using Theorem A-1 in Appendix A,
Ψ(Σn(su)) ⇒ Ψ(Σ∞(su)). Thus

L(℘T,n) → L

(
1

T 1
2

T∑
i=1

Σ∞(si)

)
.

In addition, since ϵt(s) are independent over time and spatially, as a result Σ∞(s1), . . . ,
Σ∞(sT ) are also independent.
Furthermore, Σ∞(si) → N(0, η2(si)), for all i = 1, . . . , T , so,

1

T 1
2

T∑
i=1

Σ∞(si) ∼ N

(
0,

1

T

[ T∑
i=1

η2(si)

])
.

Then, it is clear to see that 1
T

[∑T
i=1 η

2(si)

]
tends to the finite constant

η2 = lim
T→∞

1

T

T∑
u=1

[
lim

m→∞

{
Eσ4

1,m (su) + 2

m∑
v=1

∣∣σ2
1,m (su)σ

2
1+v,m (su)

∣∣}] .
So, Lemma A-1 in Appendix A, entails that

L(℘T,n) → N(0, η2).

□

Proof of Theorem 3.1. We have

|X2
t (s)−X2

t,s0(s)| ≤|| At(s)Xt−1(s)−At(s0)Xt−1(s0) ||2 +C∥s− s0∥∞bt

≤|| At(s)−At(s0) ||2|| Xt−1(s) ||2
+ ∥Xt−1(s)−Xt−1(s0)∥2 || At(s0) ||2 +C∥s− s0∥∞bt

≤ C || s− s0 ||2 At || Xt−1(s) ||2 +∥Xt−1(s)−Xt−1(s0)∥2 At(v)

+ C∥s− s0∥∞bt.
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By iteration, we find that

| X2
t (s)−X2

t,s0(s) |≤ C || s− s0 ||∞
∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l(v)
(
At−kWt−k−1 + bt−k

)
,

where

Wt =
∞∑
k=0

V∑
v=1

k−1∏
l=0

At−l(v)bt−k.

□

Proof of Corollary 3.1. This corollary follows immediately from Theorem 3.1 . □

Proof of Theorem 3.2. By using equation (9) we get

X2
t (s)−X2

t (s0) = (s− s0) Ẋt,s0(s) +Rt(s, s0),

where
| Rt(s, s0) |≤ ||s− s0| |2Nt,

Nt being defined as in Theorem3.1. □

Proof of Theorem 3.3. This theorem can be proved in the same way as Theorem 3.1.
□

Proof of Corollary 3.2. The proof of Corollary 3.2 follows immediately from Theorem
3.3 and the definition of X2

t (s) . □
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